blob: 637b5017b8b68b42371bc5552821127b77277c7b [file] [log] [blame]
William Kurkianea869482019-04-09 15:16:11 -04001// Copyright 2009 The Go Authors. All rights reserved.
2// Use of this source code is governed by a BSD-style
3// license that can be found in the LICENSE file.
4
5// Linux system calls.
6// This file is compiled as ordinary Go code,
7// but it is also input to mksyscall,
8// which parses the //sys lines and generates system call stubs.
9// Note that sometimes we use a lowercase //sys name and
10// wrap it in our own nicer implementation.
11
12package unix
13
14import (
15 "encoding/binary"
William Kurkianea869482019-04-09 15:16:11 -040016 "runtime"
17 "syscall"
18 "unsafe"
19)
20
21/*
22 * Wrapped
23 */
24
25func Access(path string, mode uint32) (err error) {
26 return Faccessat(AT_FDCWD, path, mode, 0)
27}
28
29func Chmod(path string, mode uint32) (err error) {
30 return Fchmodat(AT_FDCWD, path, mode, 0)
31}
32
33func Chown(path string, uid int, gid int) (err error) {
34 return Fchownat(AT_FDCWD, path, uid, gid, 0)
35}
36
37func Creat(path string, mode uint32) (fd int, err error) {
38 return Open(path, O_CREAT|O_WRONLY|O_TRUNC, mode)
39}
40
41//sys FanotifyInit(flags uint, event_f_flags uint) (fd int, err error)
42//sys fanotifyMark(fd int, flags uint, mask uint64, dirFd int, pathname *byte) (err error)
43
44func FanotifyMark(fd int, flags uint, mask uint64, dirFd int, pathname string) (err error) {
45 if pathname == "" {
46 return fanotifyMark(fd, flags, mask, dirFd, nil)
47 }
48 p, err := BytePtrFromString(pathname)
49 if err != nil {
50 return err
51 }
52 return fanotifyMark(fd, flags, mask, dirFd, p)
53}
54
55//sys fchmodat(dirfd int, path string, mode uint32) (err error)
56
57func Fchmodat(dirfd int, path string, mode uint32, flags int) (err error) {
58 // Linux fchmodat doesn't support the flags parameter. Mimick glibc's behavior
59 // and check the flags. Otherwise the mode would be applied to the symlink
60 // destination which is not what the user expects.
61 if flags&^AT_SYMLINK_NOFOLLOW != 0 {
62 return EINVAL
63 } else if flags&AT_SYMLINK_NOFOLLOW != 0 {
64 return EOPNOTSUPP
65 }
66 return fchmodat(dirfd, path, mode)
67}
68
69//sys ioctl(fd int, req uint, arg uintptr) (err error)
70
71// ioctl itself should not be exposed directly, but additional get/set
72// functions for specific types are permissible.
73
74// IoctlSetPointerInt performs an ioctl operation which sets an
75// integer value on fd, using the specified request number. The ioctl
76// argument is called with a pointer to the integer value, rather than
77// passing the integer value directly.
78func IoctlSetPointerInt(fd int, req uint, value int) error {
79 v := int32(value)
80 return ioctl(fd, req, uintptr(unsafe.Pointer(&v)))
81}
82
83// IoctlSetInt performs an ioctl operation which sets an integer value
84// on fd, using the specified request number.
85func IoctlSetInt(fd int, req uint, value int) error {
86 return ioctl(fd, req, uintptr(value))
87}
88
89func ioctlSetWinsize(fd int, req uint, value *Winsize) error {
90 return ioctl(fd, req, uintptr(unsafe.Pointer(value)))
91}
92
93func ioctlSetTermios(fd int, req uint, value *Termios) error {
94 return ioctl(fd, req, uintptr(unsafe.Pointer(value)))
95}
96
97func IoctlSetRTCTime(fd int, value *RTCTime) error {
98 err := ioctl(fd, RTC_SET_TIME, uintptr(unsafe.Pointer(value)))
99 runtime.KeepAlive(value)
100 return err
101}
102
103// IoctlGetInt performs an ioctl operation which gets an integer value
104// from fd, using the specified request number.
105func IoctlGetInt(fd int, req uint) (int, error) {
106 var value int
107 err := ioctl(fd, req, uintptr(unsafe.Pointer(&value)))
108 return value, err
109}
110
Abhilash S.L3b494632019-07-16 15:51:09 +0530111func IoctlGetUint32(fd int, req uint) (uint32, error) {
112 var value uint32
113 err := ioctl(fd, req, uintptr(unsafe.Pointer(&value)))
114 return value, err
115}
116
William Kurkianea869482019-04-09 15:16:11 -0400117func IoctlGetWinsize(fd int, req uint) (*Winsize, error) {
118 var value Winsize
119 err := ioctl(fd, req, uintptr(unsafe.Pointer(&value)))
120 return &value, err
121}
122
123func IoctlGetTermios(fd int, req uint) (*Termios, error) {
124 var value Termios
125 err := ioctl(fd, req, uintptr(unsafe.Pointer(&value)))
126 return &value, err
127}
128
129func IoctlGetRTCTime(fd int) (*RTCTime, error) {
130 var value RTCTime
131 err := ioctl(fd, RTC_RD_TIME, uintptr(unsafe.Pointer(&value)))
132 return &value, err
133}
134
135//sys Linkat(olddirfd int, oldpath string, newdirfd int, newpath string, flags int) (err error)
136
137func Link(oldpath string, newpath string) (err error) {
138 return Linkat(AT_FDCWD, oldpath, AT_FDCWD, newpath, 0)
139}
140
141func Mkdir(path string, mode uint32) (err error) {
142 return Mkdirat(AT_FDCWD, path, mode)
143}
144
145func Mknod(path string, mode uint32, dev int) (err error) {
146 return Mknodat(AT_FDCWD, path, mode, dev)
147}
148
149func Open(path string, mode int, perm uint32) (fd int, err error) {
150 return openat(AT_FDCWD, path, mode|O_LARGEFILE, perm)
151}
152
153//sys openat(dirfd int, path string, flags int, mode uint32) (fd int, err error)
154
155func Openat(dirfd int, path string, flags int, mode uint32) (fd int, err error) {
156 return openat(dirfd, path, flags|O_LARGEFILE, mode)
157}
158
159//sys ppoll(fds *PollFd, nfds int, timeout *Timespec, sigmask *Sigset_t) (n int, err error)
160
161func Ppoll(fds []PollFd, timeout *Timespec, sigmask *Sigset_t) (n int, err error) {
162 if len(fds) == 0 {
163 return ppoll(nil, 0, timeout, sigmask)
164 }
165 return ppoll(&fds[0], len(fds), timeout, sigmask)
166}
167
168//sys Readlinkat(dirfd int, path string, buf []byte) (n int, err error)
169
170func Readlink(path string, buf []byte) (n int, err error) {
171 return Readlinkat(AT_FDCWD, path, buf)
172}
173
174func Rename(oldpath string, newpath string) (err error) {
175 return Renameat(AT_FDCWD, oldpath, AT_FDCWD, newpath)
176}
177
178func Rmdir(path string) error {
179 return Unlinkat(AT_FDCWD, path, AT_REMOVEDIR)
180}
181
182//sys Symlinkat(oldpath string, newdirfd int, newpath string) (err error)
183
184func Symlink(oldpath string, newpath string) (err error) {
185 return Symlinkat(oldpath, AT_FDCWD, newpath)
186}
187
188func Unlink(path string) error {
189 return Unlinkat(AT_FDCWD, path, 0)
190}
191
192//sys Unlinkat(dirfd int, path string, flags int) (err error)
193
194func Utimes(path string, tv []Timeval) error {
195 if tv == nil {
196 err := utimensat(AT_FDCWD, path, nil, 0)
197 if err != ENOSYS {
198 return err
199 }
200 return utimes(path, nil)
201 }
202 if len(tv) != 2 {
203 return EINVAL
204 }
205 var ts [2]Timespec
206 ts[0] = NsecToTimespec(TimevalToNsec(tv[0]))
207 ts[1] = NsecToTimespec(TimevalToNsec(tv[1]))
208 err := utimensat(AT_FDCWD, path, (*[2]Timespec)(unsafe.Pointer(&ts[0])), 0)
209 if err != ENOSYS {
210 return err
211 }
212 return utimes(path, (*[2]Timeval)(unsafe.Pointer(&tv[0])))
213}
214
215//sys utimensat(dirfd int, path string, times *[2]Timespec, flags int) (err error)
216
217func UtimesNano(path string, ts []Timespec) error {
218 if ts == nil {
219 err := utimensat(AT_FDCWD, path, nil, 0)
220 if err != ENOSYS {
221 return err
222 }
223 return utimes(path, nil)
224 }
225 if len(ts) != 2 {
226 return EINVAL
227 }
228 err := utimensat(AT_FDCWD, path, (*[2]Timespec)(unsafe.Pointer(&ts[0])), 0)
229 if err != ENOSYS {
230 return err
231 }
232 // If the utimensat syscall isn't available (utimensat was added to Linux
233 // in 2.6.22, Released, 8 July 2007) then fall back to utimes
234 var tv [2]Timeval
235 for i := 0; i < 2; i++ {
236 tv[i] = NsecToTimeval(TimespecToNsec(ts[i]))
237 }
238 return utimes(path, (*[2]Timeval)(unsafe.Pointer(&tv[0])))
239}
240
241func UtimesNanoAt(dirfd int, path string, ts []Timespec, flags int) error {
242 if ts == nil {
243 return utimensat(dirfd, path, nil, flags)
244 }
245 if len(ts) != 2 {
246 return EINVAL
247 }
248 return utimensat(dirfd, path, (*[2]Timespec)(unsafe.Pointer(&ts[0])), flags)
249}
250
251func Futimesat(dirfd int, path string, tv []Timeval) error {
252 if tv == nil {
253 return futimesat(dirfd, path, nil)
254 }
255 if len(tv) != 2 {
256 return EINVAL
257 }
258 return futimesat(dirfd, path, (*[2]Timeval)(unsafe.Pointer(&tv[0])))
259}
260
261func Futimes(fd int, tv []Timeval) (err error) {
262 // Believe it or not, this is the best we can do on Linux
263 // (and is what glibc does).
264 return Utimes("/proc/self/fd/"+itoa(fd), tv)
265}
266
267const ImplementsGetwd = true
268
269//sys Getcwd(buf []byte) (n int, err error)
270
271func Getwd() (wd string, err error) {
272 var buf [PathMax]byte
273 n, err := Getcwd(buf[0:])
274 if err != nil {
275 return "", err
276 }
277 // Getcwd returns the number of bytes written to buf, including the NUL.
278 if n < 1 || n > len(buf) || buf[n-1] != 0 {
279 return "", EINVAL
280 }
281 return string(buf[0 : n-1]), nil
282}
283
284func Getgroups() (gids []int, err error) {
285 n, err := getgroups(0, nil)
286 if err != nil {
287 return nil, err
288 }
289 if n == 0 {
290 return nil, nil
291 }
292
293 // Sanity check group count. Max is 1<<16 on Linux.
294 if n < 0 || n > 1<<20 {
295 return nil, EINVAL
296 }
297
298 a := make([]_Gid_t, n)
299 n, err = getgroups(n, &a[0])
300 if err != nil {
301 return nil, err
302 }
303 gids = make([]int, n)
304 for i, v := range a[0:n] {
305 gids[i] = int(v)
306 }
307 return
308}
309
310func Setgroups(gids []int) (err error) {
311 if len(gids) == 0 {
312 return setgroups(0, nil)
313 }
314
315 a := make([]_Gid_t, len(gids))
316 for i, v := range gids {
317 a[i] = _Gid_t(v)
318 }
319 return setgroups(len(a), &a[0])
320}
321
322type WaitStatus uint32
323
324// Wait status is 7 bits at bottom, either 0 (exited),
325// 0x7F (stopped), or a signal number that caused an exit.
326// The 0x80 bit is whether there was a core dump.
327// An extra number (exit code, signal causing a stop)
328// is in the high bits. At least that's the idea.
329// There are various irregularities. For example, the
330// "continued" status is 0xFFFF, distinguishing itself
331// from stopped via the core dump bit.
332
333const (
334 mask = 0x7F
335 core = 0x80
336 exited = 0x00
337 stopped = 0x7F
338 shift = 8
339)
340
341func (w WaitStatus) Exited() bool { return w&mask == exited }
342
343func (w WaitStatus) Signaled() bool { return w&mask != stopped && w&mask != exited }
344
345func (w WaitStatus) Stopped() bool { return w&0xFF == stopped }
346
347func (w WaitStatus) Continued() bool { return w == 0xFFFF }
348
349func (w WaitStatus) CoreDump() bool { return w.Signaled() && w&core != 0 }
350
351func (w WaitStatus) ExitStatus() int {
352 if !w.Exited() {
353 return -1
354 }
355 return int(w>>shift) & 0xFF
356}
357
358func (w WaitStatus) Signal() syscall.Signal {
359 if !w.Signaled() {
360 return -1
361 }
362 return syscall.Signal(w & mask)
363}
364
365func (w WaitStatus) StopSignal() syscall.Signal {
366 if !w.Stopped() {
367 return -1
368 }
369 return syscall.Signal(w>>shift) & 0xFF
370}
371
372func (w WaitStatus) TrapCause() int {
373 if w.StopSignal() != SIGTRAP {
374 return -1
375 }
376 return int(w>>shift) >> 8
377}
378
379//sys wait4(pid int, wstatus *_C_int, options int, rusage *Rusage) (wpid int, err error)
380
381func Wait4(pid int, wstatus *WaitStatus, options int, rusage *Rusage) (wpid int, err error) {
382 var status _C_int
383 wpid, err = wait4(pid, &status, options, rusage)
384 if wstatus != nil {
385 *wstatus = WaitStatus(status)
386 }
387 return
388}
389
390func Mkfifo(path string, mode uint32) error {
391 return Mknod(path, mode|S_IFIFO, 0)
392}
393
394func Mkfifoat(dirfd int, path string, mode uint32) error {
395 return Mknodat(dirfd, path, mode|S_IFIFO, 0)
396}
397
398func (sa *SockaddrInet4) sockaddr() (unsafe.Pointer, _Socklen, error) {
399 if sa.Port < 0 || sa.Port > 0xFFFF {
400 return nil, 0, EINVAL
401 }
402 sa.raw.Family = AF_INET
403 p := (*[2]byte)(unsafe.Pointer(&sa.raw.Port))
404 p[0] = byte(sa.Port >> 8)
405 p[1] = byte(sa.Port)
406 for i := 0; i < len(sa.Addr); i++ {
407 sa.raw.Addr[i] = sa.Addr[i]
408 }
409 return unsafe.Pointer(&sa.raw), SizeofSockaddrInet4, nil
410}
411
412func (sa *SockaddrInet6) sockaddr() (unsafe.Pointer, _Socklen, error) {
413 if sa.Port < 0 || sa.Port > 0xFFFF {
414 return nil, 0, EINVAL
415 }
416 sa.raw.Family = AF_INET6
417 p := (*[2]byte)(unsafe.Pointer(&sa.raw.Port))
418 p[0] = byte(sa.Port >> 8)
419 p[1] = byte(sa.Port)
420 sa.raw.Scope_id = sa.ZoneId
421 for i := 0; i < len(sa.Addr); i++ {
422 sa.raw.Addr[i] = sa.Addr[i]
423 }
424 return unsafe.Pointer(&sa.raw), SizeofSockaddrInet6, nil
425}
426
427func (sa *SockaddrUnix) sockaddr() (unsafe.Pointer, _Socklen, error) {
428 name := sa.Name
429 n := len(name)
430 if n >= len(sa.raw.Path) {
431 return nil, 0, EINVAL
432 }
433 sa.raw.Family = AF_UNIX
434 for i := 0; i < n; i++ {
435 sa.raw.Path[i] = int8(name[i])
436 }
437 // length is family (uint16), name, NUL.
438 sl := _Socklen(2)
439 if n > 0 {
440 sl += _Socklen(n) + 1
441 }
442 if sa.raw.Path[0] == '@' {
443 sa.raw.Path[0] = 0
444 // Don't count trailing NUL for abstract address.
445 sl--
446 }
447
448 return unsafe.Pointer(&sa.raw), sl, nil
449}
450
451// SockaddrLinklayer implements the Sockaddr interface for AF_PACKET type sockets.
452type SockaddrLinklayer struct {
453 Protocol uint16
454 Ifindex int
455 Hatype uint16
456 Pkttype uint8
457 Halen uint8
458 Addr [8]byte
459 raw RawSockaddrLinklayer
460}
461
462func (sa *SockaddrLinklayer) sockaddr() (unsafe.Pointer, _Socklen, error) {
463 if sa.Ifindex < 0 || sa.Ifindex > 0x7fffffff {
464 return nil, 0, EINVAL
465 }
466 sa.raw.Family = AF_PACKET
467 sa.raw.Protocol = sa.Protocol
468 sa.raw.Ifindex = int32(sa.Ifindex)
469 sa.raw.Hatype = sa.Hatype
470 sa.raw.Pkttype = sa.Pkttype
471 sa.raw.Halen = sa.Halen
472 for i := 0; i < len(sa.Addr); i++ {
473 sa.raw.Addr[i] = sa.Addr[i]
474 }
475 return unsafe.Pointer(&sa.raw), SizeofSockaddrLinklayer, nil
476}
477
478// SockaddrNetlink implements the Sockaddr interface for AF_NETLINK type sockets.
479type SockaddrNetlink struct {
480 Family uint16
481 Pad uint16
482 Pid uint32
483 Groups uint32
484 raw RawSockaddrNetlink
485}
486
487func (sa *SockaddrNetlink) sockaddr() (unsafe.Pointer, _Socklen, error) {
488 sa.raw.Family = AF_NETLINK
489 sa.raw.Pad = sa.Pad
490 sa.raw.Pid = sa.Pid
491 sa.raw.Groups = sa.Groups
492 return unsafe.Pointer(&sa.raw), SizeofSockaddrNetlink, nil
493}
494
495// SockaddrHCI implements the Sockaddr interface for AF_BLUETOOTH type sockets
496// using the HCI protocol.
497type SockaddrHCI struct {
498 Dev uint16
499 Channel uint16
500 raw RawSockaddrHCI
501}
502
503func (sa *SockaddrHCI) sockaddr() (unsafe.Pointer, _Socklen, error) {
504 sa.raw.Family = AF_BLUETOOTH
505 sa.raw.Dev = sa.Dev
506 sa.raw.Channel = sa.Channel
507 return unsafe.Pointer(&sa.raw), SizeofSockaddrHCI, nil
508}
509
510// SockaddrL2 implements the Sockaddr interface for AF_BLUETOOTH type sockets
511// using the L2CAP protocol.
512type SockaddrL2 struct {
513 PSM uint16
514 CID uint16
515 Addr [6]uint8
516 AddrType uint8
517 raw RawSockaddrL2
518}
519
520func (sa *SockaddrL2) sockaddr() (unsafe.Pointer, _Socklen, error) {
521 sa.raw.Family = AF_BLUETOOTH
522 psm := (*[2]byte)(unsafe.Pointer(&sa.raw.Psm))
523 psm[0] = byte(sa.PSM)
524 psm[1] = byte(sa.PSM >> 8)
525 for i := 0; i < len(sa.Addr); i++ {
526 sa.raw.Bdaddr[i] = sa.Addr[len(sa.Addr)-1-i]
527 }
528 cid := (*[2]byte)(unsafe.Pointer(&sa.raw.Cid))
529 cid[0] = byte(sa.CID)
530 cid[1] = byte(sa.CID >> 8)
531 sa.raw.Bdaddr_type = sa.AddrType
532 return unsafe.Pointer(&sa.raw), SizeofSockaddrL2, nil
533}
534
535// SockaddrRFCOMM implements the Sockaddr interface for AF_BLUETOOTH type sockets
536// using the RFCOMM protocol.
537//
538// Server example:
539//
540// fd, _ := Socket(AF_BLUETOOTH, SOCK_STREAM, BTPROTO_RFCOMM)
541// _ = unix.Bind(fd, &unix.SockaddrRFCOMM{
542// Channel: 1,
543// Addr: [6]uint8{0, 0, 0, 0, 0, 0}, // BDADDR_ANY or 00:00:00:00:00:00
544// })
545// _ = Listen(fd, 1)
546// nfd, sa, _ := Accept(fd)
547// fmt.Printf("conn addr=%v fd=%d", sa.(*unix.SockaddrRFCOMM).Addr, nfd)
548// Read(nfd, buf)
549//
550// Client example:
551//
552// fd, _ := Socket(AF_BLUETOOTH, SOCK_STREAM, BTPROTO_RFCOMM)
553// _ = Connect(fd, &SockaddrRFCOMM{
554// Channel: 1,
555// Addr: [6]byte{0x11, 0x22, 0x33, 0xaa, 0xbb, 0xcc}, // CC:BB:AA:33:22:11
556// })
557// Write(fd, []byte(`hello`))
558type SockaddrRFCOMM struct {
559 // Addr represents a bluetooth address, byte ordering is little-endian.
560 Addr [6]uint8
561
562 // Channel is a designated bluetooth channel, only 1-30 are available for use.
563 // Since Linux 2.6.7 and further zero value is the first available channel.
564 Channel uint8
565
566 raw RawSockaddrRFCOMM
567}
568
569func (sa *SockaddrRFCOMM) sockaddr() (unsafe.Pointer, _Socklen, error) {
570 sa.raw.Family = AF_BLUETOOTH
571 sa.raw.Channel = sa.Channel
572 sa.raw.Bdaddr = sa.Addr
573 return unsafe.Pointer(&sa.raw), SizeofSockaddrRFCOMM, nil
574}
575
576// SockaddrCAN implements the Sockaddr interface for AF_CAN type sockets.
577// The RxID and TxID fields are used for transport protocol addressing in
578// (CAN_TP16, CAN_TP20, CAN_MCNET, and CAN_ISOTP), they can be left with
579// zero values for CAN_RAW and CAN_BCM sockets as they have no meaning.
580//
581// The SockaddrCAN struct must be bound to the socket file descriptor
582// using Bind before the CAN socket can be used.
583//
584// // Read one raw CAN frame
585// fd, _ := Socket(AF_CAN, SOCK_RAW, CAN_RAW)
586// addr := &SockaddrCAN{Ifindex: index}
587// Bind(fd, addr)
588// frame := make([]byte, 16)
589// Read(fd, frame)
590//
591// The full SocketCAN documentation can be found in the linux kernel
592// archives at: https://www.kernel.org/doc/Documentation/networking/can.txt
593type SockaddrCAN struct {
594 Ifindex int
595 RxID uint32
596 TxID uint32
597 raw RawSockaddrCAN
598}
599
600func (sa *SockaddrCAN) sockaddr() (unsafe.Pointer, _Socklen, error) {
601 if sa.Ifindex < 0 || sa.Ifindex > 0x7fffffff {
602 return nil, 0, EINVAL
603 }
604 sa.raw.Family = AF_CAN
605 sa.raw.Ifindex = int32(sa.Ifindex)
606 rx := (*[4]byte)(unsafe.Pointer(&sa.RxID))
607 for i := 0; i < 4; i++ {
608 sa.raw.Addr[i] = rx[i]
609 }
610 tx := (*[4]byte)(unsafe.Pointer(&sa.TxID))
611 for i := 0; i < 4; i++ {
612 sa.raw.Addr[i+4] = tx[i]
613 }
614 return unsafe.Pointer(&sa.raw), SizeofSockaddrCAN, nil
615}
616
617// SockaddrALG implements the Sockaddr interface for AF_ALG type sockets.
618// SockaddrALG enables userspace access to the Linux kernel's cryptography
619// subsystem. The Type and Name fields specify which type of hash or cipher
620// should be used with a given socket.
621//
622// To create a file descriptor that provides access to a hash or cipher, both
623// Bind and Accept must be used. Once the setup process is complete, input
624// data can be written to the socket, processed by the kernel, and then read
625// back as hash output or ciphertext.
626//
627// Here is an example of using an AF_ALG socket with SHA1 hashing.
628// The initial socket setup process is as follows:
629//
630// // Open a socket to perform SHA1 hashing.
631// fd, _ := unix.Socket(unix.AF_ALG, unix.SOCK_SEQPACKET, 0)
632// addr := &unix.SockaddrALG{Type: "hash", Name: "sha1"}
633// unix.Bind(fd, addr)
634// // Note: unix.Accept does not work at this time; must invoke accept()
635// // manually using unix.Syscall.
636// hashfd, _, _ := unix.Syscall(unix.SYS_ACCEPT, uintptr(fd), 0, 0)
637//
638// Once a file descriptor has been returned from Accept, it may be used to
639// perform SHA1 hashing. The descriptor is not safe for concurrent use, but
640// may be re-used repeatedly with subsequent Write and Read operations.
641//
642// When hashing a small byte slice or string, a single Write and Read may
643// be used:
644//
645// // Assume hashfd is already configured using the setup process.
646// hash := os.NewFile(hashfd, "sha1")
647// // Hash an input string and read the results. Each Write discards
648// // previous hash state. Read always reads the current state.
649// b := make([]byte, 20)
650// for i := 0; i < 2; i++ {
651// io.WriteString(hash, "Hello, world.")
652// hash.Read(b)
653// fmt.Println(hex.EncodeToString(b))
654// }
655// // Output:
656// // 2ae01472317d1935a84797ec1983ae243fc6aa28
657// // 2ae01472317d1935a84797ec1983ae243fc6aa28
658//
659// For hashing larger byte slices, or byte streams such as those read from
660// a file or socket, use Sendto with MSG_MORE to instruct the kernel to update
661// the hash digest instead of creating a new one for a given chunk and finalizing it.
662//
663// // Assume hashfd and addr are already configured using the setup process.
664// hash := os.NewFile(hashfd, "sha1")
665// // Hash the contents of a file.
666// f, _ := os.Open("/tmp/linux-4.10-rc7.tar.xz")
667// b := make([]byte, 4096)
668// for {
669// n, err := f.Read(b)
670// if err == io.EOF {
671// break
672// }
673// unix.Sendto(hashfd, b[:n], unix.MSG_MORE, addr)
674// }
675// hash.Read(b)
676// fmt.Println(hex.EncodeToString(b))
677// // Output: 85cdcad0c06eef66f805ecce353bec9accbeecc5
678//
679// For more information, see: http://www.chronox.de/crypto-API/crypto/userspace-if.html.
680type SockaddrALG struct {
681 Type string
682 Name string
683 Feature uint32
684 Mask uint32
685 raw RawSockaddrALG
686}
687
688func (sa *SockaddrALG) sockaddr() (unsafe.Pointer, _Socklen, error) {
689 // Leave room for NUL byte terminator.
690 if len(sa.Type) > 13 {
691 return nil, 0, EINVAL
692 }
693 if len(sa.Name) > 63 {
694 return nil, 0, EINVAL
695 }
696
697 sa.raw.Family = AF_ALG
698 sa.raw.Feat = sa.Feature
699 sa.raw.Mask = sa.Mask
700
701 typ, err := ByteSliceFromString(sa.Type)
702 if err != nil {
703 return nil, 0, err
704 }
705 name, err := ByteSliceFromString(sa.Name)
706 if err != nil {
707 return nil, 0, err
708 }
709
710 copy(sa.raw.Type[:], typ)
711 copy(sa.raw.Name[:], name)
712
713 return unsafe.Pointer(&sa.raw), SizeofSockaddrALG, nil
714}
715
716// SockaddrVM implements the Sockaddr interface for AF_VSOCK type sockets.
717// SockaddrVM provides access to Linux VM sockets: a mechanism that enables
718// bidirectional communication between a hypervisor and its guest virtual
719// machines.
720type SockaddrVM struct {
721 // CID and Port specify a context ID and port address for a VM socket.
722 // Guests have a unique CID, and hosts may have a well-known CID of:
723 // - VMADDR_CID_HYPERVISOR: refers to the hypervisor process.
724 // - VMADDR_CID_HOST: refers to other processes on the host.
725 CID uint32
726 Port uint32
727 raw RawSockaddrVM
728}
729
730func (sa *SockaddrVM) sockaddr() (unsafe.Pointer, _Socklen, error) {
731 sa.raw.Family = AF_VSOCK
732 sa.raw.Port = sa.Port
733 sa.raw.Cid = sa.CID
734
735 return unsafe.Pointer(&sa.raw), SizeofSockaddrVM, nil
736}
737
738type SockaddrXDP struct {
739 Flags uint16
740 Ifindex uint32
741 QueueID uint32
742 SharedUmemFD uint32
743 raw RawSockaddrXDP
744}
745
746func (sa *SockaddrXDP) sockaddr() (unsafe.Pointer, _Socklen, error) {
747 sa.raw.Family = AF_XDP
748 sa.raw.Flags = sa.Flags
749 sa.raw.Ifindex = sa.Ifindex
750 sa.raw.Queue_id = sa.QueueID
751 sa.raw.Shared_umem_fd = sa.SharedUmemFD
752
753 return unsafe.Pointer(&sa.raw), SizeofSockaddrXDP, nil
754}
755
756// This constant mirrors the #define of PX_PROTO_OE in
757// linux/if_pppox.h. We're defining this by hand here instead of
758// autogenerating through mkerrors.sh because including
759// linux/if_pppox.h causes some declaration conflicts with other
760// includes (linux/if_pppox.h includes linux/in.h, which conflicts
761// with netinet/in.h). Given that we only need a single zero constant
762// out of that file, it's cleaner to just define it by hand here.
763const px_proto_oe = 0
764
765type SockaddrPPPoE struct {
766 SID uint16
Abhilash S.L3b494632019-07-16 15:51:09 +0530767 Remote []byte
William Kurkianea869482019-04-09 15:16:11 -0400768 Dev string
769 raw RawSockaddrPPPoX
770}
771
772func (sa *SockaddrPPPoE) sockaddr() (unsafe.Pointer, _Socklen, error) {
773 if len(sa.Remote) != 6 {
774 return nil, 0, EINVAL
775 }
776 if len(sa.Dev) > IFNAMSIZ-1 {
777 return nil, 0, EINVAL
778 }
779
780 *(*uint16)(unsafe.Pointer(&sa.raw[0])) = AF_PPPOX
781 // This next field is in host-endian byte order. We can't use the
782 // same unsafe pointer cast as above, because this value is not
783 // 32-bit aligned and some architectures don't allow unaligned
784 // access.
785 //
786 // However, the value of px_proto_oe is 0, so we can use
787 // encoding/binary helpers to write the bytes without worrying
788 // about the ordering.
789 binary.BigEndian.PutUint32(sa.raw[2:6], px_proto_oe)
790 // This field is deliberately big-endian, unlike the previous
791 // one. The kernel expects SID to be in network byte order.
792 binary.BigEndian.PutUint16(sa.raw[6:8], sa.SID)
793 copy(sa.raw[8:14], sa.Remote)
794 for i := 14; i < 14+IFNAMSIZ; i++ {
795 sa.raw[i] = 0
796 }
797 copy(sa.raw[14:], sa.Dev)
798 return unsafe.Pointer(&sa.raw), SizeofSockaddrPPPoX, nil
799}
800
801func anyToSockaddr(fd int, rsa *RawSockaddrAny) (Sockaddr, error) {
802 switch rsa.Addr.Family {
803 case AF_NETLINK:
804 pp := (*RawSockaddrNetlink)(unsafe.Pointer(rsa))
805 sa := new(SockaddrNetlink)
806 sa.Family = pp.Family
807 sa.Pad = pp.Pad
808 sa.Pid = pp.Pid
809 sa.Groups = pp.Groups
810 return sa, nil
811
812 case AF_PACKET:
813 pp := (*RawSockaddrLinklayer)(unsafe.Pointer(rsa))
814 sa := new(SockaddrLinklayer)
815 sa.Protocol = pp.Protocol
816 sa.Ifindex = int(pp.Ifindex)
817 sa.Hatype = pp.Hatype
818 sa.Pkttype = pp.Pkttype
819 sa.Halen = pp.Halen
820 for i := 0; i < len(sa.Addr); i++ {
821 sa.Addr[i] = pp.Addr[i]
822 }
823 return sa, nil
824
825 case AF_UNIX:
826 pp := (*RawSockaddrUnix)(unsafe.Pointer(rsa))
827 sa := new(SockaddrUnix)
828 if pp.Path[0] == 0 {
829 // "Abstract" Unix domain socket.
830 // Rewrite leading NUL as @ for textual display.
831 // (This is the standard convention.)
832 // Not friendly to overwrite in place,
833 // but the callers below don't care.
834 pp.Path[0] = '@'
835 }
836
837 // Assume path ends at NUL.
838 // This is not technically the Linux semantics for
839 // abstract Unix domain sockets--they are supposed
840 // to be uninterpreted fixed-size binary blobs--but
841 // everyone uses this convention.
842 n := 0
843 for n < len(pp.Path) && pp.Path[n] != 0 {
844 n++
845 }
846 bytes := (*[10000]byte)(unsafe.Pointer(&pp.Path[0]))[0:n]
847 sa.Name = string(bytes)
848 return sa, nil
849
850 case AF_INET:
851 pp := (*RawSockaddrInet4)(unsafe.Pointer(rsa))
852 sa := new(SockaddrInet4)
853 p := (*[2]byte)(unsafe.Pointer(&pp.Port))
854 sa.Port = int(p[0])<<8 + int(p[1])
855 for i := 0; i < len(sa.Addr); i++ {
856 sa.Addr[i] = pp.Addr[i]
857 }
858 return sa, nil
859
860 case AF_INET6:
861 pp := (*RawSockaddrInet6)(unsafe.Pointer(rsa))
862 sa := new(SockaddrInet6)
863 p := (*[2]byte)(unsafe.Pointer(&pp.Port))
864 sa.Port = int(p[0])<<8 + int(p[1])
865 sa.ZoneId = pp.Scope_id
866 for i := 0; i < len(sa.Addr); i++ {
867 sa.Addr[i] = pp.Addr[i]
868 }
869 return sa, nil
870
871 case AF_VSOCK:
872 pp := (*RawSockaddrVM)(unsafe.Pointer(rsa))
873 sa := &SockaddrVM{
874 CID: pp.Cid,
875 Port: pp.Port,
876 }
877 return sa, nil
878 case AF_BLUETOOTH:
879 proto, err := GetsockoptInt(fd, SOL_SOCKET, SO_PROTOCOL)
880 if err != nil {
881 return nil, err
882 }
883 // only BTPROTO_L2CAP and BTPROTO_RFCOMM can accept connections
884 switch proto {
885 case BTPROTO_L2CAP:
886 pp := (*RawSockaddrL2)(unsafe.Pointer(rsa))
887 sa := &SockaddrL2{
888 PSM: pp.Psm,
889 CID: pp.Cid,
890 Addr: pp.Bdaddr,
891 AddrType: pp.Bdaddr_type,
892 }
893 return sa, nil
894 case BTPROTO_RFCOMM:
895 pp := (*RawSockaddrRFCOMM)(unsafe.Pointer(rsa))
896 sa := &SockaddrRFCOMM{
897 Channel: pp.Channel,
898 Addr: pp.Bdaddr,
899 }
900 return sa, nil
901 }
902 case AF_XDP:
903 pp := (*RawSockaddrXDP)(unsafe.Pointer(rsa))
904 sa := &SockaddrXDP{
905 Flags: pp.Flags,
906 Ifindex: pp.Ifindex,
907 QueueID: pp.Queue_id,
908 SharedUmemFD: pp.Shared_umem_fd,
909 }
910 return sa, nil
911 case AF_PPPOX:
912 pp := (*RawSockaddrPPPoX)(unsafe.Pointer(rsa))
913 if binary.BigEndian.Uint32(pp[2:6]) != px_proto_oe {
914 return nil, EINVAL
915 }
916 sa := &SockaddrPPPoE{
917 SID: binary.BigEndian.Uint16(pp[6:8]),
Abhilash S.L3b494632019-07-16 15:51:09 +0530918 Remote: pp[8:14],
William Kurkianea869482019-04-09 15:16:11 -0400919 }
920 for i := 14; i < 14+IFNAMSIZ; i++ {
921 if pp[i] == 0 {
922 sa.Dev = string(pp[14:i])
923 break
924 }
925 }
926 return sa, nil
927 }
928 return nil, EAFNOSUPPORT
929}
930
931func Accept(fd int) (nfd int, sa Sockaddr, err error) {
932 var rsa RawSockaddrAny
933 var len _Socklen = SizeofSockaddrAny
934 nfd, err = accept(fd, &rsa, &len)
935 if err != nil {
936 return
937 }
938 sa, err = anyToSockaddr(fd, &rsa)
939 if err != nil {
940 Close(nfd)
941 nfd = 0
942 }
943 return
944}
945
946func Accept4(fd int, flags int) (nfd int, sa Sockaddr, err error) {
947 var rsa RawSockaddrAny
948 var len _Socklen = SizeofSockaddrAny
949 nfd, err = accept4(fd, &rsa, &len, flags)
950 if err != nil {
951 return
952 }
953 if len > SizeofSockaddrAny {
954 panic("RawSockaddrAny too small")
955 }
956 sa, err = anyToSockaddr(fd, &rsa)
957 if err != nil {
958 Close(nfd)
959 nfd = 0
960 }
961 return
962}
963
964func Getsockname(fd int) (sa Sockaddr, err error) {
965 var rsa RawSockaddrAny
966 var len _Socklen = SizeofSockaddrAny
967 if err = getsockname(fd, &rsa, &len); err != nil {
968 return
969 }
970 return anyToSockaddr(fd, &rsa)
971}
972
973func GetsockoptIPMreqn(fd, level, opt int) (*IPMreqn, error) {
974 var value IPMreqn
975 vallen := _Socklen(SizeofIPMreqn)
976 err := getsockopt(fd, level, opt, unsafe.Pointer(&value), &vallen)
977 return &value, err
978}
979
980func GetsockoptUcred(fd, level, opt int) (*Ucred, error) {
981 var value Ucred
982 vallen := _Socklen(SizeofUcred)
983 err := getsockopt(fd, level, opt, unsafe.Pointer(&value), &vallen)
984 return &value, err
985}
986
987func GetsockoptTCPInfo(fd, level, opt int) (*TCPInfo, error) {
988 var value TCPInfo
989 vallen := _Socklen(SizeofTCPInfo)
990 err := getsockopt(fd, level, opt, unsafe.Pointer(&value), &vallen)
991 return &value, err
992}
993
994// GetsockoptString returns the string value of the socket option opt for the
995// socket associated with fd at the given socket level.
996func GetsockoptString(fd, level, opt int) (string, error) {
997 buf := make([]byte, 256)
998 vallen := _Socklen(len(buf))
999 err := getsockopt(fd, level, opt, unsafe.Pointer(&buf[0]), &vallen)
1000 if err != nil {
1001 if err == ERANGE {
1002 buf = make([]byte, vallen)
1003 err = getsockopt(fd, level, opt, unsafe.Pointer(&buf[0]), &vallen)
1004 }
1005 if err != nil {
1006 return "", err
1007 }
1008 }
1009 return string(buf[:vallen-1]), nil
1010}
1011
1012func GetsockoptTpacketStats(fd, level, opt int) (*TpacketStats, error) {
1013 var value TpacketStats
1014 vallen := _Socklen(SizeofTpacketStats)
1015 err := getsockopt(fd, level, opt, unsafe.Pointer(&value), &vallen)
1016 return &value, err
1017}
1018
1019func GetsockoptTpacketStatsV3(fd, level, opt int) (*TpacketStatsV3, error) {
1020 var value TpacketStatsV3
1021 vallen := _Socklen(SizeofTpacketStatsV3)
1022 err := getsockopt(fd, level, opt, unsafe.Pointer(&value), &vallen)
1023 return &value, err
1024}
1025
1026func SetsockoptIPMreqn(fd, level, opt int, mreq *IPMreqn) (err error) {
1027 return setsockopt(fd, level, opt, unsafe.Pointer(mreq), unsafe.Sizeof(*mreq))
1028}
1029
1030func SetsockoptPacketMreq(fd, level, opt int, mreq *PacketMreq) error {
1031 return setsockopt(fd, level, opt, unsafe.Pointer(mreq), unsafe.Sizeof(*mreq))
1032}
1033
1034// SetsockoptSockFprog attaches a classic BPF or an extended BPF program to a
1035// socket to filter incoming packets. See 'man 7 socket' for usage information.
1036func SetsockoptSockFprog(fd, level, opt int, fprog *SockFprog) error {
1037 return setsockopt(fd, level, opt, unsafe.Pointer(fprog), unsafe.Sizeof(*fprog))
1038}
1039
1040func SetsockoptCanRawFilter(fd, level, opt int, filter []CanFilter) error {
1041 var p unsafe.Pointer
1042 if len(filter) > 0 {
1043 p = unsafe.Pointer(&filter[0])
1044 }
1045 return setsockopt(fd, level, opt, p, uintptr(len(filter)*SizeofCanFilter))
1046}
1047
1048func SetsockoptTpacketReq(fd, level, opt int, tp *TpacketReq) error {
1049 return setsockopt(fd, level, opt, unsafe.Pointer(tp), unsafe.Sizeof(*tp))
1050}
1051
1052func SetsockoptTpacketReq3(fd, level, opt int, tp *TpacketReq3) error {
1053 return setsockopt(fd, level, opt, unsafe.Pointer(tp), unsafe.Sizeof(*tp))
1054}
1055
1056// Keyctl Commands (http://man7.org/linux/man-pages/man2/keyctl.2.html)
1057
1058// KeyctlInt calls keyctl commands in which each argument is an int.
1059// These commands are KEYCTL_REVOKE, KEYCTL_CHOWN, KEYCTL_CLEAR, KEYCTL_LINK,
1060// KEYCTL_UNLINK, KEYCTL_NEGATE, KEYCTL_SET_REQKEY_KEYRING, KEYCTL_SET_TIMEOUT,
1061// KEYCTL_ASSUME_AUTHORITY, KEYCTL_SESSION_TO_PARENT, KEYCTL_REJECT,
1062// KEYCTL_INVALIDATE, and KEYCTL_GET_PERSISTENT.
1063//sys KeyctlInt(cmd int, arg2 int, arg3 int, arg4 int, arg5 int) (ret int, err error) = SYS_KEYCTL
1064
1065// KeyctlBuffer calls keyctl commands in which the third and fourth
1066// arguments are a buffer and its length, respectively.
1067// These commands are KEYCTL_UPDATE, KEYCTL_READ, and KEYCTL_INSTANTIATE.
1068//sys KeyctlBuffer(cmd int, arg2 int, buf []byte, arg5 int) (ret int, err error) = SYS_KEYCTL
1069
1070// KeyctlString calls keyctl commands which return a string.
1071// These commands are KEYCTL_DESCRIBE and KEYCTL_GET_SECURITY.
1072func KeyctlString(cmd int, id int) (string, error) {
1073 // We must loop as the string data may change in between the syscalls.
1074 // We could allocate a large buffer here to reduce the chance that the
1075 // syscall needs to be called twice; however, this is unnecessary as
1076 // the performance loss is negligible.
1077 var buffer []byte
1078 for {
1079 // Try to fill the buffer with data
1080 length, err := KeyctlBuffer(cmd, id, buffer, 0)
1081 if err != nil {
1082 return "", err
1083 }
1084
1085 // Check if the data was written
1086 if length <= len(buffer) {
1087 // Exclude the null terminator
1088 return string(buffer[:length-1]), nil
1089 }
1090
1091 // Make a bigger buffer if needed
1092 buffer = make([]byte, length)
1093 }
1094}
1095
1096// Keyctl commands with special signatures.
1097
1098// KeyctlGetKeyringID implements the KEYCTL_GET_KEYRING_ID command.
1099// See the full documentation at:
1100// http://man7.org/linux/man-pages/man3/keyctl_get_keyring_ID.3.html
1101func KeyctlGetKeyringID(id int, create bool) (ringid int, err error) {
1102 createInt := 0
1103 if create {
1104 createInt = 1
1105 }
1106 return KeyctlInt(KEYCTL_GET_KEYRING_ID, id, createInt, 0, 0)
1107}
1108
1109// KeyctlSetperm implements the KEYCTL_SETPERM command. The perm value is the
1110// key handle permission mask as described in the "keyctl setperm" section of
1111// http://man7.org/linux/man-pages/man1/keyctl.1.html.
1112// See the full documentation at:
1113// http://man7.org/linux/man-pages/man3/keyctl_setperm.3.html
1114func KeyctlSetperm(id int, perm uint32) error {
1115 _, err := KeyctlInt(KEYCTL_SETPERM, id, int(perm), 0, 0)
1116 return err
1117}
1118
1119//sys keyctlJoin(cmd int, arg2 string) (ret int, err error) = SYS_KEYCTL
1120
1121// KeyctlJoinSessionKeyring implements the KEYCTL_JOIN_SESSION_KEYRING command.
1122// See the full documentation at:
1123// http://man7.org/linux/man-pages/man3/keyctl_join_session_keyring.3.html
1124func KeyctlJoinSessionKeyring(name string) (ringid int, err error) {
1125 return keyctlJoin(KEYCTL_JOIN_SESSION_KEYRING, name)
1126}
1127
1128//sys keyctlSearch(cmd int, arg2 int, arg3 string, arg4 string, arg5 int) (ret int, err error) = SYS_KEYCTL
1129
1130// KeyctlSearch implements the KEYCTL_SEARCH command.
1131// See the full documentation at:
1132// http://man7.org/linux/man-pages/man3/keyctl_search.3.html
1133func KeyctlSearch(ringid int, keyType, description string, destRingid int) (id int, err error) {
1134 return keyctlSearch(KEYCTL_SEARCH, ringid, keyType, description, destRingid)
1135}
1136
1137//sys keyctlIOV(cmd int, arg2 int, payload []Iovec, arg5 int) (err error) = SYS_KEYCTL
1138
1139// KeyctlInstantiateIOV implements the KEYCTL_INSTANTIATE_IOV command. This
1140// command is similar to KEYCTL_INSTANTIATE, except that the payload is a slice
1141// of Iovec (each of which represents a buffer) instead of a single buffer.
1142// See the full documentation at:
1143// http://man7.org/linux/man-pages/man3/keyctl_instantiate_iov.3.html
1144func KeyctlInstantiateIOV(id int, payload []Iovec, ringid int) error {
1145 return keyctlIOV(KEYCTL_INSTANTIATE_IOV, id, payload, ringid)
1146}
1147
1148//sys keyctlDH(cmd int, arg2 *KeyctlDHParams, buf []byte) (ret int, err error) = SYS_KEYCTL
1149
1150// KeyctlDHCompute implements the KEYCTL_DH_COMPUTE command. This command
1151// computes a Diffie-Hellman shared secret based on the provide params. The
1152// secret is written to the provided buffer and the returned size is the number
1153// of bytes written (returning an error if there is insufficient space in the
1154// buffer). If a nil buffer is passed in, this function returns the minimum
1155// buffer length needed to store the appropriate data. Note that this differs
1156// from KEYCTL_READ's behavior which always returns the requested payload size.
1157// See the full documentation at:
1158// http://man7.org/linux/man-pages/man3/keyctl_dh_compute.3.html
1159func KeyctlDHCompute(params *KeyctlDHParams, buffer []byte) (size int, err error) {
1160 return keyctlDH(KEYCTL_DH_COMPUTE, params, buffer)
1161}
1162
1163func Recvmsg(fd int, p, oob []byte, flags int) (n, oobn int, recvflags int, from Sockaddr, err error) {
1164 var msg Msghdr
1165 var rsa RawSockaddrAny
1166 msg.Name = (*byte)(unsafe.Pointer(&rsa))
1167 msg.Namelen = uint32(SizeofSockaddrAny)
1168 var iov Iovec
1169 if len(p) > 0 {
1170 iov.Base = &p[0]
1171 iov.SetLen(len(p))
1172 }
1173 var dummy byte
1174 if len(oob) > 0 {
1175 if len(p) == 0 {
1176 var sockType int
1177 sockType, err = GetsockoptInt(fd, SOL_SOCKET, SO_TYPE)
1178 if err != nil {
1179 return
1180 }
1181 // receive at least one normal byte
1182 if sockType != SOCK_DGRAM {
1183 iov.Base = &dummy
1184 iov.SetLen(1)
1185 }
1186 }
1187 msg.Control = &oob[0]
1188 msg.SetControllen(len(oob))
1189 }
1190 msg.Iov = &iov
1191 msg.Iovlen = 1
1192 if n, err = recvmsg(fd, &msg, flags); err != nil {
1193 return
1194 }
1195 oobn = int(msg.Controllen)
1196 recvflags = int(msg.Flags)
1197 // source address is only specified if the socket is unconnected
1198 if rsa.Addr.Family != AF_UNSPEC {
1199 from, err = anyToSockaddr(fd, &rsa)
1200 }
1201 return
1202}
1203
1204func Sendmsg(fd int, p, oob []byte, to Sockaddr, flags int) (err error) {
1205 _, err = SendmsgN(fd, p, oob, to, flags)
1206 return
1207}
1208
1209func SendmsgN(fd int, p, oob []byte, to Sockaddr, flags int) (n int, err error) {
1210 var ptr unsafe.Pointer
1211 var salen _Socklen
1212 if to != nil {
1213 var err error
1214 ptr, salen, err = to.sockaddr()
1215 if err != nil {
1216 return 0, err
1217 }
1218 }
1219 var msg Msghdr
1220 msg.Name = (*byte)(ptr)
1221 msg.Namelen = uint32(salen)
1222 var iov Iovec
1223 if len(p) > 0 {
1224 iov.Base = &p[0]
1225 iov.SetLen(len(p))
1226 }
1227 var dummy byte
1228 if len(oob) > 0 {
1229 if len(p) == 0 {
1230 var sockType int
1231 sockType, err = GetsockoptInt(fd, SOL_SOCKET, SO_TYPE)
1232 if err != nil {
1233 return 0, err
1234 }
1235 // send at least one normal byte
1236 if sockType != SOCK_DGRAM {
1237 iov.Base = &dummy
1238 iov.SetLen(1)
1239 }
1240 }
1241 msg.Control = &oob[0]
1242 msg.SetControllen(len(oob))
1243 }
1244 msg.Iov = &iov
1245 msg.Iovlen = 1
1246 if n, err = sendmsg(fd, &msg, flags); err != nil {
1247 return 0, err
1248 }
1249 if len(oob) > 0 && len(p) == 0 {
1250 n = 0
1251 }
1252 return n, nil
1253}
1254
1255// BindToDevice binds the socket associated with fd to device.
1256func BindToDevice(fd int, device string) (err error) {
1257 return SetsockoptString(fd, SOL_SOCKET, SO_BINDTODEVICE, device)
1258}
1259
1260//sys ptrace(request int, pid int, addr uintptr, data uintptr) (err error)
1261
1262func ptracePeek(req int, pid int, addr uintptr, out []byte) (count int, err error) {
1263 // The peek requests are machine-size oriented, so we wrap it
1264 // to retrieve arbitrary-length data.
1265
1266 // The ptrace syscall differs from glibc's ptrace.
1267 // Peeks returns the word in *data, not as the return value.
1268
1269 var buf [SizeofPtr]byte
1270
1271 // Leading edge. PEEKTEXT/PEEKDATA don't require aligned
1272 // access (PEEKUSER warns that it might), but if we don't
1273 // align our reads, we might straddle an unmapped page
1274 // boundary and not get the bytes leading up to the page
1275 // boundary.
1276 n := 0
1277 if addr%SizeofPtr != 0 {
1278 err = ptrace(req, pid, addr-addr%SizeofPtr, uintptr(unsafe.Pointer(&buf[0])))
1279 if err != nil {
1280 return 0, err
1281 }
1282 n += copy(out, buf[addr%SizeofPtr:])
1283 out = out[n:]
1284 }
1285
1286 // Remainder.
1287 for len(out) > 0 {
1288 // We use an internal buffer to guarantee alignment.
1289 // It's not documented if this is necessary, but we're paranoid.
1290 err = ptrace(req, pid, addr+uintptr(n), uintptr(unsafe.Pointer(&buf[0])))
1291 if err != nil {
1292 return n, err
1293 }
1294 copied := copy(out, buf[0:])
1295 n += copied
1296 out = out[copied:]
1297 }
1298
1299 return n, nil
1300}
1301
1302func PtracePeekText(pid int, addr uintptr, out []byte) (count int, err error) {
1303 return ptracePeek(PTRACE_PEEKTEXT, pid, addr, out)
1304}
1305
1306func PtracePeekData(pid int, addr uintptr, out []byte) (count int, err error) {
1307 return ptracePeek(PTRACE_PEEKDATA, pid, addr, out)
1308}
1309
1310func PtracePeekUser(pid int, addr uintptr, out []byte) (count int, err error) {
1311 return ptracePeek(PTRACE_PEEKUSR, pid, addr, out)
1312}
1313
1314func ptracePoke(pokeReq int, peekReq int, pid int, addr uintptr, data []byte) (count int, err error) {
1315 // As for ptracePeek, we need to align our accesses to deal
1316 // with the possibility of straddling an invalid page.
1317
1318 // Leading edge.
1319 n := 0
1320 if addr%SizeofPtr != 0 {
1321 var buf [SizeofPtr]byte
1322 err = ptrace(peekReq, pid, addr-addr%SizeofPtr, uintptr(unsafe.Pointer(&buf[0])))
1323 if err != nil {
1324 return 0, err
1325 }
1326 n += copy(buf[addr%SizeofPtr:], data)
1327 word := *((*uintptr)(unsafe.Pointer(&buf[0])))
1328 err = ptrace(pokeReq, pid, addr-addr%SizeofPtr, word)
1329 if err != nil {
1330 return 0, err
1331 }
1332 data = data[n:]
1333 }
1334
1335 // Interior.
1336 for len(data) > SizeofPtr {
1337 word := *((*uintptr)(unsafe.Pointer(&data[0])))
1338 err = ptrace(pokeReq, pid, addr+uintptr(n), word)
1339 if err != nil {
1340 return n, err
1341 }
1342 n += SizeofPtr
1343 data = data[SizeofPtr:]
1344 }
1345
1346 // Trailing edge.
1347 if len(data) > 0 {
1348 var buf [SizeofPtr]byte
1349 err = ptrace(peekReq, pid, addr+uintptr(n), uintptr(unsafe.Pointer(&buf[0])))
1350 if err != nil {
1351 return n, err
1352 }
1353 copy(buf[0:], data)
1354 word := *((*uintptr)(unsafe.Pointer(&buf[0])))
1355 err = ptrace(pokeReq, pid, addr+uintptr(n), word)
1356 if err != nil {
1357 return n, err
1358 }
1359 n += len(data)
1360 }
1361
1362 return n, nil
1363}
1364
1365func PtracePokeText(pid int, addr uintptr, data []byte) (count int, err error) {
1366 return ptracePoke(PTRACE_POKETEXT, PTRACE_PEEKTEXT, pid, addr, data)
1367}
1368
1369func PtracePokeData(pid int, addr uintptr, data []byte) (count int, err error) {
1370 return ptracePoke(PTRACE_POKEDATA, PTRACE_PEEKDATA, pid, addr, data)
1371}
1372
1373func PtracePokeUser(pid int, addr uintptr, data []byte) (count int, err error) {
1374 return ptracePoke(PTRACE_POKEUSR, PTRACE_PEEKUSR, pid, addr, data)
1375}
1376
1377func PtraceGetRegs(pid int, regsout *PtraceRegs) (err error) {
1378 return ptrace(PTRACE_GETREGS, pid, 0, uintptr(unsafe.Pointer(regsout)))
1379}
1380
1381func PtraceSetRegs(pid int, regs *PtraceRegs) (err error) {
1382 return ptrace(PTRACE_SETREGS, pid, 0, uintptr(unsafe.Pointer(regs)))
1383}
1384
1385func PtraceSetOptions(pid int, options int) (err error) {
1386 return ptrace(PTRACE_SETOPTIONS, pid, 0, uintptr(options))
1387}
1388
1389func PtraceGetEventMsg(pid int) (msg uint, err error) {
1390 var data _C_long
1391 err = ptrace(PTRACE_GETEVENTMSG, pid, 0, uintptr(unsafe.Pointer(&data)))
1392 msg = uint(data)
1393 return
1394}
1395
1396func PtraceCont(pid int, signal int) (err error) {
1397 return ptrace(PTRACE_CONT, pid, 0, uintptr(signal))
1398}
1399
1400func PtraceSyscall(pid int, signal int) (err error) {
1401 return ptrace(PTRACE_SYSCALL, pid, 0, uintptr(signal))
1402}
1403
1404func PtraceSingleStep(pid int) (err error) { return ptrace(PTRACE_SINGLESTEP, pid, 0, 0) }
1405
1406func PtraceAttach(pid int) (err error) { return ptrace(PTRACE_ATTACH, pid, 0, 0) }
1407
1408func PtraceDetach(pid int) (err error) { return ptrace(PTRACE_DETACH, pid, 0, 0) }
1409
1410//sys reboot(magic1 uint, magic2 uint, cmd int, arg string) (err error)
1411
1412func Reboot(cmd int) (err error) {
1413 return reboot(LINUX_REBOOT_MAGIC1, LINUX_REBOOT_MAGIC2, cmd, "")
1414}
1415
Abhilash S.L3b494632019-07-16 15:51:09 +05301416func direntIno(buf []byte) (uint64, bool) {
1417 return readInt(buf, unsafe.Offsetof(Dirent{}.Ino), unsafe.Sizeof(Dirent{}.Ino))
1418}
1419
1420func direntReclen(buf []byte) (uint64, bool) {
1421 return readInt(buf, unsafe.Offsetof(Dirent{}.Reclen), unsafe.Sizeof(Dirent{}.Reclen))
1422}
1423
1424func direntNamlen(buf []byte) (uint64, bool) {
1425 reclen, ok := direntReclen(buf)
1426 if !ok {
1427 return 0, false
1428 }
1429 return reclen - uint64(unsafe.Offsetof(Dirent{}.Name)), true
William Kurkianea869482019-04-09 15:16:11 -04001430}
1431
1432//sys mount(source string, target string, fstype string, flags uintptr, data *byte) (err error)
1433
1434func Mount(source string, target string, fstype string, flags uintptr, data string) (err error) {
1435 // Certain file systems get rather angry and EINVAL if you give
1436 // them an empty string of data, rather than NULL.
1437 if data == "" {
1438 return mount(source, target, fstype, flags, nil)
1439 }
1440 datap, err := BytePtrFromString(data)
1441 if err != nil {
1442 return err
1443 }
1444 return mount(source, target, fstype, flags, datap)
1445}
1446
1447func Sendfile(outfd int, infd int, offset *int64, count int) (written int, err error) {
1448 if raceenabled {
1449 raceReleaseMerge(unsafe.Pointer(&ioSync))
1450 }
1451 return sendfile(outfd, infd, offset, count)
1452}
1453
1454// Sendto
1455// Recvfrom
1456// Socketpair
1457
1458/*
1459 * Direct access
1460 */
1461//sys Acct(path string) (err error)
1462//sys AddKey(keyType string, description string, payload []byte, ringid int) (id int, err error)
1463//sys Adjtimex(buf *Timex) (state int, err error)
Abhilash S.L3b494632019-07-16 15:51:09 +05301464//sys Capget(hdr *CapUserHeader, data *CapUserData) (err error)
1465//sys Capset(hdr *CapUserHeader, data *CapUserData) (err error)
William Kurkianea869482019-04-09 15:16:11 -04001466//sys Chdir(path string) (err error)
1467//sys Chroot(path string) (err error)
1468//sys ClockGetres(clockid int32, res *Timespec) (err error)
1469//sys ClockGettime(clockid int32, time *Timespec) (err error)
1470//sys ClockNanosleep(clockid int32, flags int, request *Timespec, remain *Timespec) (err error)
1471//sys Close(fd int) (err error)
1472//sys CopyFileRange(rfd int, roff *int64, wfd int, woff *int64, len int, flags int) (n int, err error)
1473//sys DeleteModule(name string, flags int) (err error)
1474//sys Dup(oldfd int) (fd int, err error)
1475//sys Dup3(oldfd int, newfd int, flags int) (err error)
1476//sysnb EpollCreate1(flag int) (fd int, err error)
1477//sysnb EpollCtl(epfd int, op int, fd int, event *EpollEvent) (err error)
1478//sys Eventfd(initval uint, flags int) (fd int, err error) = SYS_EVENTFD2
1479//sys Exit(code int) = SYS_EXIT_GROUP
1480//sys Fallocate(fd int, mode uint32, off int64, len int64) (err error)
1481//sys Fchdir(fd int) (err error)
1482//sys Fchmod(fd int, mode uint32) (err error)
1483//sys Fchownat(dirfd int, path string, uid int, gid int, flags int) (err error)
1484//sys fcntl(fd int, cmd int, arg int) (val int, err error)
1485//sys Fdatasync(fd int) (err error)
1486//sys Fgetxattr(fd int, attr string, dest []byte) (sz int, err error)
1487//sys FinitModule(fd int, params string, flags int) (err error)
1488//sys Flistxattr(fd int, dest []byte) (sz int, err error)
1489//sys Flock(fd int, how int) (err error)
1490//sys Fremovexattr(fd int, attr string) (err error)
1491//sys Fsetxattr(fd int, attr string, dest []byte, flags int) (err error)
1492//sys Fsync(fd int) (err error)
1493//sys Getdents(fd int, buf []byte) (n int, err error) = SYS_GETDENTS64
1494//sysnb Getpgid(pid int) (pgid int, err error)
1495
1496func Getpgrp() (pid int) {
1497 pid, _ = Getpgid(0)
1498 return
1499}
1500
1501//sysnb Getpid() (pid int)
1502//sysnb Getppid() (ppid int)
1503//sys Getpriority(which int, who int) (prio int, err error)
1504//sys Getrandom(buf []byte, flags int) (n int, err error)
1505//sysnb Getrusage(who int, rusage *Rusage) (err error)
1506//sysnb Getsid(pid int) (sid int, err error)
1507//sysnb Gettid() (tid int)
1508//sys Getxattr(path string, attr string, dest []byte) (sz int, err error)
1509//sys InitModule(moduleImage []byte, params string) (err error)
1510//sys InotifyAddWatch(fd int, pathname string, mask uint32) (watchdesc int, err error)
1511//sysnb InotifyInit1(flags int) (fd int, err error)
1512//sysnb InotifyRmWatch(fd int, watchdesc uint32) (success int, err error)
1513//sysnb Kill(pid int, sig syscall.Signal) (err error)
1514//sys Klogctl(typ int, buf []byte) (n int, err error) = SYS_SYSLOG
1515//sys Lgetxattr(path string, attr string, dest []byte) (sz int, err error)
1516//sys Listxattr(path string, dest []byte) (sz int, err error)
1517//sys Llistxattr(path string, dest []byte) (sz int, err error)
1518//sys Lremovexattr(path string, attr string) (err error)
1519//sys Lsetxattr(path string, attr string, data []byte, flags int) (err error)
1520//sys MemfdCreate(name string, flags int) (fd int, err error)
1521//sys Mkdirat(dirfd int, path string, mode uint32) (err error)
1522//sys Mknodat(dirfd int, path string, mode uint32, dev int) (err error)
1523//sys Nanosleep(time *Timespec, leftover *Timespec) (err error)
1524//sys PerfEventOpen(attr *PerfEventAttr, pid int, cpu int, groupFd int, flags int) (fd int, err error)
1525//sys PivotRoot(newroot string, putold string) (err error) = SYS_PIVOT_ROOT
1526//sysnb prlimit(pid int, resource int, newlimit *Rlimit, old *Rlimit) (err error) = SYS_PRLIMIT64
1527//sys Prctl(option int, arg2 uintptr, arg3 uintptr, arg4 uintptr, arg5 uintptr) (err error)
1528//sys Pselect(nfd int, r *FdSet, w *FdSet, e *FdSet, timeout *Timespec, sigmask *Sigset_t) (n int, err error) = SYS_PSELECT6
1529//sys read(fd int, p []byte) (n int, err error)
1530//sys Removexattr(path string, attr string) (err error)
1531//sys Renameat2(olddirfd int, oldpath string, newdirfd int, newpath string, flags uint) (err error)
1532//sys RequestKey(keyType string, description string, callback string, destRingid int) (id int, err error)
1533//sys Setdomainname(p []byte) (err error)
1534//sys Sethostname(p []byte) (err error)
1535//sysnb Setpgid(pid int, pgid int) (err error)
1536//sysnb Setsid() (pid int, err error)
1537//sysnb Settimeofday(tv *Timeval) (err error)
1538//sys Setns(fd int, nstype int) (err error)
1539
1540// issue 1435.
1541// On linux Setuid and Setgid only affects the current thread, not the process.
1542// This does not match what most callers expect so we must return an error
1543// here rather than letting the caller think that the call succeeded.
1544
1545func Setuid(uid int) (err error) {
1546 return EOPNOTSUPP
1547}
1548
1549func Setgid(uid int) (err error) {
1550 return EOPNOTSUPP
1551}
1552
Abhilash S.L3b494632019-07-16 15:51:09 +05301553func Signalfd(fd int, sigmask *Sigset_t, flags int) (newfd int, err error) {
1554 return signalfd(fd, sigmask, _C__NSIG/8, flags)
1555}
1556
William Kurkianea869482019-04-09 15:16:11 -04001557//sys Setpriority(which int, who int, prio int) (err error)
1558//sys Setxattr(path string, attr string, data []byte, flags int) (err error)
Abhilash S.L3b494632019-07-16 15:51:09 +05301559//sys signalfd(fd int, sigmask *Sigset_t, maskSize uintptr, flags int) (newfd int, err error) = SYS_SIGNALFD4
William Kurkianea869482019-04-09 15:16:11 -04001560//sys Statx(dirfd int, path string, flags int, mask int, stat *Statx_t) (err error)
1561//sys Sync()
1562//sys Syncfs(fd int) (err error)
1563//sysnb Sysinfo(info *Sysinfo_t) (err error)
1564//sys Tee(rfd int, wfd int, len int, flags int) (n int64, err error)
1565//sysnb Tgkill(tgid int, tid int, sig syscall.Signal) (err error)
1566//sysnb Times(tms *Tms) (ticks uintptr, err error)
1567//sysnb Umask(mask int) (oldmask int)
1568//sysnb Uname(buf *Utsname) (err error)
1569//sys Unmount(target string, flags int) (err error) = SYS_UMOUNT2
1570//sys Unshare(flags int) (err error)
1571//sys write(fd int, p []byte) (n int, err error)
1572//sys exitThread(code int) (err error) = SYS_EXIT
1573//sys readlen(fd int, p *byte, np int) (n int, err error) = SYS_READ
1574//sys writelen(fd int, p *byte, np int) (n int, err error) = SYS_WRITE
1575
1576// mmap varies by architecture; see syscall_linux_*.go.
1577//sys munmap(addr uintptr, length uintptr) (err error)
1578
1579var mapper = &mmapper{
1580 active: make(map[*byte][]byte),
1581 mmap: mmap,
1582 munmap: munmap,
1583}
1584
1585func Mmap(fd int, offset int64, length int, prot int, flags int) (data []byte, err error) {
1586 return mapper.Mmap(fd, offset, length, prot, flags)
1587}
1588
1589func Munmap(b []byte) (err error) {
1590 return mapper.Munmap(b)
1591}
1592
1593//sys Madvise(b []byte, advice int) (err error)
1594//sys Mprotect(b []byte, prot int) (err error)
1595//sys Mlock(b []byte) (err error)
1596//sys Mlockall(flags int) (err error)
1597//sys Msync(b []byte, flags int) (err error)
1598//sys Munlock(b []byte) (err error)
1599//sys Munlockall() (err error)
1600
1601// Vmsplice splices user pages from a slice of Iovecs into a pipe specified by fd,
1602// using the specified flags.
1603func Vmsplice(fd int, iovs []Iovec, flags int) (int, error) {
1604 var p unsafe.Pointer
1605 if len(iovs) > 0 {
1606 p = unsafe.Pointer(&iovs[0])
1607 }
1608
1609 n, _, errno := Syscall6(SYS_VMSPLICE, uintptr(fd), uintptr(p), uintptr(len(iovs)), uintptr(flags), 0, 0)
1610 if errno != 0 {
1611 return 0, syscall.Errno(errno)
1612 }
1613
1614 return int(n), nil
1615}
1616
1617//sys faccessat(dirfd int, path string, mode uint32) (err error)
1618
1619func Faccessat(dirfd int, path string, mode uint32, flags int) (err error) {
1620 if flags & ^(AT_SYMLINK_NOFOLLOW|AT_EACCESS) != 0 {
1621 return EINVAL
1622 }
1623
1624 // The Linux kernel faccessat system call does not take any flags.
1625 // The glibc faccessat implements the flags itself; see
1626 // https://sourceware.org/git/?p=glibc.git;a=blob;f=sysdeps/unix/sysv/linux/faccessat.c;hb=HEAD
1627 // Because people naturally expect syscall.Faccessat to act
1628 // like C faccessat, we do the same.
1629
1630 if flags == 0 {
1631 return faccessat(dirfd, path, mode)
1632 }
1633
1634 var st Stat_t
1635 if err := Fstatat(dirfd, path, &st, flags&AT_SYMLINK_NOFOLLOW); err != nil {
1636 return err
1637 }
1638
1639 mode &= 7
1640 if mode == 0 {
1641 return nil
1642 }
1643
1644 var uid int
1645 if flags&AT_EACCESS != 0 {
1646 uid = Geteuid()
1647 } else {
1648 uid = Getuid()
1649 }
1650
1651 if uid == 0 {
1652 if mode&1 == 0 {
1653 // Root can read and write any file.
1654 return nil
1655 }
1656 if st.Mode&0111 != 0 {
1657 // Root can execute any file that anybody can execute.
1658 return nil
1659 }
1660 return EACCES
1661 }
1662
1663 var fmode uint32
1664 if uint32(uid) == st.Uid {
1665 fmode = (st.Mode >> 6) & 7
1666 } else {
1667 var gid int
1668 if flags&AT_EACCESS != 0 {
1669 gid = Getegid()
1670 } else {
1671 gid = Getgid()
1672 }
1673
1674 if uint32(gid) == st.Gid {
1675 fmode = (st.Mode >> 3) & 7
1676 } else {
1677 fmode = st.Mode & 7
1678 }
1679 }
1680
1681 if fmode&mode == mode {
1682 return nil
1683 }
1684
1685 return EACCES
1686}
1687
Abhilash S.L3b494632019-07-16 15:51:09 +05301688//sys nameToHandleAt(dirFD int, pathname string, fh *fileHandle, mountID *_C_int, flags int) (err error) = SYS_NAME_TO_HANDLE_AT
1689//sys openByHandleAt(mountFD int, fh *fileHandle, flags int) (fd int, err error) = SYS_OPEN_BY_HANDLE_AT
1690
1691// fileHandle is the argument to nameToHandleAt and openByHandleAt. We
1692// originally tried to generate it via unix/linux/types.go with "type
1693// fileHandle C.struct_file_handle" but that generated empty structs
1694// for mips64 and mips64le. Instead, hard code it for now (it's the
1695// same everywhere else) until the mips64 generator issue is fixed.
1696type fileHandle struct {
1697 Bytes uint32
1698 Type int32
1699}
1700
1701// FileHandle represents the C struct file_handle used by
1702// name_to_handle_at (see NameToHandleAt) and open_by_handle_at (see
1703// OpenByHandleAt).
1704type FileHandle struct {
1705 *fileHandle
1706}
1707
1708// NewFileHandle constructs a FileHandle.
1709func NewFileHandle(handleType int32, handle []byte) FileHandle {
1710 const hdrSize = unsafe.Sizeof(fileHandle{})
1711 buf := make([]byte, hdrSize+uintptr(len(handle)))
1712 copy(buf[hdrSize:], handle)
1713 fh := (*fileHandle)(unsafe.Pointer(&buf[0]))
1714 fh.Type = handleType
1715 fh.Bytes = uint32(len(handle))
1716 return FileHandle{fh}
1717}
1718
1719func (fh *FileHandle) Size() int { return int(fh.fileHandle.Bytes) }
1720func (fh *FileHandle) Type() int32 { return fh.fileHandle.Type }
1721func (fh *FileHandle) Bytes() []byte {
1722 n := fh.Size()
1723 if n == 0 {
1724 return nil
1725 }
1726 return (*[1 << 30]byte)(unsafe.Pointer(uintptr(unsafe.Pointer(&fh.fileHandle.Type)) + 4))[:n:n]
1727}
1728
1729// NameToHandleAt wraps the name_to_handle_at system call; it obtains
1730// a handle for a path name.
1731func NameToHandleAt(dirfd int, path string, flags int) (handle FileHandle, mountID int, err error) {
1732 var mid _C_int
1733 // Try first with a small buffer, assuming the handle will
1734 // only be 32 bytes.
1735 size := uint32(32 + unsafe.Sizeof(fileHandle{}))
1736 didResize := false
1737 for {
1738 buf := make([]byte, size)
1739 fh := (*fileHandle)(unsafe.Pointer(&buf[0]))
1740 fh.Bytes = size - uint32(unsafe.Sizeof(fileHandle{}))
1741 err = nameToHandleAt(dirfd, path, fh, &mid, flags)
1742 if err == EOVERFLOW {
1743 if didResize {
1744 // We shouldn't need to resize more than once
1745 return
1746 }
1747 didResize = true
1748 size = fh.Bytes + uint32(unsafe.Sizeof(fileHandle{}))
1749 continue
1750 }
1751 if err != nil {
1752 return
1753 }
1754 return FileHandle{fh}, int(mid), nil
1755 }
1756}
1757
1758// OpenByHandleAt wraps the open_by_handle_at system call; it opens a
1759// file via a handle as previously returned by NameToHandleAt.
1760func OpenByHandleAt(mountFD int, handle FileHandle, flags int) (fd int, err error) {
1761 return openByHandleAt(mountFD, handle.fileHandle, flags)
1762}
1763
William Kurkianea869482019-04-09 15:16:11 -04001764/*
1765 * Unimplemented
1766 */
1767// AfsSyscall
1768// Alarm
1769// ArchPrctl
1770// Brk
William Kurkianea869482019-04-09 15:16:11 -04001771// ClockNanosleep
1772// ClockSettime
1773// Clone
1774// EpollCtlOld
1775// EpollPwait
1776// EpollWaitOld
1777// Execve
1778// Fork
1779// Futex
1780// GetKernelSyms
1781// GetMempolicy
1782// GetRobustList
1783// GetThreadArea
1784// Getitimer
1785// Getpmsg
1786// IoCancel
1787// IoDestroy
1788// IoGetevents
1789// IoSetup
1790// IoSubmit
1791// IoprioGet
1792// IoprioSet
1793// KexecLoad
1794// LookupDcookie
1795// Mbind
1796// MigratePages
1797// Mincore
1798// ModifyLdt
1799// Mount
1800// MovePages
1801// MqGetsetattr
1802// MqNotify
1803// MqOpen
1804// MqTimedreceive
1805// MqTimedsend
1806// MqUnlink
1807// Mremap
1808// Msgctl
1809// Msgget
1810// Msgrcv
1811// Msgsnd
1812// Nfsservctl
1813// Personality
1814// Pselect6
1815// Ptrace
1816// Putpmsg
1817// Quotactl
1818// Readahead
1819// Readv
1820// RemapFilePages
1821// RestartSyscall
1822// RtSigaction
1823// RtSigpending
1824// RtSigprocmask
1825// RtSigqueueinfo
1826// RtSigreturn
1827// RtSigsuspend
1828// RtSigtimedwait
1829// SchedGetPriorityMax
1830// SchedGetPriorityMin
1831// SchedGetparam
1832// SchedGetscheduler
1833// SchedRrGetInterval
1834// SchedSetparam
1835// SchedYield
1836// Security
1837// Semctl
1838// Semget
1839// Semop
1840// Semtimedop
1841// SetMempolicy
1842// SetRobustList
1843// SetThreadArea
1844// SetTidAddress
1845// Shmat
1846// Shmctl
1847// Shmdt
1848// Shmget
1849// Sigaltstack
1850// Swapoff
1851// Swapon
1852// Sysfs
1853// TimerCreate
1854// TimerDelete
1855// TimerGetoverrun
1856// TimerGettime
1857// TimerSettime
1858// Timerfd
1859// Tkill (obsolete)
1860// Tuxcall
1861// Umount2
1862// Uselib
1863// Utimensat
1864// Vfork
1865// Vhangup
1866// Vserver
1867// Waitid
1868// _Sysctl