blob: 003e99fadb4f189565b409b9509ecf30b752d25a [file] [log] [blame]
kesavandb9f54fd2021-11-25 20:08:04 +05301// Package difflib is a partial port of Python difflib module.
2//
3// It provides tools to compare sequences of strings and generate textual diffs.
4//
5// The following class and functions have been ported:
6//
7// - SequenceMatcher
8//
9// - unified_diff
10//
11// - context_diff
12//
13// Getting unified diffs was the main goal of the port. Keep in mind this code
14// is mostly suitable to output text differences in a human friendly way, there
15// are no guarantees generated diffs are consumable by patch(1).
16package difflib
17
18import (
19 "bufio"
20 "bytes"
21 "fmt"
22 "io"
23 "strings"
24)
25
26func min(a, b int) int {
27 if a < b {
28 return a
29 }
30 return b
31}
32
33func max(a, b int) int {
34 if a > b {
35 return a
36 }
37 return b
38}
39
40func calculateRatio(matches, length int) float64 {
41 if length > 0 {
42 return 2.0 * float64(matches) / float64(length)
43 }
44 return 1.0
45}
46
47type Match struct {
48 A int
49 B int
50 Size int
51}
52
53type OpCode struct {
54 Tag byte
55 I1 int
56 I2 int
57 J1 int
58 J2 int
59}
60
61// SequenceMatcher compares sequence of strings. The basic
62// algorithm predates, and is a little fancier than, an algorithm
63// published in the late 1980's by Ratcliff and Obershelp under the
64// hyperbolic name "gestalt pattern matching". The basic idea is to find
65// the longest contiguous matching subsequence that contains no "junk"
66// elements (R-O doesn't address junk). The same idea is then applied
67// recursively to the pieces of the sequences to the left and to the right
68// of the matching subsequence. This does not yield minimal edit
69// sequences, but does tend to yield matches that "look right" to people.
70//
71// SequenceMatcher tries to compute a "human-friendly diff" between two
72// sequences. Unlike e.g. UNIX(tm) diff, the fundamental notion is the
73// longest *contiguous* & junk-free matching subsequence. That's what
74// catches peoples' eyes. The Windows(tm) windiff has another interesting
75// notion, pairing up elements that appear uniquely in each sequence.
76// That, and the method here, appear to yield more intuitive difference
77// reports than does diff. This method appears to be the least vulnerable
78// to synching up on blocks of "junk lines", though (like blank lines in
79// ordinary text files, or maybe "<P>" lines in HTML files). That may be
80// because this is the only method of the 3 that has a *concept* of
81// "junk" <wink>.
82//
83// Timing: Basic R-O is cubic time worst case and quadratic time expected
84// case. SequenceMatcher is quadratic time for the worst case and has
85// expected-case behavior dependent in a complicated way on how many
86// elements the sequences have in common; best case time is linear.
87type SequenceMatcher struct {
88 a []string
89 b []string
90 b2j map[string][]int
91 IsJunk func(string) bool
92 autoJunk bool
93 bJunk map[string]struct{}
94 matchingBlocks []Match
95 fullBCount map[string]int
96 bPopular map[string]struct{}
97 opCodes []OpCode
98}
99
100func NewMatcher(a, b []string) *SequenceMatcher {
101 m := SequenceMatcher{autoJunk: true}
102 m.SetSeqs(a, b)
103 return &m
104}
105
106func NewMatcherWithJunk(a, b []string, autoJunk bool,
107 isJunk func(string) bool) *SequenceMatcher {
108
109 m := SequenceMatcher{IsJunk: isJunk, autoJunk: autoJunk}
110 m.SetSeqs(a, b)
111 return &m
112}
113
114// Set two sequences to be compared.
115func (m *SequenceMatcher) SetSeqs(a, b []string) {
116 m.SetSeq1(a)
117 m.SetSeq2(b)
118}
119
120// Set the first sequence to be compared. The second sequence to be compared is
121// not changed.
122//
123// SequenceMatcher computes and caches detailed information about the second
124// sequence, so if you want to compare one sequence S against many sequences,
125// use .SetSeq2(s) once and call .SetSeq1(x) repeatedly for each of the other
126// sequences.
127//
128// See also SetSeqs() and SetSeq2().
129func (m *SequenceMatcher) SetSeq1(a []string) {
130 if &a == &m.a {
131 return
132 }
133 m.a = a
134 m.matchingBlocks = nil
135 m.opCodes = nil
136}
137
138// Set the second sequence to be compared. The first sequence to be compared is
139// not changed.
140func (m *SequenceMatcher) SetSeq2(b []string) {
141 if &b == &m.b {
142 return
143 }
144 m.b = b
145 m.matchingBlocks = nil
146 m.opCodes = nil
147 m.fullBCount = nil
148 m.chainB()
149}
150
151func (m *SequenceMatcher) chainB() {
152 // Populate line -> index mapping
153 b2j := map[string][]int{}
154 for i, s := range m.b {
155 indices := b2j[s]
156 indices = append(indices, i)
157 b2j[s] = indices
158 }
159
160 // Purge junk elements
161 m.bJunk = map[string]struct{}{}
162 if m.IsJunk != nil {
163 junk := m.bJunk
164 for s, _ := range b2j {
165 if m.IsJunk(s) {
166 junk[s] = struct{}{}
167 }
168 }
169 for s, _ := range junk {
170 delete(b2j, s)
171 }
172 }
173
174 // Purge remaining popular elements
175 popular := map[string]struct{}{}
176 n := len(m.b)
177 if m.autoJunk && n >= 200 {
178 ntest := n/100 + 1
179 for s, indices := range b2j {
180 if len(indices) > ntest {
181 popular[s] = struct{}{}
182 }
183 }
184 for s, _ := range popular {
185 delete(b2j, s)
186 }
187 }
188 m.bPopular = popular
189 m.b2j = b2j
190}
191
192func (m *SequenceMatcher) isBJunk(s string) bool {
193 _, ok := m.bJunk[s]
194 return ok
195}
196
197// Find longest matching block in a[alo:ahi] and b[blo:bhi].
198//
199// If IsJunk is not defined:
200//
201// Return (i,j,k) such that a[i:i+k] is equal to b[j:j+k], where
202// alo <= i <= i+k <= ahi
203// blo <= j <= j+k <= bhi
204// and for all (i',j',k') meeting those conditions,
205// k >= k'
206// i <= i'
207// and if i == i', j <= j'
208//
209// In other words, of all maximal matching blocks, return one that
210// starts earliest in a, and of all those maximal matching blocks that
211// start earliest in a, return the one that starts earliest in b.
212//
213// If IsJunk is defined, first the longest matching block is
214// determined as above, but with the additional restriction that no
215// junk element appears in the block. Then that block is extended as
216// far as possible by matching (only) junk elements on both sides. So
217// the resulting block never matches on junk except as identical junk
218// happens to be adjacent to an "interesting" match.
219//
220// If no blocks match, return (alo, blo, 0).
221func (m *SequenceMatcher) findLongestMatch(alo, ahi, blo, bhi int) Match {
222 // CAUTION: stripping common prefix or suffix would be incorrect.
223 // E.g.,
224 // ab
225 // acab
226 // Longest matching block is "ab", but if common prefix is
227 // stripped, it's "a" (tied with "b"). UNIX(tm) diff does so
228 // strip, so ends up claiming that ab is changed to acab by
229 // inserting "ca" in the middle. That's minimal but unintuitive:
230 // "it's obvious" that someone inserted "ac" at the front.
231 // Windiff ends up at the same place as diff, but by pairing up
232 // the unique 'b's and then matching the first two 'a's.
233 besti, bestj, bestsize := alo, blo, 0
234
235 // find longest junk-free match
236 // during an iteration of the loop, j2len[j] = length of longest
237 // junk-free match ending with a[i-1] and b[j]
238 j2len := map[int]int{}
239 for i := alo; i != ahi; i++ {
240 // look at all instances of a[i] in b; note that because
241 // b2j has no junk keys, the loop is skipped if a[i] is junk
242 newj2len := map[int]int{}
243 for _, j := range m.b2j[m.a[i]] {
244 // a[i] matches b[j]
245 if j < blo {
246 continue
247 }
248 if j >= bhi {
249 break
250 }
251 k := j2len[j-1] + 1
252 newj2len[j] = k
253 if k > bestsize {
254 besti, bestj, bestsize = i-k+1, j-k+1, k
255 }
256 }
257 j2len = newj2len
258 }
259
260 // Extend the best by non-junk elements on each end. In particular,
261 // "popular" non-junk elements aren't in b2j, which greatly speeds
262 // the inner loop above, but also means "the best" match so far
263 // doesn't contain any junk *or* popular non-junk elements.
264 for besti > alo && bestj > blo && !m.isBJunk(m.b[bestj-1]) &&
265 m.a[besti-1] == m.b[bestj-1] {
266 besti, bestj, bestsize = besti-1, bestj-1, bestsize+1
267 }
268 for besti+bestsize < ahi && bestj+bestsize < bhi &&
269 !m.isBJunk(m.b[bestj+bestsize]) &&
270 m.a[besti+bestsize] == m.b[bestj+bestsize] {
271 bestsize += 1
272 }
273
274 // Now that we have a wholly interesting match (albeit possibly
275 // empty!), we may as well suck up the matching junk on each
276 // side of it too. Can't think of a good reason not to, and it
277 // saves post-processing the (possibly considerable) expense of
278 // figuring out what to do with it. In the case of an empty
279 // interesting match, this is clearly the right thing to do,
280 // because no other kind of match is possible in the regions.
281 for besti > alo && bestj > blo && m.isBJunk(m.b[bestj-1]) &&
282 m.a[besti-1] == m.b[bestj-1] {
283 besti, bestj, bestsize = besti-1, bestj-1, bestsize+1
284 }
285 for besti+bestsize < ahi && bestj+bestsize < bhi &&
286 m.isBJunk(m.b[bestj+bestsize]) &&
287 m.a[besti+bestsize] == m.b[bestj+bestsize] {
288 bestsize += 1
289 }
290
291 return Match{A: besti, B: bestj, Size: bestsize}
292}
293
294// Return list of triples describing matching subsequences.
295//
296// Each triple is of the form (i, j, n), and means that
297// a[i:i+n] == b[j:j+n]. The triples are monotonically increasing in
298// i and in j. It's also guaranteed that if (i, j, n) and (i', j', n') are
299// adjacent triples in the list, and the second is not the last triple in the
300// list, then i+n != i' or j+n != j'. IOW, adjacent triples never describe
301// adjacent equal blocks.
302//
303// The last triple is a dummy, (len(a), len(b), 0), and is the only
304// triple with n==0.
305func (m *SequenceMatcher) GetMatchingBlocks() []Match {
306 if m.matchingBlocks != nil {
307 return m.matchingBlocks
308 }
309
310 var matchBlocks func(alo, ahi, blo, bhi int, matched []Match) []Match
311 matchBlocks = func(alo, ahi, blo, bhi int, matched []Match) []Match {
312 match := m.findLongestMatch(alo, ahi, blo, bhi)
313 i, j, k := match.A, match.B, match.Size
314 if match.Size > 0 {
315 if alo < i && blo < j {
316 matched = matchBlocks(alo, i, blo, j, matched)
317 }
318 matched = append(matched, match)
319 if i+k < ahi && j+k < bhi {
320 matched = matchBlocks(i+k, ahi, j+k, bhi, matched)
321 }
322 }
323 return matched
324 }
325 matched := matchBlocks(0, len(m.a), 0, len(m.b), nil)
326
327 // It's possible that we have adjacent equal blocks in the
328 // matching_blocks list now.
329 nonAdjacent := []Match{}
330 i1, j1, k1 := 0, 0, 0
331 for _, b := range matched {
332 // Is this block adjacent to i1, j1, k1?
333 i2, j2, k2 := b.A, b.B, b.Size
334 if i1+k1 == i2 && j1+k1 == j2 {
335 // Yes, so collapse them -- this just increases the length of
336 // the first block by the length of the second, and the first
337 // block so lengthened remains the block to compare against.
338 k1 += k2
339 } else {
340 // Not adjacent. Remember the first block (k1==0 means it's
341 // the dummy we started with), and make the second block the
342 // new block to compare against.
343 if k1 > 0 {
344 nonAdjacent = append(nonAdjacent, Match{i1, j1, k1})
345 }
346 i1, j1, k1 = i2, j2, k2
347 }
348 }
349 if k1 > 0 {
350 nonAdjacent = append(nonAdjacent, Match{i1, j1, k1})
351 }
352
353 nonAdjacent = append(nonAdjacent, Match{len(m.a), len(m.b), 0})
354 m.matchingBlocks = nonAdjacent
355 return m.matchingBlocks
356}
357
358// Return list of 5-tuples describing how to turn a into b.
359//
360// Each tuple is of the form (tag, i1, i2, j1, j2). The first tuple
361// has i1 == j1 == 0, and remaining tuples have i1 == the i2 from the
362// tuple preceding it, and likewise for j1 == the previous j2.
363//
364// The tags are characters, with these meanings:
365//
366// 'r' (replace): a[i1:i2] should be replaced by b[j1:j2]
367//
368// 'd' (delete): a[i1:i2] should be deleted, j1==j2 in this case.
369//
370// 'i' (insert): b[j1:j2] should be inserted at a[i1:i1], i1==i2 in this case.
371//
372// 'e' (equal): a[i1:i2] == b[j1:j2]
373func (m *SequenceMatcher) GetOpCodes() []OpCode {
374 if m.opCodes != nil {
375 return m.opCodes
376 }
377 i, j := 0, 0
378 matching := m.GetMatchingBlocks()
379 opCodes := make([]OpCode, 0, len(matching))
380 for _, m := range matching {
381 // invariant: we've pumped out correct diffs to change
382 // a[:i] into b[:j], and the next matching block is
383 // a[ai:ai+size] == b[bj:bj+size]. So we need to pump
384 // out a diff to change a[i:ai] into b[j:bj], pump out
385 // the matching block, and move (i,j) beyond the match
386 ai, bj, size := m.A, m.B, m.Size
387 tag := byte(0)
388 if i < ai && j < bj {
389 tag = 'r'
390 } else if i < ai {
391 tag = 'd'
392 } else if j < bj {
393 tag = 'i'
394 }
395 if tag > 0 {
396 opCodes = append(opCodes, OpCode{tag, i, ai, j, bj})
397 }
398 i, j = ai+size, bj+size
399 // the list of matching blocks is terminated by a
400 // sentinel with size 0
401 if size > 0 {
402 opCodes = append(opCodes, OpCode{'e', ai, i, bj, j})
403 }
404 }
405 m.opCodes = opCodes
406 return m.opCodes
407}
408
409// Isolate change clusters by eliminating ranges with no changes.
410//
411// Return a generator of groups with up to n lines of context.
412// Each group is in the same format as returned by GetOpCodes().
413func (m *SequenceMatcher) GetGroupedOpCodes(n int) [][]OpCode {
414 if n < 0 {
415 n = 3
416 }
417 codes := m.GetOpCodes()
418 if len(codes) == 0 {
419 codes = []OpCode{OpCode{'e', 0, 1, 0, 1}}
420 }
421 // Fixup leading and trailing groups if they show no changes.
422 if codes[0].Tag == 'e' {
423 c := codes[0]
424 i1, i2, j1, j2 := c.I1, c.I2, c.J1, c.J2
425 codes[0] = OpCode{c.Tag, max(i1, i2-n), i2, max(j1, j2-n), j2}
426 }
427 if codes[len(codes)-1].Tag == 'e' {
428 c := codes[len(codes)-1]
429 i1, i2, j1, j2 := c.I1, c.I2, c.J1, c.J2
430 codes[len(codes)-1] = OpCode{c.Tag, i1, min(i2, i1+n), j1, min(j2, j1+n)}
431 }
432 nn := n + n
433 groups := [][]OpCode{}
434 group := []OpCode{}
435 for _, c := range codes {
436 i1, i2, j1, j2 := c.I1, c.I2, c.J1, c.J2
437 // End the current group and start a new one whenever
438 // there is a large range with no changes.
439 if c.Tag == 'e' && i2-i1 > nn {
440 group = append(group, OpCode{c.Tag, i1, min(i2, i1+n),
441 j1, min(j2, j1+n)})
442 groups = append(groups, group)
443 group = []OpCode{}
444 i1, j1 = max(i1, i2-n), max(j1, j2-n)
445 }
446 group = append(group, OpCode{c.Tag, i1, i2, j1, j2})
447 }
448 if len(group) > 0 && !(len(group) == 1 && group[0].Tag == 'e') {
449 groups = append(groups, group)
450 }
451 return groups
452}
453
454// Return a measure of the sequences' similarity (float in [0,1]).
455//
456// Where T is the total number of elements in both sequences, and
457// M is the number of matches, this is 2.0*M / T.
458// Note that this is 1 if the sequences are identical, and 0 if
459// they have nothing in common.
460//
461// .Ratio() is expensive to compute if you haven't already computed
462// .GetMatchingBlocks() or .GetOpCodes(), in which case you may
463// want to try .QuickRatio() or .RealQuickRation() first to get an
464// upper bound.
465func (m *SequenceMatcher) Ratio() float64 {
466 matches := 0
467 for _, m := range m.GetMatchingBlocks() {
468 matches += m.Size
469 }
470 return calculateRatio(matches, len(m.a)+len(m.b))
471}
472
473// Return an upper bound on ratio() relatively quickly.
474//
475// This isn't defined beyond that it is an upper bound on .Ratio(), and
476// is faster to compute.
477func (m *SequenceMatcher) QuickRatio() float64 {
478 // viewing a and b as multisets, set matches to the cardinality
479 // of their intersection; this counts the number of matches
480 // without regard to order, so is clearly an upper bound
481 if m.fullBCount == nil {
482 m.fullBCount = map[string]int{}
483 for _, s := range m.b {
484 m.fullBCount[s] = m.fullBCount[s] + 1
485 }
486 }
487
488 // avail[x] is the number of times x appears in 'b' less the
489 // number of times we've seen it in 'a' so far ... kinda
490 avail := map[string]int{}
491 matches := 0
492 for _, s := range m.a {
493 n, ok := avail[s]
494 if !ok {
495 n = m.fullBCount[s]
496 }
497 avail[s] = n - 1
498 if n > 0 {
499 matches += 1
500 }
501 }
502 return calculateRatio(matches, len(m.a)+len(m.b))
503}
504
505// Return an upper bound on ratio() very quickly.
506//
507// This isn't defined beyond that it is an upper bound on .Ratio(), and
508// is faster to compute than either .Ratio() or .QuickRatio().
509func (m *SequenceMatcher) RealQuickRatio() float64 {
510 la, lb := len(m.a), len(m.b)
511 return calculateRatio(min(la, lb), la+lb)
512}
513
514// Convert range to the "ed" format
515func formatRangeUnified(start, stop int) string {
516 // Per the diff spec at http://www.unix.org/single_unix_specification/
517 beginning := start + 1 // lines start numbering with one
518 length := stop - start
519 if length == 1 {
520 return fmt.Sprintf("%d", beginning)
521 }
522 if length == 0 {
523 beginning -= 1 // empty ranges begin at line just before the range
524 }
525 return fmt.Sprintf("%d,%d", beginning, length)
526}
527
528// Unified diff parameters
529type UnifiedDiff struct {
530 A []string // First sequence lines
531 FromFile string // First file name
532 FromDate string // First file time
533 B []string // Second sequence lines
534 ToFile string // Second file name
535 ToDate string // Second file time
536 Eol string // Headers end of line, defaults to LF
537 Context int // Number of context lines
538}
539
540// Compare two sequences of lines; generate the delta as a unified diff.
541//
542// Unified diffs are a compact way of showing line changes and a few
543// lines of context. The number of context lines is set by 'n' which
544// defaults to three.
545//
546// By default, the diff control lines (those with ---, +++, or @@) are
547// created with a trailing newline. This is helpful so that inputs
548// created from file.readlines() result in diffs that are suitable for
549// file.writelines() since both the inputs and outputs have trailing
550// newlines.
551//
552// For inputs that do not have trailing newlines, set the lineterm
553// argument to "" so that the output will be uniformly newline free.
554//
555// The unidiff format normally has a header for filenames and modification
556// times. Any or all of these may be specified using strings for
557// 'fromfile', 'tofile', 'fromfiledate', and 'tofiledate'.
558// The modification times are normally expressed in the ISO 8601 format.
559func WriteUnifiedDiff(writer io.Writer, diff UnifiedDiff) error {
560 buf := bufio.NewWriter(writer)
561 defer buf.Flush()
562 wf := func(format string, args ...interface{}) error {
563 _, err := buf.WriteString(fmt.Sprintf(format, args...))
564 return err
565 }
566 ws := func(s string) error {
567 _, err := buf.WriteString(s)
568 return err
569 }
570
571 if len(diff.Eol) == 0 {
572 diff.Eol = "\n"
573 }
574
575 started := false
576 m := NewMatcher(diff.A, diff.B)
577 for _, g := range m.GetGroupedOpCodes(diff.Context) {
578 if !started {
579 started = true
580 fromDate := ""
581 if len(diff.FromDate) > 0 {
582 fromDate = "\t" + diff.FromDate
583 }
584 toDate := ""
585 if len(diff.ToDate) > 0 {
586 toDate = "\t" + diff.ToDate
587 }
588 if diff.FromFile != "" || diff.ToFile != "" {
589 err := wf("--- %s%s%s", diff.FromFile, fromDate, diff.Eol)
590 if err != nil {
591 return err
592 }
593 err = wf("+++ %s%s%s", diff.ToFile, toDate, diff.Eol)
594 if err != nil {
595 return err
596 }
597 }
598 }
599 first, last := g[0], g[len(g)-1]
600 range1 := formatRangeUnified(first.I1, last.I2)
601 range2 := formatRangeUnified(first.J1, last.J2)
602 if err := wf("@@ -%s +%s @@%s", range1, range2, diff.Eol); err != nil {
603 return err
604 }
605 for _, c := range g {
606 i1, i2, j1, j2 := c.I1, c.I2, c.J1, c.J2
607 if c.Tag == 'e' {
608 for _, line := range diff.A[i1:i2] {
609 if err := ws(" " + line); err != nil {
610 return err
611 }
612 }
613 continue
614 }
615 if c.Tag == 'r' || c.Tag == 'd' {
616 for _, line := range diff.A[i1:i2] {
617 if err := ws("-" + line); err != nil {
618 return err
619 }
620 }
621 }
622 if c.Tag == 'r' || c.Tag == 'i' {
623 for _, line := range diff.B[j1:j2] {
624 if err := ws("+" + line); err != nil {
625 return err
626 }
627 }
628 }
629 }
630 }
631 return nil
632}
633
634// Like WriteUnifiedDiff but returns the diff a string.
635func GetUnifiedDiffString(diff UnifiedDiff) (string, error) {
636 w := &bytes.Buffer{}
637 err := WriteUnifiedDiff(w, diff)
638 return string(w.Bytes()), err
639}
640
641// Convert range to the "ed" format.
642func formatRangeContext(start, stop int) string {
643 // Per the diff spec at http://www.unix.org/single_unix_specification/
644 beginning := start + 1 // lines start numbering with one
645 length := stop - start
646 if length == 0 {
647 beginning -= 1 // empty ranges begin at line just before the range
648 }
649 if length <= 1 {
650 return fmt.Sprintf("%d", beginning)
651 }
652 return fmt.Sprintf("%d,%d", beginning, beginning+length-1)
653}
654
655type ContextDiff UnifiedDiff
656
657// Compare two sequences of lines; generate the delta as a context diff.
658//
659// Context diffs are a compact way of showing line changes and a few
660// lines of context. The number of context lines is set by diff.Context
661// which defaults to three.
662//
663// By default, the diff control lines (those with *** or ---) are
664// created with a trailing newline.
665//
666// For inputs that do not have trailing newlines, set the diff.Eol
667// argument to "" so that the output will be uniformly newline free.
668//
669// The context diff format normally has a header for filenames and
670// modification times. Any or all of these may be specified using
671// strings for diff.FromFile, diff.ToFile, diff.FromDate, diff.ToDate.
672// The modification times are normally expressed in the ISO 8601 format.
673// If not specified, the strings default to blanks.
674func WriteContextDiff(writer io.Writer, diff ContextDiff) error {
675 buf := bufio.NewWriter(writer)
676 defer buf.Flush()
677 var diffErr error
678 wf := func(format string, args ...interface{}) {
679 _, err := buf.WriteString(fmt.Sprintf(format, args...))
680 if diffErr == nil && err != nil {
681 diffErr = err
682 }
683 }
684 ws := func(s string) {
685 _, err := buf.WriteString(s)
686 if diffErr == nil && err != nil {
687 diffErr = err
688 }
689 }
690
691 if len(diff.Eol) == 0 {
692 diff.Eol = "\n"
693 }
694
695 prefix := map[byte]string{
696 'i': "+ ",
697 'd': "- ",
698 'r': "! ",
699 'e': " ",
700 }
701
702 started := false
703 m := NewMatcher(diff.A, diff.B)
704 for _, g := range m.GetGroupedOpCodes(diff.Context) {
705 if !started {
706 started = true
707 fromDate := ""
708 if len(diff.FromDate) > 0 {
709 fromDate = "\t" + diff.FromDate
710 }
711 toDate := ""
712 if len(diff.ToDate) > 0 {
713 toDate = "\t" + diff.ToDate
714 }
715 if diff.FromFile != "" || diff.ToFile != "" {
716 wf("*** %s%s%s", diff.FromFile, fromDate, diff.Eol)
717 wf("--- %s%s%s", diff.ToFile, toDate, diff.Eol)
718 }
719 }
720
721 first, last := g[0], g[len(g)-1]
722 ws("***************" + diff.Eol)
723
724 range1 := formatRangeContext(first.I1, last.I2)
725 wf("*** %s ****%s", range1, diff.Eol)
726 for _, c := range g {
727 if c.Tag == 'r' || c.Tag == 'd' {
728 for _, cc := range g {
729 if cc.Tag == 'i' {
730 continue
731 }
732 for _, line := range diff.A[cc.I1:cc.I2] {
733 ws(prefix[cc.Tag] + line)
734 }
735 }
736 break
737 }
738 }
739
740 range2 := formatRangeContext(first.J1, last.J2)
741 wf("--- %s ----%s", range2, diff.Eol)
742 for _, c := range g {
743 if c.Tag == 'r' || c.Tag == 'i' {
744 for _, cc := range g {
745 if cc.Tag == 'd' {
746 continue
747 }
748 for _, line := range diff.B[cc.J1:cc.J2] {
749 ws(prefix[cc.Tag] + line)
750 }
751 }
752 break
753 }
754 }
755 }
756 return diffErr
757}
758
759// Like WriteContextDiff but returns the diff a string.
760func GetContextDiffString(diff ContextDiff) (string, error) {
761 w := &bytes.Buffer{}
762 err := WriteContextDiff(w, diff)
763 return string(w.Bytes()), err
764}
765
766// Split a string on "\n" while preserving them. The output can be used
767// as input for UnifiedDiff and ContextDiff structures.
768func SplitLines(s string) []string {
769 lines := strings.SplitAfter(s, "\n")
770 lines[len(lines)-1] += "\n"
771 return lines
772}