blob: 8060ca0160f03840bac3121f2ddf1362f633593e [file] [log] [blame]
William Kurkianea869482019-04-09 15:16:11 -04001syntax = "proto3";
2package etcdserverpb;
3
4import "gogoproto/gogo.proto";
5import "etcd/mvcc/mvccpb/kv.proto";
6import "etcd/auth/authpb/auth.proto";
7
8// for grpc-gateway
9import "google/api/annotations.proto";
10
11option (gogoproto.marshaler_all) = true;
12option (gogoproto.unmarshaler_all) = true;
13
14service KV {
15 // Range gets the keys in the range from the key-value store.
16 rpc Range(RangeRequest) returns (RangeResponse) {
17 option (google.api.http) = {
18 post: "/v3/kv/range"
19 body: "*"
20 };
21 }
22
23 // Put puts the given key into the key-value store.
24 // A put request increments the revision of the key-value store
25 // and generates one event in the event history.
26 rpc Put(PutRequest) returns (PutResponse) {
27 option (google.api.http) = {
28 post: "/v3/kv/put"
29 body: "*"
30 };
31 }
32
33 // DeleteRange deletes the given range from the key-value store.
34 // A delete request increments the revision of the key-value store
35 // and generates a delete event in the event history for every deleted key.
36 rpc DeleteRange(DeleteRangeRequest) returns (DeleteRangeResponse) {
37 option (google.api.http) = {
38 post: "/v3/kv/deleterange"
39 body: "*"
40 };
41 }
42
43 // Txn processes multiple requests in a single transaction.
44 // A txn request increments the revision of the key-value store
45 // and generates events with the same revision for every completed request.
46 // It is not allowed to modify the same key several times within one txn.
47 rpc Txn(TxnRequest) returns (TxnResponse) {
48 option (google.api.http) = {
49 post: "/v3/kv/txn"
50 body: "*"
51 };
52 }
53
54 // Compact compacts the event history in the etcd key-value store. The key-value
55 // store should be periodically compacted or the event history will continue to grow
56 // indefinitely.
57 rpc Compact(CompactionRequest) returns (CompactionResponse) {
58 option (google.api.http) = {
59 post: "/v3/kv/compaction"
60 body: "*"
61 };
62 }
63}
64
65service Watch {
66 // Watch watches for events happening or that have happened. Both input and output
67 // are streams; the input stream is for creating and canceling watchers and the output
68 // stream sends events. One watch RPC can watch on multiple key ranges, streaming events
69 // for several watches at once. The entire event history can be watched starting from the
70 // last compaction revision.
71 rpc Watch(stream WatchRequest) returns (stream WatchResponse) {
72 option (google.api.http) = {
73 post: "/v3/watch"
74 body: "*"
75 };
76 }
77}
78
79service Lease {
80 // LeaseGrant creates a lease which expires if the server does not receive a keepAlive
81 // within a given time to live period. All keys attached to the lease will be expired and
82 // deleted if the lease expires. Each expired key generates a delete event in the event history.
83 rpc LeaseGrant(LeaseGrantRequest) returns (LeaseGrantResponse) {
84 option (google.api.http) = {
85 post: "/v3/lease/grant"
86 body: "*"
87 };
88 }
89
90 // LeaseRevoke revokes a lease. All keys attached to the lease will expire and be deleted.
91 rpc LeaseRevoke(LeaseRevokeRequest) returns (LeaseRevokeResponse) {
92 option (google.api.http) = {
93 post: "/v3/lease/revoke"
94 body: "*"
95 additional_bindings {
96 post: "/v3/kv/lease/revoke"
97 body: "*"
98 }
99 };
100 }
101
102 // LeaseKeepAlive keeps the lease alive by streaming keep alive requests from the client
103 // to the server and streaming keep alive responses from the server to the client.
104 rpc LeaseKeepAlive(stream LeaseKeepAliveRequest) returns (stream LeaseKeepAliveResponse) {
105 option (google.api.http) = {
106 post: "/v3/lease/keepalive"
107 body: "*"
108 };
109 }
110
111 // LeaseTimeToLive retrieves lease information.
112 rpc LeaseTimeToLive(LeaseTimeToLiveRequest) returns (LeaseTimeToLiveResponse) {
113 option (google.api.http) = {
114 post: "/v3/lease/timetolive"
115 body: "*"
116 additional_bindings {
117 post: "/v3/kv/lease/timetolive"
118 body: "*"
119 }
120 };
121 }
122
123 // LeaseLeases lists all existing leases.
124 rpc LeaseLeases(LeaseLeasesRequest) returns (LeaseLeasesResponse) {
125 option (google.api.http) = {
126 post: "/v3/lease/leases"
127 body: "*"
128 additional_bindings {
129 post: "/v3/kv/lease/leases"
130 body: "*"
131 }
132 };
133 }
134}
135
136service Cluster {
137 // MemberAdd adds a member into the cluster.
138 rpc MemberAdd(MemberAddRequest) returns (MemberAddResponse) {
139 option (google.api.http) = {
140 post: "/v3/cluster/member/add"
141 body: "*"
142 };
143 }
144
145 // MemberRemove removes an existing member from the cluster.
146 rpc MemberRemove(MemberRemoveRequest) returns (MemberRemoveResponse) {
147 option (google.api.http) = {
148 post: "/v3/cluster/member/remove"
149 body: "*"
150 };
151 }
152
153 // MemberUpdate updates the member configuration.
154 rpc MemberUpdate(MemberUpdateRequest) returns (MemberUpdateResponse) {
155 option (google.api.http) = {
156 post: "/v3/cluster/member/update"
157 body: "*"
158 };
159 }
160
161 // MemberList lists all the members in the cluster.
162 rpc MemberList(MemberListRequest) returns (MemberListResponse) {
163 option (google.api.http) = {
164 post: "/v3/cluster/member/list"
165 body: "*"
166 };
167 }
168}
169
170service Maintenance {
171 // Alarm activates, deactivates, and queries alarms regarding cluster health.
172 rpc Alarm(AlarmRequest) returns (AlarmResponse) {
173 option (google.api.http) = {
174 post: "/v3/maintenance/alarm"
175 body: "*"
176 };
177 }
178
179 // Status gets the status of the member.
180 rpc Status(StatusRequest) returns (StatusResponse) {
181 option (google.api.http) = {
182 post: "/v3/maintenance/status"
183 body: "*"
184 };
185 }
186
187 // Defragment defragments a member's backend database to recover storage space.
188 rpc Defragment(DefragmentRequest) returns (DefragmentResponse) {
189 option (google.api.http) = {
190 post: "/v3/maintenance/defragment"
191 body: "*"
192 };
193 }
194
195 // Hash computes the hash of whole backend keyspace,
196 // including key, lease, and other buckets in storage.
197 // This is designed for testing ONLY!
198 // Do not rely on this in production with ongoing transactions,
199 // since Hash operation does not hold MVCC locks.
200 // Use "HashKV" API instead for "key" bucket consistency checks.
201 rpc Hash(HashRequest) returns (HashResponse) {
202 option (google.api.http) = {
203 post: "/v3/maintenance/hash"
204 body: "*"
205 };
206 }
207
208 // HashKV computes the hash of all MVCC keys up to a given revision.
209 // It only iterates "key" bucket in backend storage.
210 rpc HashKV(HashKVRequest) returns (HashKVResponse) {
211 option (google.api.http) = {
212 post: "/v3/maintenance/hash"
213 body: "*"
214 };
215 }
216
217 // Snapshot sends a snapshot of the entire backend from a member over a stream to a client.
218 rpc Snapshot(SnapshotRequest) returns (stream SnapshotResponse) {
219 option (google.api.http) = {
220 post: "/v3/maintenance/snapshot"
221 body: "*"
222 };
223 }
224
225 // MoveLeader requests current leader node to transfer its leadership to transferee.
226 rpc MoveLeader(MoveLeaderRequest) returns (MoveLeaderResponse) {
227 option (google.api.http) = {
228 post: "/v3/maintenance/transfer-leadership"
229 body: "*"
230 };
231 }
232}
233
234service Auth {
235 // AuthEnable enables authentication.
236 rpc AuthEnable(AuthEnableRequest) returns (AuthEnableResponse) {
237 option (google.api.http) = {
238 post: "/v3/auth/enable"
239 body: "*"
240 };
241 }
242
243 // AuthDisable disables authentication.
244 rpc AuthDisable(AuthDisableRequest) returns (AuthDisableResponse) {
245 option (google.api.http) = {
246 post: "/v3/auth/disable"
247 body: "*"
248 };
249 }
250
251 // Authenticate processes an authenticate request.
252 rpc Authenticate(AuthenticateRequest) returns (AuthenticateResponse) {
253 option (google.api.http) = {
254 post: "/v3/auth/authenticate"
255 body: "*"
256 };
257 }
258
259 // UserAdd adds a new user.
260 rpc UserAdd(AuthUserAddRequest) returns (AuthUserAddResponse) {
261 option (google.api.http) = {
262 post: "/v3/auth/user/add"
263 body: "*"
264 };
265 }
266
267 // UserGet gets detailed user information.
268 rpc UserGet(AuthUserGetRequest) returns (AuthUserGetResponse) {
269 option (google.api.http) = {
270 post: "/v3/auth/user/get"
271 body: "*"
272 };
273 }
274
275 // UserList gets a list of all users.
276 rpc UserList(AuthUserListRequest) returns (AuthUserListResponse) {
277 option (google.api.http) = {
278 post: "/v3/auth/user/list"
279 body: "*"
280 };
281 }
282
283 // UserDelete deletes a specified user.
284 rpc UserDelete(AuthUserDeleteRequest) returns (AuthUserDeleteResponse) {
285 option (google.api.http) = {
286 post: "/v3/auth/user/delete"
287 body: "*"
288 };
289 }
290
291 // UserChangePassword changes the password of a specified user.
292 rpc UserChangePassword(AuthUserChangePasswordRequest) returns (AuthUserChangePasswordResponse) {
293 option (google.api.http) = {
294 post: "/v3/auth/user/changepw"
295 body: "*"
296 };
297 }
298
299 // UserGrant grants a role to a specified user.
300 rpc UserGrantRole(AuthUserGrantRoleRequest) returns (AuthUserGrantRoleResponse) {
301 option (google.api.http) = {
302 post: "/v3/auth/user/grant"
303 body: "*"
304 };
305 }
306
307 // UserRevokeRole revokes a role of specified user.
308 rpc UserRevokeRole(AuthUserRevokeRoleRequest) returns (AuthUserRevokeRoleResponse) {
309 option (google.api.http) = {
310 post: "/v3/auth/user/revoke"
311 body: "*"
312 };
313 }
314
315 // RoleAdd adds a new role.
316 rpc RoleAdd(AuthRoleAddRequest) returns (AuthRoleAddResponse) {
317 option (google.api.http) = {
318 post: "/v3/auth/role/add"
319 body: "*"
320 };
321 }
322
323 // RoleGet gets detailed role information.
324 rpc RoleGet(AuthRoleGetRequest) returns (AuthRoleGetResponse) {
325 option (google.api.http) = {
326 post: "/v3/auth/role/get"
327 body: "*"
328 };
329 }
330
331 // RoleList gets lists of all roles.
332 rpc RoleList(AuthRoleListRequest) returns (AuthRoleListResponse) {
333 option (google.api.http) = {
334 post: "/v3/auth/role/list"
335 body: "*"
336 };
337 }
338
339 // RoleDelete deletes a specified role.
340 rpc RoleDelete(AuthRoleDeleteRequest) returns (AuthRoleDeleteResponse) {
341 option (google.api.http) = {
342 post: "/v3/auth/role/delete"
343 body: "*"
344 };
345 }
346
347 // RoleGrantPermission grants a permission of a specified key or range to a specified role.
348 rpc RoleGrantPermission(AuthRoleGrantPermissionRequest) returns (AuthRoleGrantPermissionResponse) {
349 option (google.api.http) = {
350 post: "/v3/auth/role/grant"
351 body: "*"
352 };
353 }
354
355 // RoleRevokePermission revokes a key or range permission of a specified role.
356 rpc RoleRevokePermission(AuthRoleRevokePermissionRequest) returns (AuthRoleRevokePermissionResponse) {
357 option (google.api.http) = {
358 post: "/v3/auth/role/revoke"
359 body: "*"
360 };
361 }
362}
363
364message ResponseHeader {
365 // cluster_id is the ID of the cluster which sent the response.
366 uint64 cluster_id = 1;
367 // member_id is the ID of the member which sent the response.
368 uint64 member_id = 2;
369 // revision is the key-value store revision when the request was applied.
370 // For watch progress responses, the header.revision indicates progress. All future events
371 // recieved in this stream are guaranteed to have a higher revision number than the
372 // header.revision number.
373 int64 revision = 3;
374 // raft_term is the raft term when the request was applied.
375 uint64 raft_term = 4;
376}
377
378message RangeRequest {
379 enum SortOrder {
380 NONE = 0; // default, no sorting
381 ASCEND = 1; // lowest target value first
382 DESCEND = 2; // highest target value first
383 }
384 enum SortTarget {
385 KEY = 0;
386 VERSION = 1;
387 CREATE = 2;
388 MOD = 3;
389 VALUE = 4;
390 }
391
392 // key is the first key for the range. If range_end is not given, the request only looks up key.
393 bytes key = 1;
394 // range_end is the upper bound on the requested range [key, range_end).
395 // If range_end is '\0', the range is all keys >= key.
396 // If range_end is key plus one (e.g., "aa"+1 == "ab", "a\xff"+1 == "b"),
397 // then the range request gets all keys prefixed with key.
398 // If both key and range_end are '\0', then the range request returns all keys.
399 bytes range_end = 2;
400 // limit is a limit on the number of keys returned for the request. When limit is set to 0,
401 // it is treated as no limit.
402 int64 limit = 3;
403 // revision is the point-in-time of the key-value store to use for the range.
404 // If revision is less or equal to zero, the range is over the newest key-value store.
405 // If the revision has been compacted, ErrCompacted is returned as a response.
406 int64 revision = 4;
407
408 // sort_order is the order for returned sorted results.
409 SortOrder sort_order = 5;
410
411 // sort_target is the key-value field to use for sorting.
412 SortTarget sort_target = 6;
413
414 // serializable sets the range request to use serializable member-local reads.
415 // Range requests are linearizable by default; linearizable requests have higher
416 // latency and lower throughput than serializable requests but reflect the current
417 // consensus of the cluster. For better performance, in exchange for possible stale reads,
418 // a serializable range request is served locally without needing to reach consensus
419 // with other nodes in the cluster.
420 bool serializable = 7;
421
422 // keys_only when set returns only the keys and not the values.
423 bool keys_only = 8;
424
425 // count_only when set returns only the count of the keys in the range.
426 bool count_only = 9;
427
428 // min_mod_revision is the lower bound for returned key mod revisions; all keys with
429 // lesser mod revisions will be filtered away.
430 int64 min_mod_revision = 10;
431
432 // max_mod_revision is the upper bound for returned key mod revisions; all keys with
433 // greater mod revisions will be filtered away.
434 int64 max_mod_revision = 11;
435
436 // min_create_revision is the lower bound for returned key create revisions; all keys with
437 // lesser create revisions will be filtered away.
438 int64 min_create_revision = 12;
439
440 // max_create_revision is the upper bound for returned key create revisions; all keys with
441 // greater create revisions will be filtered away.
442 int64 max_create_revision = 13;
443}
444
445message RangeResponse {
446 ResponseHeader header = 1;
447 // kvs is the list of key-value pairs matched by the range request.
448 // kvs is empty when count is requested.
449 repeated mvccpb.KeyValue kvs = 2;
450 // more indicates if there are more keys to return in the requested range.
451 bool more = 3;
452 // count is set to the number of keys within the range when requested.
453 int64 count = 4;
454}
455
456message PutRequest {
457 // key is the key, in bytes, to put into the key-value store.
458 bytes key = 1;
459 // value is the value, in bytes, to associate with the key in the key-value store.
460 bytes value = 2;
461 // lease is the lease ID to associate with the key in the key-value store. A lease
462 // value of 0 indicates no lease.
463 int64 lease = 3;
464
465 // If prev_kv is set, etcd gets the previous key-value pair before changing it.
466 // The previous key-value pair will be returned in the put response.
467 bool prev_kv = 4;
468
469 // If ignore_value is set, etcd updates the key using its current value.
470 // Returns an error if the key does not exist.
471 bool ignore_value = 5;
472
473 // If ignore_lease is set, etcd updates the key using its current lease.
474 // Returns an error if the key does not exist.
475 bool ignore_lease = 6;
476}
477
478message PutResponse {
479 ResponseHeader header = 1;
480 // if prev_kv is set in the request, the previous key-value pair will be returned.
481 mvccpb.KeyValue prev_kv = 2;
482}
483
484message DeleteRangeRequest {
485 // key is the first key to delete in the range.
486 bytes key = 1;
487 // range_end is the key following the last key to delete for the range [key, range_end).
488 // If range_end is not given, the range is defined to contain only the key argument.
489 // If range_end is one bit larger than the given key, then the range is all the keys
490 // with the prefix (the given key).
491 // If range_end is '\0', the range is all keys greater than or equal to the key argument.
492 bytes range_end = 2;
493
494 // If prev_kv is set, etcd gets the previous key-value pairs before deleting it.
495 // The previous key-value pairs will be returned in the delete response.
496 bool prev_kv = 3;
497}
498
499message DeleteRangeResponse {
500 ResponseHeader header = 1;
501 // deleted is the number of keys deleted by the delete range request.
502 int64 deleted = 2;
503 // if prev_kv is set in the request, the previous key-value pairs will be returned.
504 repeated mvccpb.KeyValue prev_kvs = 3;
505}
506
507message RequestOp {
508 // request is a union of request types accepted by a transaction.
509 oneof request {
510 RangeRequest request_range = 1;
511 PutRequest request_put = 2;
512 DeleteRangeRequest request_delete_range = 3;
513 TxnRequest request_txn = 4;
514 }
515}
516
517message ResponseOp {
518 // response is a union of response types returned by a transaction.
519 oneof response {
520 RangeResponse response_range = 1;
521 PutResponse response_put = 2;
522 DeleteRangeResponse response_delete_range = 3;
523 TxnResponse response_txn = 4;
524 }
525}
526
527message Compare {
528 enum CompareResult {
529 EQUAL = 0;
530 GREATER = 1;
531 LESS = 2;
532 NOT_EQUAL = 3;
533 }
534 enum CompareTarget {
535 VERSION = 0;
536 CREATE = 1;
537 MOD = 2;
538 VALUE = 3;
539 LEASE = 4;
540 }
541 // result is logical comparison operation for this comparison.
542 CompareResult result = 1;
543 // target is the key-value field to inspect for the comparison.
544 CompareTarget target = 2;
545 // key is the subject key for the comparison operation.
546 bytes key = 3;
547 oneof target_union {
548 // version is the version of the given key
549 int64 version = 4;
550 // create_revision is the creation revision of the given key
551 int64 create_revision = 5;
552 // mod_revision is the last modified revision of the given key.
553 int64 mod_revision = 6;
554 // value is the value of the given key, in bytes.
555 bytes value = 7;
556 // lease is the lease id of the given key.
557 int64 lease = 8;
558 // leave room for more target_union field tags, jump to 64
559 }
560
561 // range_end compares the given target to all keys in the range [key, range_end).
562 // See RangeRequest for more details on key ranges.
563 bytes range_end = 64;
564 // TODO: fill out with most of the rest of RangeRequest fields when needed.
565}
566
567// From google paxosdb paper:
568// Our implementation hinges around a powerful primitive which we call MultiOp. All other database
569// operations except for iteration are implemented as a single call to MultiOp. A MultiOp is applied atomically
570// and consists of three components:
571// 1. A list of tests called guard. Each test in guard checks a single entry in the database. It may check
572// for the absence or presence of a value, or compare with a given value. Two different tests in the guard
573// may apply to the same or different entries in the database. All tests in the guard are applied and
574// MultiOp returns the results. If all tests are true, MultiOp executes t op (see item 2 below), otherwise
575// it executes f op (see item 3 below).
576// 2. A list of database operations called t op. Each operation in the list is either an insert, delete, or
577// lookup operation, and applies to a single database entry. Two different operations in the list may apply
578// to the same or different entries in the database. These operations are executed
579// if guard evaluates to
580// true.
581// 3. A list of database operations called f op. Like t op, but executed if guard evaluates to false.
582message TxnRequest {
583 // compare is a list of predicates representing a conjunction of terms.
584 // If the comparisons succeed, then the success requests will be processed in order,
585 // and the response will contain their respective responses in order.
586 // If the comparisons fail, then the failure requests will be processed in order,
587 // and the response will contain their respective responses in order.
588 repeated Compare compare = 1;
589 // success is a list of requests which will be applied when compare evaluates to true.
590 repeated RequestOp success = 2;
591 // failure is a list of requests which will be applied when compare evaluates to false.
592 repeated RequestOp failure = 3;
593}
594
595message TxnResponse {
596 ResponseHeader header = 1;
597 // succeeded is set to true if the compare evaluated to true or false otherwise.
598 bool succeeded = 2;
599 // responses is a list of responses corresponding to the results from applying
600 // success if succeeded is true or failure if succeeded is false.
601 repeated ResponseOp responses = 3;
602}
603
604// CompactionRequest compacts the key-value store up to a given revision. All superseded keys
605// with a revision less than the compaction revision will be removed.
606message CompactionRequest {
607 // revision is the key-value store revision for the compaction operation.
608 int64 revision = 1;
609 // physical is set so the RPC will wait until the compaction is physically
610 // applied to the local database such that compacted entries are totally
611 // removed from the backend database.
612 bool physical = 2;
613}
614
615message CompactionResponse {
616 ResponseHeader header = 1;
617}
618
619message HashRequest {
620}
621
622message HashKVRequest {
623 // revision is the key-value store revision for the hash operation.
624 int64 revision = 1;
625}
626
627message HashKVResponse {
628 ResponseHeader header = 1;
629 // hash is the hash value computed from the responding member's MVCC keys up to a given revision.
630 uint32 hash = 2;
631 // compact_revision is the compacted revision of key-value store when hash begins.
632 int64 compact_revision = 3;
633}
634
635message HashResponse {
636 ResponseHeader header = 1;
637 // hash is the hash value computed from the responding member's KV's backend.
638 uint32 hash = 2;
639}
640
641message SnapshotRequest {
642}
643
644message SnapshotResponse {
645 // header has the current key-value store information. The first header in the snapshot
646 // stream indicates the point in time of the snapshot.
647 ResponseHeader header = 1;
648
649 // remaining_bytes is the number of blob bytes to be sent after this message
650 uint64 remaining_bytes = 2;
651
652 // blob contains the next chunk of the snapshot in the snapshot stream.
653 bytes blob = 3;
654}
655
656message WatchRequest {
657 // request_union is a request to either create a new watcher or cancel an existing watcher.
658 oneof request_union {
659 WatchCreateRequest create_request = 1;
660 WatchCancelRequest cancel_request = 2;
661 WatchProgressRequest progress_request = 3;
662 }
663}
664
665message WatchCreateRequest {
666 // key is the key to register for watching.
667 bytes key = 1;
668
669 // range_end is the end of the range [key, range_end) to watch. If range_end is not given,
670 // only the key argument is watched. If range_end is equal to '\0', all keys greater than
671 // or equal to the key argument are watched.
672 // If the range_end is one bit larger than the given key,
673 // then all keys with the prefix (the given key) will be watched.
674 bytes range_end = 2;
675
676 // start_revision is an optional revision to watch from (inclusive). No start_revision is "now".
677 int64 start_revision = 3;
678
679 // progress_notify is set so that the etcd server will periodically send a WatchResponse with
680 // no events to the new watcher if there are no recent events. It is useful when clients
681 // wish to recover a disconnected watcher starting from a recent known revision.
682 // The etcd server may decide how often it will send notifications based on current load.
683 bool progress_notify = 4;
684
685 enum FilterType {
686 // filter out put event.
687 NOPUT = 0;
688 // filter out delete event.
689 NODELETE = 1;
690 }
691
692 // filters filter the events at server side before it sends back to the watcher.
693 repeated FilterType filters = 5;
694
695 // If prev_kv is set, created watcher gets the previous KV before the event happens.
696 // If the previous KV is already compacted, nothing will be returned.
697 bool prev_kv = 6;
698
699 // If watch_id is provided and non-zero, it will be assigned to this watcher.
700 // Since creating a watcher in etcd is not a synchronous operation,
701 // this can be used ensure that ordering is correct when creating multiple
702 // watchers on the same stream. Creating a watcher with an ID already in
703 // use on the stream will cause an error to be returned.
704 int64 watch_id = 7;
705
706 // fragment enables splitting large revisions into multiple watch responses.
707 bool fragment = 8;
708}
709
710message WatchCancelRequest {
711 // watch_id is the watcher id to cancel so that no more events are transmitted.
712 int64 watch_id = 1;
713}
714
715// Requests the a watch stream progress status be sent in the watch response stream as soon as
716// possible.
717message WatchProgressRequest {
718}
719
720message WatchResponse {
721 ResponseHeader header = 1;
722 // watch_id is the ID of the watcher that corresponds to the response.
723 int64 watch_id = 2;
724
725 // created is set to true if the response is for a create watch request.
726 // The client should record the watch_id and expect to receive events for
727 // the created watcher from the same stream.
728 // All events sent to the created watcher will attach with the same watch_id.
729 bool created = 3;
730
731 // canceled is set to true if the response is for a cancel watch request.
732 // No further events will be sent to the canceled watcher.
733 bool canceled = 4;
734
735 // compact_revision is set to the minimum index if a watcher tries to watch
736 // at a compacted index.
737 //
738 // This happens when creating a watcher at a compacted revision or the watcher cannot
739 // catch up with the progress of the key-value store.
740 //
741 // The client should treat the watcher as canceled and should not try to create any
742 // watcher with the same start_revision again.
743 int64 compact_revision = 5;
744
745 // cancel_reason indicates the reason for canceling the watcher.
746 string cancel_reason = 6;
747
748 // framgment is true if large watch response was split over multiple responses.
749 bool fragment = 7;
750
751 repeated mvccpb.Event events = 11;
752}
753
754message LeaseGrantRequest {
755 // TTL is the advisory time-to-live in seconds. Expired lease will return -1.
756 int64 TTL = 1;
757 // ID is the requested ID for the lease. If ID is set to 0, the lessor chooses an ID.
758 int64 ID = 2;
759}
760
761message LeaseGrantResponse {
762 ResponseHeader header = 1;
763 // ID is the lease ID for the granted lease.
764 int64 ID = 2;
765 // TTL is the server chosen lease time-to-live in seconds.
766 int64 TTL = 3;
767 string error = 4;
768}
769
770message LeaseRevokeRequest {
771 // ID is the lease ID to revoke. When the ID is revoked, all associated keys will be deleted.
772 int64 ID = 1;
773}
774
775message LeaseRevokeResponse {
776 ResponseHeader header = 1;
777}
778
779message LeaseCheckpoint {
780 // ID is the lease ID to checkpoint.
781 int64 ID = 1;
782
783 // Remaining_TTL is the remaining time until expiry of the lease.
784 int64 remaining_TTL = 2;
785}
786
787message LeaseCheckpointRequest {
788 repeated LeaseCheckpoint checkpoints = 1;
789}
790
791message LeaseCheckpointResponse {
792 ResponseHeader header = 1;
793}
794
795message LeaseKeepAliveRequest {
796 // ID is the lease ID for the lease to keep alive.
797 int64 ID = 1;
798}
799
800message LeaseKeepAliveResponse {
801 ResponseHeader header = 1;
802 // ID is the lease ID from the keep alive request.
803 int64 ID = 2;
804 // TTL is the new time-to-live for the lease.
805 int64 TTL = 3;
806}
807
808message LeaseTimeToLiveRequest {
809 // ID is the lease ID for the lease.
810 int64 ID = 1;
811 // keys is true to query all the keys attached to this lease.
812 bool keys = 2;
813}
814
815message LeaseTimeToLiveResponse {
816 ResponseHeader header = 1;
817 // ID is the lease ID from the keep alive request.
818 int64 ID = 2;
819 // TTL is the remaining TTL in seconds for the lease; the lease will expire in under TTL+1 seconds.
820 int64 TTL = 3;
821 // GrantedTTL is the initial granted time in seconds upon lease creation/renewal.
822 int64 grantedTTL = 4;
823 // Keys is the list of keys attached to this lease.
824 repeated bytes keys = 5;
825}
826
827message LeaseLeasesRequest {
828}
829
830message LeaseStatus {
831 int64 ID = 1;
832 // TODO: int64 TTL = 2;
833}
834
835message LeaseLeasesResponse {
836 ResponseHeader header = 1;
837 repeated LeaseStatus leases = 2;
838}
839
840message Member {
841 // ID is the member ID for this member.
842 uint64 ID = 1;
843 // name is the human-readable name of the member. If the member is not started, the name will be an empty string.
844 string name = 2;
845 // peerURLs is the list of URLs the member exposes to the cluster for communication.
846 repeated string peerURLs = 3;
847 // clientURLs is the list of URLs the member exposes to clients for communication. If the member is not started, clientURLs will be empty.
848 repeated string clientURLs = 4;
849}
850
851message MemberAddRequest {
852 // peerURLs is the list of URLs the added member will use to communicate with the cluster.
853 repeated string peerURLs = 1;
854}
855
856message MemberAddResponse {
857 ResponseHeader header = 1;
858 // member is the member information for the added member.
859 Member member = 2;
860 // members is a list of all members after adding the new member.
861 repeated Member members = 3;
862}
863
864message MemberRemoveRequest {
865 // ID is the member ID of the member to remove.
866 uint64 ID = 1;
867}
868
869message MemberRemoveResponse {
870 ResponseHeader header = 1;
871 // members is a list of all members after removing the member.
872 repeated Member members = 2;
873}
874
875message MemberUpdateRequest {
876 // ID is the member ID of the member to update.
877 uint64 ID = 1;
878 // peerURLs is the new list of URLs the member will use to communicate with the cluster.
879 repeated string peerURLs = 2;
880}
881
882message MemberUpdateResponse{
883 ResponseHeader header = 1;
884 // members is a list of all members after updating the member.
885 repeated Member members = 2;
886}
887
888message MemberListRequest {
889}
890
891message MemberListResponse {
892 ResponseHeader header = 1;
893 // members is a list of all members associated with the cluster.
894 repeated Member members = 2;
895}
896
897message DefragmentRequest {
898}
899
900message DefragmentResponse {
901 ResponseHeader header = 1;
902}
903
904message MoveLeaderRequest {
905 // targetID is the node ID for the new leader.
906 uint64 targetID = 1;
907}
908
909message MoveLeaderResponse {
910 ResponseHeader header = 1;
911}
912
913enum AlarmType {
914 NONE = 0; // default, used to query if any alarm is active
915 NOSPACE = 1; // space quota is exhausted
916 CORRUPT = 2; // kv store corruption detected
917}
918
919message AlarmRequest {
920 enum AlarmAction {
921 GET = 0;
922 ACTIVATE = 1;
923 DEACTIVATE = 2;
924 }
925 // action is the kind of alarm request to issue. The action
926 // may GET alarm statuses, ACTIVATE an alarm, or DEACTIVATE a
927 // raised alarm.
928 AlarmAction action = 1;
929 // memberID is the ID of the member associated with the alarm. If memberID is 0, the
930 // alarm request covers all members.
931 uint64 memberID = 2;
932 // alarm is the type of alarm to consider for this request.
933 AlarmType alarm = 3;
934}
935
936message AlarmMember {
937 // memberID is the ID of the member associated with the raised alarm.
938 uint64 memberID = 1;
939 // alarm is the type of alarm which has been raised.
940 AlarmType alarm = 2;
941}
942
943message AlarmResponse {
944 ResponseHeader header = 1;
945 // alarms is a list of alarms associated with the alarm request.
946 repeated AlarmMember alarms = 2;
947}
948
949message StatusRequest {
950}
951
952message StatusResponse {
953 ResponseHeader header = 1;
954 // version is the cluster protocol version used by the responding member.
955 string version = 2;
956 // dbSize is the size of the backend database physically allocated, in bytes, of the responding member.
957 int64 dbSize = 3;
958 // leader is the member ID which the responding member believes is the current leader.
959 uint64 leader = 4;
960 // raftIndex is the current raft committed index of the responding member.
961 uint64 raftIndex = 5;
962 // raftTerm is the current raft term of the responding member.
963 uint64 raftTerm = 6;
964 // raftAppliedIndex is the current raft applied index of the responding member.
965 uint64 raftAppliedIndex = 7;
966 // errors contains alarm/health information and status.
967 repeated string errors = 8;
968 // dbSizeInUse is the size of the backend database logically in use, in bytes, of the responding member.
969 int64 dbSizeInUse = 9;
970}
971
972message AuthEnableRequest {
973}
974
975message AuthDisableRequest {
976}
977
978message AuthenticateRequest {
979 string name = 1;
980 string password = 2;
981}
982
983message AuthUserAddRequest {
984 string name = 1;
985 string password = 2;
986}
987
988message AuthUserGetRequest {
989 string name = 1;
990}
991
992message AuthUserDeleteRequest {
993 // name is the name of the user to delete.
994 string name = 1;
995}
996
997message AuthUserChangePasswordRequest {
998 // name is the name of the user whose password is being changed.
999 string name = 1;
1000 // password is the new password for the user.
1001 string password = 2;
1002}
1003
1004message AuthUserGrantRoleRequest {
1005 // user is the name of the user which should be granted a given role.
1006 string user = 1;
1007 // role is the name of the role to grant to the user.
1008 string role = 2;
1009}
1010
1011message AuthUserRevokeRoleRequest {
1012 string name = 1;
1013 string role = 2;
1014}
1015
1016message AuthRoleAddRequest {
1017 // name is the name of the role to add to the authentication system.
1018 string name = 1;
1019}
1020
1021message AuthRoleGetRequest {
1022 string role = 1;
1023}
1024
1025message AuthUserListRequest {
1026}
1027
1028message AuthRoleListRequest {
1029}
1030
1031message AuthRoleDeleteRequest {
1032 string role = 1;
1033}
1034
1035message AuthRoleGrantPermissionRequest {
1036 // name is the name of the role which will be granted the permission.
1037 string name = 1;
1038 // perm is the permission to grant to the role.
1039 authpb.Permission perm = 2;
1040}
1041
1042message AuthRoleRevokePermissionRequest {
1043 string role = 1;
1044 bytes key = 2;
1045 bytes range_end = 3;
1046}
1047
1048message AuthEnableResponse {
1049 ResponseHeader header = 1;
1050}
1051
1052message AuthDisableResponse {
1053 ResponseHeader header = 1;
1054}
1055
1056message AuthenticateResponse {
1057 ResponseHeader header = 1;
1058 // token is an authorized token that can be used in succeeding RPCs
1059 string token = 2;
1060}
1061
1062message AuthUserAddResponse {
1063 ResponseHeader header = 1;
1064}
1065
1066message AuthUserGetResponse {
1067 ResponseHeader header = 1;
1068
1069 repeated string roles = 2;
1070}
1071
1072message AuthUserDeleteResponse {
1073 ResponseHeader header = 1;
1074}
1075
1076message AuthUserChangePasswordResponse {
1077 ResponseHeader header = 1;
1078}
1079
1080message AuthUserGrantRoleResponse {
1081 ResponseHeader header = 1;
1082}
1083
1084message AuthUserRevokeRoleResponse {
1085 ResponseHeader header = 1;
1086}
1087
1088message AuthRoleAddResponse {
1089 ResponseHeader header = 1;
1090}
1091
1092message AuthRoleGetResponse {
1093 ResponseHeader header = 1;
1094
1095 repeated authpb.Permission perm = 2;
1096}
1097
1098message AuthRoleListResponse {
1099 ResponseHeader header = 1;
1100
1101 repeated string roles = 2;
1102}
1103
1104message AuthUserListResponse {
1105 ResponseHeader header = 1;
1106
1107 repeated string users = 2;
1108}
1109
1110message AuthRoleDeleteResponse {
1111 ResponseHeader header = 1;
1112}
1113
1114message AuthRoleGrantPermissionResponse {
1115 ResponseHeader header = 1;
1116}
1117
1118message AuthRoleRevokePermissionResponse {
1119 ResponseHeader header = 1;
1120}