blob: 50aa1dac7dff6aac6263cdb24c263633f56fa900 [file] [log] [blame]
/*
* Copyright 2020-present Open Networking Foundation
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
//Package avcfg provides anig and vlan configuration functionality
package avcfg
import (
"context"
"encoding/binary"
"errors"
"fmt"
"net"
"strconv"
"sync"
"time"
meters "github.com/opencord/voltha-lib-go/v7/pkg/meters"
gp "github.com/google/gopacket"
"github.com/looplab/fsm"
"github.com/opencord/omci-lib-go/v2"
me "github.com/opencord/omci-lib-go/v2/generated"
"github.com/opencord/voltha-lib-go/v7/pkg/log"
cmn "github.com/opencord/voltha-openonu-adapter-go/internal/pkg/common"
"github.com/opencord/voltha-openonu-adapter-go/internal/pkg/devdb"
of "github.com/opencord/voltha-protos/v5/go/openflow_13"
)
const (
// internal predefined values
cDefaultDownstreamMode = 0
cDefaultTpid = 0x8100
cVtfdTableSize = 12 //as per G.988
cMaxAllowedFlows = cVtfdTableSize //which might be under discussion, for the moment connected to limit of VLAN's within VTFD
)
const (
// internal offsets for requestEvent according to definition in onu_device_entry::cmn.OnuDeviceEvent
cDeviceEventOffsetAddWithKvStore = 0 //OmciVlanFilterAddDone - OmciVlanFilterAddDone cannot use because of lint
cDeviceEventOffsetAddNoKvStore = cmn.OmciVlanFilterAddDoneNoKvStore - cmn.OmciVlanFilterAddDone
cDeviceEventOffsetRemoveWithKvStore = cmn.OmciVlanFilterRemDone - cmn.OmciVlanFilterAddDone
cDeviceEventOffsetRemoveNoKvStore = cmn.OmciVlanFilterRemDoneNoKvStore - cmn.OmciVlanFilterAddDone
)
const (
// bit mask offsets for EVTOCD VlanTaggingOperationTable related to 32 bits (4 bytes)
cFilterPrioOffset = 28
cFilterVidOffset = 15
cFilterTpidOffset = 12
cFilterEtherTypeOffset = 0
cTreatTTROffset = 30
cTreatPrioOffset = 16
cTreatVidOffset = 3
cTreatTpidOffset = 0
)
const (
// byte offsets for EVTOCD VlanTaggingOperationTable related to overall 16 byte size with slice byte 0 as first Byte (MSB)
cFilterOuterOffset = 0
cFilterInnerOffset = 4
cTreatOuterOffset = 8
cTreatInnerOffset = 12
)
const (
// basic values used within EVTOCD VlanTaggingOperationTable in respect to their bitfields
cPrioIgnoreTag uint32 = 15
cPrioDefaultFilter uint32 = 14
cPrioDoNotFilter uint32 = 8
cDoNotFilterVid uint32 = 4096
cDoNotFilterTPID uint32 = 0
cDoNotFilterEtherType uint32 = 0
cDoNotAddPrio uint32 = 15
cCopyPrioFromInner uint32 = 8
//cDontCarePrio uint32 = 0
cDontCareVid uint32 = 0
cDontCareTpid uint32 = 0
cSetOutputTpidCopyDei uint32 = 4
)
// events of config UNI port VLAN FSM
const (
VlanEvStart = "VlanEvStart"
VlanEvPrepareDone = "VlanEvPrepareDone"
VlanEvWaitTechProf = "VlanEvWaitTechProf"
VlanEvCancelOutstandingConfig = "VlanEvCancelOutstandingConfig"
VlanEvContinueConfig = "VlanEvContinueConfig"
VlanEvStartConfig = "VlanEvStartConfig"
VlanEvRxConfigVtfd = "VlanEvRxConfigVtfd"
VlanEvRxConfigEvtocd = "VlanEvRxConfigEvtocd"
VlanEvWaitTPIncr = "VlanEvWaitTPIncr"
VlanEvIncrFlowConfig = "VlanEvIncrFlowConfig"
VlanEvRenew = "VlanEvRenew"
VlanEvRemFlowConfig = "VlanEvRemFlowConfig"
VlanEvRemFlowDone = "VlanEvRemFlowDone"
VlanEvFlowDataRemoved = "VlanEvFlowDataRemoved"
//VlanEvTimeoutSimple = "VlanEvTimeoutSimple"
//VlanEvTimeoutMids = "VlanEvTimeoutMids"
VlanEvReset = "VlanEvReset"
VlanEvRestart = "VlanEvRestart"
VlanEvSkipOmciConfig = "VlanEvSkipOmciConfig"
VlanEvSkipIncFlowConfig = "VlanEvSkipIncFlowConfig"
)
// states of config UNI port VLAN FSM
const (
VlanStDisabled = "VlanStDisabled"
VlanStPreparing = "VlanStPreparing"
VlanStStarting = "VlanStStarting"
VlanStWaitingTechProf = "VlanStWaitingTechProf"
VlanStConfigVtfd = "VlanStConfigVtfd"
VlanStConfigEvtocd = "VlanStConfigEvtocd"
VlanStConfigDone = "VlanStConfigDone"
VlanStIncrFlowWaitTP = "VlanStIncrFlowWaitTP"
VlanStConfigIncrFlow = "VlanStConfigIncrFlow"
VlanStRemoveFlow = "VlanStRemoveFlow"
VlanStCleanupDone = "VlanStCleanupDone"
VlanStResetting = "VlanStResetting"
)
// CVlanFsmIdleState - TODO: add comment
const CVlanFsmIdleState = VlanStConfigDone // state where no OMCI activity is done (for a longer time)
// CVlanFsmConfiguredState - TODO: add comment
const CVlanFsmConfiguredState = VlanStConfigDone // state that indicates that at least some valid user related VLAN configuration should exist
type uniRemoveVlanFlowParams struct {
isSuspendedOnAdd bool
removeChannel chan bool
cookie uint64 //just the last cookie valid for removal
vlanRuleParams cmn.UniVlanRuleParams
respChan *chan error
}
//UniVlanConfigFsm defines the structure for the state machine for configuration of the VLAN related setting via OMCI
// builds upon 'VLAN rules' that are derived from multiple flows
type UniVlanConfigFsm struct {
pDeviceHandler cmn.IdeviceHandler
pOnuDeviceEntry cmn.IonuDeviceEntry
deviceID string
pOmciCC *cmn.OmciCC
pOnuUniPort *cmn.OnuUniPort
pUniTechProf *OnuUniTechProf
pOnuDB *devdb.OnuDeviceDB
requestEvent cmn.OnuDeviceEvent
omciMIdsResponseReceived chan bool //seperate channel needed for checking multiInstance OMCI message responses
PAdaptFsm *cmn.AdapterFsm
acceptIncrementalEvtoOption bool
isCanceled bool
isAwaitingResponse bool
mutexIsAwaitingResponse sync.RWMutex
mutexFlowParams sync.RWMutex
chCookieDeleted chan bool //channel to indicate that a specific cookie (related to the active rule) was deleted
actualUniFlowParam cmn.UniVlanFlowParams
uniVlanFlowParamsSlice []cmn.UniVlanFlowParams
uniRemoveFlowsSlice []uniRemoveVlanFlowParams
NumUniFlows uint8 // expected number of flows should be less than 12
ConfiguredUniFlow uint8
numRemoveFlows uint8
numVlanFilterEntries uint8
vlanFilterList [cVtfdTableSize]uint16
evtocdID uint16
mutexPLastTxMeInstance sync.RWMutex
pLastTxMeInstance *me.ManagedEntity
requestEventOffset uint8
TpIDWaitingFor uint8
signalOnFlowDelete bool
flowDeleteChannel chan<- bool
//cookie value that indicates that a rule to add is delayed by waiting for deletion of some other existing rule with the same cookie
delayNewRuleCookie uint64
// Used to indicate if the FSM is for a reconciling flow and if it's the last flow to be reconciled
// thus notification needs to be sent on chan.
lastFlowToReconcile bool
}
//NewUniVlanConfigFsm is the 'constructor' for the state machine to config the PON ANI ports
// of ONU UNI ports via OMCI
func NewUniVlanConfigFsm(ctx context.Context, apDeviceHandler cmn.IdeviceHandler, apOnuDeviceEntry cmn.IonuDeviceEntry, apDevOmciCC *cmn.OmciCC, apUniPort *cmn.OnuUniPort,
apUniTechProf *OnuUniTechProf, apOnuDB *devdb.OnuDeviceDB, aTechProfileID uint8,
aRequestEvent cmn.OnuDeviceEvent, aName string, aCommChannel chan cmn.Message, aAcceptIncrementalEvto bool,
aCookieSlice []uint64, aMatchVlan uint16, aSetVlan uint16, aSetPcp uint8, lastFlowToRec bool, aMeter *of.OfpMeterConfig, respChan *chan error) *UniVlanConfigFsm {
instFsm := &UniVlanConfigFsm{
pDeviceHandler: apDeviceHandler,
pOnuDeviceEntry: apOnuDeviceEntry,
deviceID: apDeviceHandler.GetDeviceID(),
pOmciCC: apDevOmciCC,
pOnuUniPort: apUniPort,
pUniTechProf: apUniTechProf,
pOnuDB: apOnuDB,
requestEvent: aRequestEvent,
acceptIncrementalEvtoOption: aAcceptIncrementalEvto,
NumUniFlows: 0,
ConfiguredUniFlow: 0,
numRemoveFlows: 0,
lastFlowToReconcile: lastFlowToRec,
}
instFsm.PAdaptFsm = cmn.NewAdapterFsm(aName, instFsm.deviceID, aCommChannel)
if instFsm.PAdaptFsm == nil {
logger.Errorw(ctx, "UniVlanConfigFsm's cmn.AdapterFsm could not be instantiated!!", log.Fields{
"device-id": instFsm.deviceID})
// Push response on the response channel
instFsm.pushReponseOnFlowResponseChannel(ctx, respChan, fmt.Errorf("adapter-fsm-could-not-be-instantiated"))
return nil
}
instFsm.PAdaptFsm.PFsm = fsm.NewFSM(
VlanStDisabled,
fsm.Events{
{Name: VlanEvStart, Src: []string{VlanStDisabled}, Dst: VlanStPreparing},
{Name: VlanEvPrepareDone, Src: []string{VlanStPreparing}, Dst: VlanStStarting},
{Name: VlanEvWaitTechProf, Src: []string{VlanStStarting}, Dst: VlanStWaitingTechProf},
{Name: VlanEvCancelOutstandingConfig, Src: []string{VlanStWaitingTechProf}, Dst: VlanStConfigDone},
{Name: VlanEvContinueConfig, Src: []string{VlanStWaitingTechProf}, Dst: VlanStConfigVtfd},
{Name: VlanEvStartConfig, Src: []string{VlanStStarting}, Dst: VlanStConfigVtfd},
{Name: VlanEvRxConfigVtfd, Src: []string{VlanStConfigVtfd}, Dst: VlanStConfigEvtocd},
{Name: VlanEvRxConfigEvtocd, Src: []string{VlanStConfigEvtocd, VlanStConfigIncrFlow},
Dst: VlanStConfigDone},
{Name: VlanEvRenew, Src: []string{VlanStConfigDone}, Dst: VlanStStarting},
{Name: VlanEvWaitTPIncr, Src: []string{VlanStConfigDone}, Dst: VlanStIncrFlowWaitTP},
{Name: VlanEvIncrFlowConfig, Src: []string{VlanStConfigDone, VlanStIncrFlowWaitTP},
Dst: VlanStConfigIncrFlow},
{Name: VlanEvRemFlowConfig, Src: []string{VlanStConfigDone}, Dst: VlanStRemoveFlow},
{Name: VlanEvRemFlowDone, Src: []string{VlanStRemoveFlow}, Dst: VlanStCleanupDone},
{Name: VlanEvFlowDataRemoved, Src: []string{VlanStCleanupDone}, Dst: VlanStConfigDone},
/*
{Name: VlanEvTimeoutSimple, Src: []string{
VlanStCreatingDot1PMapper, VlanStCreatingMBPCD, VlanStSettingTconts, VlanStSettingDot1PMapper}, Dst: VlanStStarting},
{Name: VlanEvTimeoutMids, Src: []string{
VlanStCreatingGemNCTPs, VlanStCreatingGemIWs, VlanStSettingPQs}, Dst: VlanStStarting},
*/
// exceptional treatment for all states except VlanStResetting
{Name: VlanEvReset, Src: []string{VlanStStarting, VlanStWaitingTechProf,
VlanStConfigVtfd, VlanStConfigEvtocd, VlanStConfigDone, VlanStConfigIncrFlow,
VlanStRemoveFlow, VlanStCleanupDone},
Dst: VlanStResetting},
// the only way to get to resource-cleared disabled state again is via "resseting"
{Name: VlanEvRestart, Src: []string{VlanStResetting}, Dst: VlanStDisabled},
// transitions for reconcile handling according to VOL-3834
{Name: VlanEvSkipOmciConfig, Src: []string{VlanStPreparing}, Dst: VlanStConfigDone},
{Name: VlanEvSkipOmciConfig, Src: []string{VlanStConfigDone}, Dst: VlanStConfigIncrFlow},
{Name: VlanEvSkipIncFlowConfig, Src: []string{VlanStConfigIncrFlow}, Dst: VlanStConfigDone},
},
fsm.Callbacks{
"enter_state": func(e *fsm.Event) { instFsm.PAdaptFsm.LogFsmStateChange(ctx, e) },
"enter_" + VlanStPreparing: func(e *fsm.Event) { instFsm.enterPreparing(ctx, e) },
"enter_" + VlanStStarting: func(e *fsm.Event) { instFsm.enterConfigStarting(ctx, e) },
"enter_" + VlanStConfigVtfd: func(e *fsm.Event) { instFsm.enterConfigVtfd(ctx, e) },
"enter_" + VlanStConfigEvtocd: func(e *fsm.Event) { instFsm.enterConfigEvtocd(ctx, e) },
"enter_" + VlanStConfigDone: func(e *fsm.Event) { instFsm.enterVlanConfigDone(ctx, e) },
"enter_" + VlanStConfigIncrFlow: func(e *fsm.Event) { instFsm.enterConfigIncrFlow(ctx, e) },
"enter_" + VlanStRemoveFlow: func(e *fsm.Event) { instFsm.enterRemoveFlow(ctx, e) },
"enter_" + VlanStCleanupDone: func(e *fsm.Event) { instFsm.enterVlanCleanupDone(ctx, e) },
"enter_" + VlanStResetting: func(e *fsm.Event) { instFsm.enterResetting(ctx, e) },
"enter_" + VlanStDisabled: func(e *fsm.Event) { instFsm.enterDisabled(ctx, e) },
},
)
if instFsm.PAdaptFsm.PFsm == nil {
logger.Errorw(ctx, "UniVlanConfigFsm's Base FSM could not be instantiated!!", log.Fields{
"device-id": instFsm.deviceID})
// Push response on the response channel
instFsm.pushReponseOnFlowResponseChannel(ctx, respChan, fmt.Errorf("adapter-base-fsm-could-not-be-instantiated"))
return nil
}
_ = instFsm.initUniFlowParams(ctx, aTechProfileID, aCookieSlice, aMatchVlan, aSetVlan, aSetPcp, aMeter, respChan)
logger.Debugw(ctx, "UniVlanConfigFsm created", log.Fields{"device-id": instFsm.deviceID,
"accIncrEvto": instFsm.acceptIncrementalEvtoOption})
return instFsm
}
//initUniFlowParams is a simplified form of SetUniFlowParams() used for first flow parameters configuration
func (oFsm *UniVlanConfigFsm) initUniFlowParams(ctx context.Context, aTpID uint8, aCookieSlice []uint64,
aMatchVlan uint16, aSetVlan uint16, aSetPcp uint8, aMeter *of.OfpMeterConfig, respChan *chan error) error {
loRuleParams := cmn.UniVlanRuleParams{
TpID: aTpID,
MatchVid: uint32(aMatchVlan),
SetVid: uint32(aSetVlan),
SetPcp: uint32(aSetPcp),
}
// some automatic adjustments on the filter/treat parameters as not specifically configured/ensured by flow configuration parameters
loRuleParams.TagsToRemove = 1 //one tag to remove as default setting
loRuleParams.MatchPcp = cPrioDoNotFilter // do not Filter on prio as default
if loRuleParams.SetVid == uint32(of.OfpVlanId_OFPVID_PRESENT) {
//then matchVlan is don't care and should be overwritten to 'transparent' here to avoid unneeded multiple flow entries
loRuleParams.MatchVid = uint32(of.OfpVlanId_OFPVID_PRESENT)
//TODO!!: maybe be needed to be re-checked at flow deletion (but assume all flows are always deleted togehther)
} else {
if !oFsm.acceptIncrementalEvtoOption {
//then matchVlan is don't care and should be overwritten to 'transparent' here to avoid unneeded multiple flow entries
loRuleParams.MatchVid = uint32(of.OfpVlanId_OFPVID_PRESENT)
}
}
if loRuleParams.MatchVid == uint32(of.OfpVlanId_OFPVID_PRESENT) {
// no prio/vid filtering requested
loRuleParams.TagsToRemove = 0 //no tag pop action
loRuleParams.MatchPcp = cPrioIgnoreTag // no vlan tag filtering
if loRuleParams.SetPcp == cCopyPrioFromInner {
//in case of no filtering and configured PrioCopy ensure default prio setting to 0
// which is required for stacking of untagged, but obviously also ensures prio setting for prio/singletagged
// might collide with NoMatchVid/CopyPrio(/setVid) setting
// this was some precondition setting taken over from py adapter ..
loRuleParams.SetPcp = 0
}
}
loFlowParams := cmn.UniVlanFlowParams{VlanRuleParams: loRuleParams, RespChan: respChan}
loFlowParams.CookieSlice = make([]uint64, 0)
loFlowParams.CookieSlice = append(loFlowParams.CookieSlice, aCookieSlice...)
if aMeter != nil {
loFlowParams.Meter = aMeter
}
//no mutex protection is required for initial access and adding the first flow is always possible
oFsm.uniVlanFlowParamsSlice = make([]cmn.UniVlanFlowParams, 0)
oFsm.uniVlanFlowParamsSlice = append(oFsm.uniVlanFlowParamsSlice, loFlowParams)
logger.Debugw(ctx, "first UniVlanConfigFsm flow added", log.Fields{
"Cookies": oFsm.uniVlanFlowParamsSlice[0].CookieSlice,
"MatchVid": strconv.FormatInt(int64(loRuleParams.MatchVid), 16),
"SetVid": strconv.FormatInt(int64(loRuleParams.SetVid), 16),
"SetPcp": loRuleParams.SetPcp,
"device-id": oFsm.deviceID, "uni-id": oFsm.pOnuUniPort.UniID})
if oFsm.pDeviceHandler.IsSkipOnuConfigReconciling() {
oFsm.reconcileVlanFilterList(ctx, uint16(loRuleParams.SetVid))
}
//cmp also usage in EVTOCDE create in omci_cc
oFsm.evtocdID = cmn.MacBridgeServiceProfileEID + uint16(oFsm.pOnuUniPort.MacBpNo)
oFsm.NumUniFlows = 1
oFsm.uniRemoveFlowsSlice = make([]uniRemoveVlanFlowParams, 0) //initially nothing to remove
//permanently store flow config for reconcile case
if err := oFsm.pDeviceHandler.StorePersUniFlowConfig(ctx, oFsm.pOnuUniPort.UniID,
&oFsm.uniVlanFlowParamsSlice, true); err != nil {
logger.Errorw(ctx, err.Error(), log.Fields{"device-id": oFsm.deviceID})
return err
}
return nil
}
//CancelProcessing ensures that suspended processing at waiting on some response is aborted and reset of FSM
func (oFsm *UniVlanConfigFsm) CancelProcessing(ctx context.Context) {
if oFsm == nil {
logger.Error(ctx, "no valid UniVlanConfigFsm!")
return
}
//mutex protection is required for possible concurrent access to FSM members
oFsm.mutexIsAwaitingResponse.Lock()
oFsm.isCanceled = true
if oFsm.isAwaitingResponse {
//attention: for an unbuffered channel the sender is blocked until the value is received (processed)!
// accordingly the mutex must be released before sending to channel here (mutex acquired in receiver)
oFsm.mutexIsAwaitingResponse.Unlock()
//use channel to indicate that the response waiting shall be aborted
oFsm.omciMIdsResponseReceived <- false
} else {
oFsm.mutexIsAwaitingResponse.Unlock()
}
// in any case (even if it might be automatically requested by above cancellation of waiting) ensure resetting the FSM
PAdaptFsm := oFsm.PAdaptFsm
if PAdaptFsm != nil {
if fsmErr := PAdaptFsm.PFsm.Event(VlanEvReset); fsmErr != nil {
logger.Errorw(ctx, "reset-event failed in UniVlanConfigFsm!",
log.Fields{"fsmState": oFsm.PAdaptFsm.PFsm.Current(), "error": fsmErr, "device-id": oFsm.deviceID})
}
}
}
//GetWaitingTpID returns the TpId that the FSM might be waiting for continuation (0 if none)
func (oFsm *UniVlanConfigFsm) GetWaitingTpID(ctx context.Context) uint8 {
if oFsm == nil {
logger.Error(ctx, "no valid UniVlanConfigFsm!")
return 0
}
//mutex protection is required for possible concurrent access to FSM members
oFsm.mutexFlowParams.RLock()
defer oFsm.mutexFlowParams.RUnlock()
return oFsm.TpIDWaitingFor
}
//SetUniFlowParams verifies on existence of flow parameters to be configured,
// optionally udates the cookie list or appends a new flow if there is space
// if possible the FSM is trigggerd to start with the processing
// ignore complexity by now
// nolint: gocyclo
func (oFsm *UniVlanConfigFsm) SetUniFlowParams(ctx context.Context, aTpID uint8, aCookieSlice []uint64,
aMatchVlan uint16, aSetVlan uint16, aSetPcp uint8, lastFlowToReconcile bool, aMeter *of.OfpMeterConfig, respChan *chan error) error {
if oFsm == nil {
logger.Error(ctx, "no valid UniVlanConfigFsm!")
return fmt.Errorf("no-valid-UniVlanConfigFsm")
}
loRuleParams := cmn.UniVlanRuleParams{
TpID: aTpID,
MatchVid: uint32(aMatchVlan),
SetVid: uint32(aSetVlan),
SetPcp: uint32(aSetPcp),
}
var err error
// some automatic adjustments on the filter/treat parameters as not specifically configured/ensured by flow configuration parameters
loRuleParams.TagsToRemove = 1 //one tag to remove as default setting
loRuleParams.MatchPcp = cPrioDoNotFilter // do not Filter on prio as default
if loRuleParams.SetVid == uint32(of.OfpVlanId_OFPVID_PRESENT) {
//then matchVlan is don't care and should be overwritten to 'transparent' here to avoid unneeded multiple flow entries
loRuleParams.MatchVid = uint32(of.OfpVlanId_OFPVID_PRESENT)
//TODO!!: maybe be needed to be re-checked at flow deletion (but assume all flows are always deleted togehther)
} else {
if !oFsm.acceptIncrementalEvtoOption {
//then matchVlan is don't care and should be overwritten to 'transparent' here to avoid unneeded multiple flow entries
loRuleParams.MatchVid = uint32(of.OfpVlanId_OFPVID_PRESENT)
}
}
if loRuleParams.MatchVid == uint32(of.OfpVlanId_OFPVID_PRESENT) {
// no prio/vid filtering requested
loRuleParams.TagsToRemove = 0 //no tag pop action
loRuleParams.MatchPcp = cPrioIgnoreTag // no vlan tag filtering
if loRuleParams.SetPcp == cCopyPrioFromInner {
//in case of no filtering and configured PrioCopy ensure default prio setting to 0
// which is required for stacking of untagged, but obviously also ensures prio setting for prio/singletagged
// might collide with NoMatchVid/CopyPrio(/setVid) setting
// this was some precondition setting taken over from py adapter ..
loRuleParams.SetPcp = 0
}
}
//check if there is some ongoing delete-request running for this flow. If so, block here until this is finished.
// might be accordingly rwCore processing runs into timeout in specific situations - needs to be observed ...
// this is to protect uniVlanFlowParams from adding new or re-writing the same cookie to the rule currently under deletion
oFsm.mutexFlowParams.RLock()
if len(oFsm.uniRemoveFlowsSlice) > 0 {
for flow, removeUniFlowParams := range oFsm.uniRemoveFlowsSlice {
if removeUniFlowParams.vlanRuleParams == loRuleParams {
// the flow to add is the same as the one already in progress of deleting
logger.Infow(ctx, "UniVlanConfigFsm flow setting - suspending rule-add due to ongoing removal", log.Fields{
"device-id": oFsm.deviceID, "cookie": removeUniFlowParams.cookie, "remove-index": flow})
if flow >= len(oFsm.uniRemoveFlowsSlice) {
logger.Errorw(ctx, "abort UniVlanConfigFsm flow add - inconsistent RemoveFlowsSlice", log.Fields{
"device-id": oFsm.deviceID, "slice length": len(oFsm.uniRemoveFlowsSlice)})
oFsm.mutexFlowParams.RUnlock()
err = fmt.Errorf("abort UniVlanConfigFsm flow add - inconsistent RemoveFlowsSlice %s", oFsm.deviceID)
oFsm.pushReponseOnFlowResponseChannel(ctx, respChan, err)
return err
}
pRemoveParams := &oFsm.uniRemoveFlowsSlice[flow] //wants to modify the uniRemoveFlowsSlice element directly!
oFsm.mutexFlowParams.RUnlock()
if err := oFsm.suspendAddRule(ctx, pRemoveParams); err != nil {
logger.Errorw(ctx, "UniVlanConfigFsm suspension on add aborted - abort complete add-request", log.Fields{
"device-id": oFsm.deviceID, "cookie": removeUniFlowParams.cookie})
err = fmt.Errorf("abort UniVlanConfigFsm suspension on add %s", oFsm.deviceID)
oFsm.pushReponseOnFlowResponseChannel(ctx, respChan, err)
return err
}
oFsm.mutexFlowParams.RLock()
break //this specific rule should only exist once per uniRemoveFlowsSlice
}
}
}
oFsm.mutexFlowParams.RUnlock()
flowEntryMatch := false
flowCookieModify := false
requestAppendRule := false
oFsm.lastFlowToReconcile = lastFlowToReconcile
//mutex protection is required for possible concurrent access to FSM members
oFsm.mutexFlowParams.Lock()
for flow, storedUniFlowParams := range oFsm.uniVlanFlowParamsSlice {
//TODO: Verify if using e.g. hashes for the structures here for comparison may generate
// countable run time optimization (perhaps with including the hash in kvStore storage?)
if storedUniFlowParams.VlanRuleParams == loRuleParams {
flowEntryMatch = true
logger.Debugw(ctx, "UniVlanConfigFsm flow setting - rule already exists", log.Fields{
"MatchVid": strconv.FormatInt(int64(loRuleParams.MatchVid), 16),
"SetVid": strconv.FormatInt(int64(loRuleParams.SetVid), 16),
"SetPcp": loRuleParams.SetPcp,
"device-id": oFsm.deviceID, " uni-id": oFsm.pOnuUniPort.UniID})
var cookieMatch bool
for _, newCookie := range aCookieSlice { // for all cookies available in the arguments
cookieMatch = false
for _, cookie := range storedUniFlowParams.CookieSlice {
if cookie == newCookie {
logger.Debugw(ctx, "UniVlanConfigFsm flow setting - and cookie already exists", log.Fields{
"device-id": oFsm.deviceID, "cookie": cookie})
cookieMatch = true
break //found new cookie - no further search for this requested cookie
}
}
if !cookieMatch {
delayedCookie := oFsm.delayNewRuleForCookie(ctx, aCookieSlice)
if delayedCookie != 0 {
//a delay for adding the cookie to this rule is requested
// take care of the mutex which is already locked here, need to unlock/lock accordingly to prevent deadlock in suspension
oFsm.mutexFlowParams.Unlock()
if deleteSuccess := oFsm.suspendNewRule(ctx); !deleteSuccess {
logger.Errorw(ctx, "UniVlanConfigFsm suspended add-cookie-to-rule aborted", log.Fields{
"device-id": oFsm.deviceID, "cookie": delayedCookie})
err = fmt.Errorf(" UniVlanConfigFsm suspended add-cookie-to-rule aborted %s", oFsm.deviceID)
oFsm.pushReponseOnFlowResponseChannel(ctx, respChan, err)
return err
}
flowCookieModify, requestAppendRule = oFsm.reviseFlowConstellation(ctx, delayedCookie, loRuleParams)
oFsm.mutexFlowParams.Lock()
} else {
logger.Debugw(ctx, "UniVlanConfigFsm flow setting -adding new cookie", log.Fields{
"device-id": oFsm.deviceID, "cookie": newCookie})
//as range works with copies of the slice we have to write to the original slice!!
oFsm.uniVlanFlowParamsSlice[flow].CookieSlice = append(oFsm.uniVlanFlowParamsSlice[flow].CookieSlice,
newCookie)
flowCookieModify = true
}
}
} //for all new cookies
break // found rule - no further rule search
}
}
oFsm.mutexFlowParams.Unlock()
if !flowEntryMatch { //it is (was) a new rule
delayedCookie, deleteSuccess := oFsm.suspendIfRequiredNewRule(ctx, aCookieSlice)
if !deleteSuccess {
logger.Errorw(ctx, "UniVlanConfigFsm suspended add-new-rule aborted", log.Fields{
"device-id": oFsm.deviceID, "cookie": delayedCookie})
err = fmt.Errorf(" UniVlanConfigFsm suspended add-new-rule aborted %s", oFsm.deviceID)
oFsm.pushReponseOnFlowResponseChannel(ctx, respChan, err)
return err
}
requestAppendRule = true //default assumption here is that rule is to be appended
flowCookieModify = true //and that the the flow data base is to be updated
if delayedCookie != 0 { //it was suspended
flowCookieModify, requestAppendRule = oFsm.reviseFlowConstellation(ctx, delayedCookie, loRuleParams)
}
}
kvStoreWrite := false //default setting is to not write to kvStore immediately - will be done on FSM execution finally
if requestAppendRule {
oFsm.mutexFlowParams.Lock()
if oFsm.NumUniFlows < cMaxAllowedFlows {
loFlowParams := cmn.UniVlanFlowParams{VlanRuleParams: loRuleParams, RespChan: respChan}
loFlowParams.CookieSlice = make([]uint64, 0)
loFlowParams.CookieSlice = append(loFlowParams.CookieSlice, aCookieSlice...)
if aMeter != nil {
loFlowParams.Meter = aMeter
}
oFsm.uniVlanFlowParamsSlice = append(oFsm.uniVlanFlowParamsSlice, loFlowParams)
logger.Debugw(ctx, "UniVlanConfigFsm flow add", log.Fields{
"Cookies": oFsm.uniVlanFlowParamsSlice[oFsm.NumUniFlows].CookieSlice,
"MatchVid": strconv.FormatInt(int64(loRuleParams.MatchVid), 16),
"SetVid": strconv.FormatInt(int64(loRuleParams.SetVid), 16),
"SetPcp": loRuleParams.SetPcp, "numberofFlows": oFsm.NumUniFlows + 1,
"device-id": oFsm.deviceID, "uni-id": oFsm.pOnuUniPort.UniID})
if oFsm.pDeviceHandler.IsSkipOnuConfigReconciling() {
oFsm.reconcileVlanFilterList(ctx, uint16(loRuleParams.SetVid))
}
oFsm.NumUniFlows++
pConfigVlanStateBaseFsm := oFsm.PAdaptFsm.PFsm
if oFsm.pDeviceHandler.IsSkipOnuConfigReconciling() {
logger.Debugw(ctx, "reconciling - skip omci-config of additional vlan rule",
log.Fields{"fsmState": oFsm.PAdaptFsm.PFsm.Current(), "device-id": oFsm.deviceID})
//attention: take care to release the mutexFlowParams when calling the FSM directly -
// synchronous FSM 'event/state' functions may rely on this mutex
oFsm.mutexFlowParams.Unlock()
if pConfigVlanStateBaseFsm.Is(VlanStConfigDone) {
if fsmErr := pConfigVlanStateBaseFsm.Event(VlanEvSkipOmciConfig); fsmErr != nil {
logger.Errorw(ctx, "error in FsmEvent handling UniVlanConfigFsm!",
log.Fields{"fsmState": oFsm.PAdaptFsm.PFsm.Current(), "error": fsmErr, "device-id": oFsm.deviceID})
err = fsmErr
oFsm.pushReponseOnFlowResponseChannel(ctx, respChan, err)
return err
}
}
return nil
}
// note: theoretical it would be possible to clear the same rule from the remove slice
// (for entries that have not yet been started with removal)
// but that is getting quite complicated - maybe a future optimization in case it should prove reasonable
// anyway the precondition here is that the FSM checks for rules to delete first and adds new rules afterwards
if pConfigVlanStateBaseFsm.Is(VlanStConfigDone) {
//have to re-trigger the FSM to proceed with outstanding incremental flow configuration
if oFsm.ConfiguredUniFlow == 0 {
// this is a restart with a complete new flow, we can re-use the initial flow config control
// including the check, if the related techProfile is (still) available (probably also removed in between)
//attention: take care to release the mutexFlowParams when calling the FSM directly -
// synchronous FSM 'event/state' functions may rely on this mutex
oFsm.mutexFlowParams.Unlock()
if fsmErr := pConfigVlanStateBaseFsm.Event(VlanEvRenew); fsmErr != nil {
logger.Errorw(ctx, "error in FsmEvent handling UniVlanConfigFsm!",
log.Fields{"fsmState": pConfigVlanStateBaseFsm.Current(), "error": fsmErr, "device-id": oFsm.deviceID})
}
} else {
//some further flows are to be configured
//store the actual rule that shall be worked upon in the following transient states
if len(oFsm.uniVlanFlowParamsSlice) < int(oFsm.ConfiguredUniFlow) {
//check introduced after having observed some panic here
logger.Errorw(ctx, "error in FsmEvent handling UniVlanConfigFsm - inconsistent counter",
log.Fields{"ConfiguredUniFlow": oFsm.ConfiguredUniFlow,
"sliceLen": len(oFsm.uniVlanFlowParamsSlice), "device-id": oFsm.deviceID})
oFsm.mutexFlowParams.Unlock()
err = fmt.Errorf("abort UniVlanConfigFsm on add due to internal counter mismatch %s", oFsm.deviceID)
oFsm.pushReponseOnFlowResponseChannel(ctx, respChan, err)
return err
}
oFsm.actualUniFlowParam = oFsm.uniVlanFlowParamsSlice[oFsm.ConfiguredUniFlow]
//tpId of the next rule to be configured
tpID := oFsm.actualUniFlowParam.VlanRuleParams.TpID
oFsm.TpIDWaitingFor = tpID
loSetVlan := oFsm.actualUniFlowParam.VlanRuleParams.SetVid
//attention: take care to release the mutexFlowParams when calling the FSM directly -
// synchronous FSM 'event/state' functions may rely on this mutex
// but it must be released already before calling getTechProfileDone() as it may already be locked
// by the techProfile processing call to VlanFsm.IsFlowRemovePending() (see VOL-4207)
oFsm.mutexFlowParams.Unlock()
loTechProfDone := oFsm.pUniTechProf.getTechProfileDone(ctx, oFsm.pOnuUniPort.UniID, tpID)
logger.Debugw(ctx, "UniVlanConfigFsm - incremental config request (on setConfig)", log.Fields{
"device-id": oFsm.deviceID, "uni-id": oFsm.pOnuUniPort.UniID,
"set-Vlan": loSetVlan, "tp-id": tpID, "ProfDone": loTechProfDone})
var fsmErr error
if loTechProfDone {
// let the vlan processing continue with next rule
fsmErr = pConfigVlanStateBaseFsm.Event(VlanEvIncrFlowConfig)
} else {
// set to waiting for Techprofile
fsmErr = pConfigVlanStateBaseFsm.Event(VlanEvWaitTPIncr)
}
if fsmErr != nil {
logger.Errorw(ctx, "error in FsmEvent handling UniVlanConfigFsm!",
log.Fields{"fsmState": pConfigVlanStateBaseFsm.Current(), "error": fsmErr, "device-id": oFsm.deviceID})
oFsm.pushReponseOnFlowResponseChannel(ctx, respChan, fsmErr)
return fsmErr
}
}
} else {
// if not in the appropriate state a new entry will be automatically considered later
// when the configDone state is reached
oFsm.mutexFlowParams.Unlock()
}
} else {
logger.Errorw(ctx, "UniVlanConfigFsm flow limit exceeded", log.Fields{
"device-id": oFsm.deviceID, "flow-number": oFsm.NumUniFlows})
oFsm.mutexFlowParams.Unlock()
err = fmt.Errorf(" UniVlanConfigFsm flow limit exceeded %s", oFsm.deviceID)
oFsm.pushReponseOnFlowResponseChannel(ctx, respChan, err)
return err
}
} else {
// no activity within the FSM for OMCI processing, the deviceReason may be updated immediately
kvStoreWrite = true // ensure actual data write to kvStore immediately (no FSM activity)
// push response on response channel as there is nothing to be done for this flow
oFsm.pushReponseOnFlowResponseChannel(ctx, respChan, nil)
oFsm.mutexFlowParams.RLock()
if oFsm.NumUniFlows == oFsm.ConfiguredUniFlow {
//all requested rules really have been configured
// state transition notification is checked in deviceHandler
oFsm.mutexFlowParams.RUnlock()
if oFsm.pDeviceHandler != nil {
//also the related TechProfile was already configured
logger.Debugw(ctx, "UniVlanConfigFsm rule already set - send immediate add-success event for reason update", log.Fields{
"device-id": oFsm.deviceID})
// success indication without the need to write to kvStore (done already below with updated data from StorePersUniFlowConfig())
go oFsm.pDeviceHandler.DeviceProcStatusUpdate(ctx, cmn.OnuDeviceEvent(oFsm.requestEvent+cDeviceEventOffsetAddNoKvStore))
}
} else {
// avoid device reason update as the rule config connected to this flow may still be in progress
// and the device reason should only be updated on success of rule config
logger.Debugw(ctx, "UniVlanConfigFsm rule already set but configuration ongoing, suppress early add-success event for reason update",
log.Fields{"device-id": oFsm.deviceID,
"NumberofRules": oFsm.NumUniFlows, "Configured rules": oFsm.ConfiguredUniFlow})
oFsm.mutexFlowParams.RUnlock()
}
}
if flowCookieModify { // some change was done to the flow entries
//permanently store flow config for reconcile case
oFsm.mutexFlowParams.RLock()
if err := oFsm.pDeviceHandler.StorePersUniFlowConfig(ctx, oFsm.pOnuUniPort.UniID,
&oFsm.uniVlanFlowParamsSlice, kvStoreWrite); err != nil {
oFsm.mutexFlowParams.RUnlock()
logger.Errorw(ctx, err.Error(), log.Fields{"device-id": oFsm.deviceID})
return err
}
oFsm.mutexFlowParams.RUnlock()
}
return nil
}
func (oFsm *UniVlanConfigFsm) suspendAddRule(ctx context.Context, apRemoveFlowParams *uniRemoveVlanFlowParams) error {
oFsm.mutexFlowParams.Lock()
deleteChannel := apRemoveFlowParams.removeChannel
apRemoveFlowParams.isSuspendedOnAdd = true
oFsm.mutexFlowParams.Unlock()
// isSuspendedOnAdd is not reset here-after as the assumption is, that after
select {
case success := <-deleteChannel:
//no need to reset isSuspendedOnAdd as in this case the removeElement will be deleted completely
if success {
logger.Infow(ctx, "resume adding this rule after having completed deletion", log.Fields{
"device-id": oFsm.deviceID})
return nil
}
return fmt.Errorf("suspend aborted, also aborting add-activity: %s", oFsm.deviceID)
case <-time.After(oFsm.pOmciCC.GetMaxOmciTimeoutWithRetries() * time.Second):
oFsm.mutexFlowParams.Lock()
if apRemoveFlowParams != nil {
apRemoveFlowParams.isSuspendedOnAdd = false
}
oFsm.mutexFlowParams.Unlock()
logger.Errorw(ctx, "timeout waiting for deletion of rule, also aborting add-activity", log.Fields{
"device-id": oFsm.deviceID})
return fmt.Errorf("suspend aborted on timeout, also aborting add-activity: %s", oFsm.deviceID)
}
}
// VOL-3828 flow config sequence workaround ########### start ##########
func (oFsm *UniVlanConfigFsm) delayNewRuleForCookie(ctx context.Context, aCookieSlice []uint64) uint64 {
//assumes mutexFlowParams.Lock() protection from caller!
if oFsm.delayNewRuleCookie == 0 && len(aCookieSlice) == 1 {
// if not already waiting, limitation for this workaround is to just have one overlapping cookie/rule
// suspend check is done only if there is only one cookie in the request
// background: more elements only expected in reconcile use case, where no conflicting sequence is to be expected
newCookie := aCookieSlice[0]
for _, storedUniFlowParams := range oFsm.uniVlanFlowParamsSlice {
for _, cookie := range storedUniFlowParams.CookieSlice {
if cookie == newCookie {
logger.Debugw(ctx, "UniVlanConfigFsm flow setting - new cookie still exists for some rule", log.Fields{
"device-id": oFsm.deviceID, "cookie": cookie, "exists with SetVlan": storedUniFlowParams.VlanRuleParams.SetVid})
oFsm.delayNewRuleCookie = newCookie
return newCookie //found new cookie in some existing rule
}
} // for all stored cookies of the actual inspected rule
} //for all rules
}
return 0 //no delay requested
}
func (oFsm *UniVlanConfigFsm) suspendNewRule(ctx context.Context) bool {
oFsm.mutexFlowParams.RLock()
logger.Infow(ctx, "Need to suspend adding this rule as long as the cookie is still connected to some other rule", log.Fields{
"device-id": oFsm.deviceID, "cookie": oFsm.delayNewRuleCookie})
oFsm.mutexFlowParams.RUnlock()
cookieDeleted := true //default assumption also for timeout (just try to continue as if removed)
select {
case cookieDeleted = <-oFsm.chCookieDeleted:
logger.Infow(ctx, "resume adding this rule after having deleted cookie in some other rule or abort", log.Fields{
"device-id": oFsm.deviceID, "cookie": oFsm.delayNewRuleCookie, "deleted": cookieDeleted})
case <-time.After(oFsm.pOmciCC.GetMaxOmciTimeoutWithRetries() * time.Second):
logger.Errorw(ctx, "timeout waiting for deletion of cookie in some other rule, just try to continue", log.Fields{
"device-id": oFsm.deviceID, "cookie": oFsm.delayNewRuleCookie})
}
oFsm.mutexFlowParams.Lock()
oFsm.delayNewRuleCookie = 0
oFsm.mutexFlowParams.Unlock()
return cookieDeleted
}
func (oFsm *UniVlanConfigFsm) suspendIfRequiredNewRule(ctx context.Context, aCookieSlice []uint64) (uint64, bool) {
oFsm.mutexFlowParams.Lock()
delayedCookie := oFsm.delayNewRuleForCookie(ctx, aCookieSlice)
oFsm.mutexFlowParams.Unlock()
deleteSuccess := true
if delayedCookie != 0 {
deleteSuccess = oFsm.suspendNewRule(ctx)
}
return delayedCookie, deleteSuccess
}
//returns flowModified, RuleAppendRequest
func (oFsm *UniVlanConfigFsm) reviseFlowConstellation(ctx context.Context, aCookie uint64, aUniVlanRuleParams cmn.UniVlanRuleParams) (bool, bool) {
flowEntryMatch := false
oFsm.mutexFlowParams.Lock()
defer oFsm.mutexFlowParams.Unlock()
for flow, storedUniFlowParams := range oFsm.uniVlanFlowParamsSlice {
if storedUniFlowParams.VlanRuleParams == aUniVlanRuleParams {
flowEntryMatch = true
logger.Debugw(ctx, "UniVlanConfigFsm flow revise - rule already exists", log.Fields{
"device-id": oFsm.deviceID})
cookieMatch := false
for _, cookie := range storedUniFlowParams.CookieSlice {
if cookie == aCookie {
logger.Debugw(ctx, "UniVlanConfigFsm flow revise - and cookie already exists", log.Fields{
"device-id": oFsm.deviceID, "cookie": cookie})
cookieMatch = true
break //found new cookie - no further search for this requested cookie
}
}
if !cookieMatch {
logger.Debugw(ctx, "UniVlanConfigFsm flow revise -adding new cookie", log.Fields{
"device-id": oFsm.deviceID, "cookie": aCookie})
//as range works with copies of the slice we have to write to the original slice!!
oFsm.uniVlanFlowParamsSlice[flow].CookieSlice = append(oFsm.uniVlanFlowParamsSlice[flow].CookieSlice,
aCookie)
return true, false //flowModified, NoRuleAppend
}
break // found rule - no further rule search
}
}
if !flowEntryMatch { //it is a new rule
return true, true //flowModified, RuleAppend
}
return false, false //flowNotModified, NoRuleAppend
}
// VOL-3828 flow config sequence workaround ########### end ##########
//RemoveUniFlowParams verifies on existence of flow cookie,
// if found removes cookie from flow cookie list and if this is empty
// initiates removal of the flow related configuration from the ONU (via OMCI)
func (oFsm *UniVlanConfigFsm) RemoveUniFlowParams(ctx context.Context, aCookie uint64, respChan *chan error) error {
if oFsm == nil {
logger.Error(ctx, "no valid UniVlanConfigFsm!")
return fmt.Errorf("no-valid-UniVlanConfigFsm")
}
var deletedCookie uint64
flowCookieMatch := false
//mutex protection is required for possible concurrent access to FSM members
oFsm.mutexFlowParams.Lock()
defer oFsm.mutexFlowParams.Unlock()
remove_loop:
for flow, storedUniFlowParams := range oFsm.uniVlanFlowParamsSlice {
for i, cookie := range storedUniFlowParams.CookieSlice {
if cookie == aCookie {
logger.Debugw(ctx, "UniVlanConfigFsm flow removal - cookie found", log.Fields{
"device-id": oFsm.deviceID, "cookie": cookie})
deletedCookie = aCookie
//remove the cookie from the cookie slice and verify it is getting empty
if len(storedUniFlowParams.CookieSlice) == 1 {
// had to shift content to function due to sca complexity
flowCookieMatch = oFsm.removeRuleComplete(ctx, storedUniFlowParams, aCookie, respChan)
//persistencyData write is now part of removeRuleComplete() (on success)
} else {
flowCookieMatch = true
//cut off the requested cookie by slicing out this element
oFsm.uniVlanFlowParamsSlice[flow].CookieSlice = append(
oFsm.uniVlanFlowParamsSlice[flow].CookieSlice[:i],
oFsm.uniVlanFlowParamsSlice[flow].CookieSlice[i+1:]...)
// no activity within the FSM for OMCI processing, the deviceReason may be updated immediately
// state transition notification is checked in deviceHandler
if oFsm.pDeviceHandler != nil {
// success indication without the need to write to kvStore (done already below with updated data from StorePersUniFlowConfig())
go oFsm.pDeviceHandler.DeviceProcStatusUpdate(ctx, cmn.OnuDeviceEvent(oFsm.requestEvent+cDeviceEventOffsetRemoveNoKvStore))
}
logger.Debugw(ctx, "UniVlanConfigFsm flow removal - rule persists with still valid cookies", log.Fields{
"device-id": oFsm.deviceID, "cookies": oFsm.uniVlanFlowParamsSlice[flow].CookieSlice})
if deletedCookie == oFsm.delayNewRuleCookie {
//the delayedNewCookie is the one that is currently deleted, but the rule still exist with other cookies
//as long as there are further cookies for this rule indicate there is still some cookie to be deleted
//simply use the first one
oFsm.delayNewRuleCookie = oFsm.uniVlanFlowParamsSlice[flow].CookieSlice[0]
logger.Debugw(ctx, "UniVlanConfigFsm remaining cookie awaited for deletion before new rule add", log.Fields{
"device-id": oFsm.deviceID, "cookie": oFsm.delayNewRuleCookie})
}
// Push response on the response channel
oFsm.pushReponseOnFlowResponseChannel(ctx, respChan, nil)
//permanently store the modified flow config for reconcile case and immediately write to KvStore
if oFsm.pDeviceHandler != nil {
if err := oFsm.pDeviceHandler.StorePersUniFlowConfig(ctx, oFsm.pOnuUniPort.UniID,
&oFsm.uniVlanFlowParamsSlice, true); err != nil {
logger.Errorw(ctx, err.Error(), log.Fields{"device-id": oFsm.deviceID})
return err
}
}
}
break remove_loop //found the cookie - no further search for this requested cookie
}
}
} //search all flows
if !flowCookieMatch { //some cookie remove-request for a cookie that does not exist in the FSM data
logger.Warnw(ctx, "UniVlanConfigFsm flow removal - remove-cookie not found", log.Fields{
"device-id": oFsm.deviceID, "remove-cookie": aCookie})
// but accept the request with success as no such cookie (flow) does exist
// no activity within the FSM for OMCI processing, the deviceReason may be updated immediately
// state transition notification is checked in deviceHandler
if oFsm.pDeviceHandler != nil {
// success indication without the need to write to kvStore (no change)
go oFsm.pDeviceHandler.DeviceProcStatusUpdate(ctx, cmn.OnuDeviceEvent(oFsm.requestEvent+cDeviceEventOffsetRemoveNoKvStore))
}
// Push response on the response channel
oFsm.pushReponseOnFlowResponseChannel(ctx, respChan, nil)
return nil
} //unknown cookie
return nil
}
// removeRuleComplete initiates the complete removal of a VLAN rule (from single cookie element)
// requires mutexFlowParams to be locked at call
func (oFsm *UniVlanConfigFsm) removeRuleComplete(ctx context.Context,
aUniFlowParams cmn.UniVlanFlowParams, aCookie uint64, respChan *chan error) bool {
pConfigVlanStateBaseFsm := oFsm.PAdaptFsm.PFsm
var cancelPendingConfig bool = false
var loRemoveParams uniRemoveVlanFlowParams = uniRemoveVlanFlowParams{}
logger.Debugw(ctx, "UniVlanConfigFsm flow removal - full flow removal", log.Fields{
"device-id": oFsm.deviceID})
//rwCore flow recovery may be the reason for this delete, in which case the flowToBeDeleted may be the same
// as the one still waiting in the FSM as toAdd but waiting for TechProfileConfig
// so we have to check if we have to abort the outstanding AddRequest and regard the current DelRequest as done
// if the Fsm is in some other transient (config) state, we will reach the DelRequest later and correctly process it then
if pConfigVlanStateBaseFsm.Is(VlanStWaitingTechProf) {
logger.Debugw(ctx, "UniVlanConfigFsm was waiting for TechProf config with add-request, just aborting the outstanding add",
log.Fields{"device-id": oFsm.deviceID})
cancelPendingConfig = true
} else {
//create a new element for the removeVlanFlow slice
loRemoveParams = uniRemoveVlanFlowParams{
vlanRuleParams: aUniFlowParams.VlanRuleParams,
cookie: aCookie,
respChan: respChan,
}
loRemoveParams.removeChannel = make(chan bool)
oFsm.uniRemoveFlowsSlice = append(oFsm.uniRemoveFlowsSlice, loRemoveParams)
}
usedTpID := aUniFlowParams.VlanRuleParams.TpID
if len(oFsm.uniVlanFlowParamsSlice) <= 1 {
//at this point it is evident that no flow anymore will refer to a still possibly active Techprofile
//request that this profile gets deleted before a new flow add is allowed (except for some aborted add)
if !cancelPendingConfig {
// ensure mutexFlowParams not locked before calling some TPProcessing activity (that might already be pending on it)
oFsm.mutexFlowParams.Unlock()
logger.Debugw(ctx, "UniVlanConfigFsm flow removal requested - set TechProfile to-delete", log.Fields{
"device-id": oFsm.deviceID})
if oFsm.pUniTechProf != nil {
oFsm.pUniTechProf.SetProfileToDelete(oFsm.pOnuUniPort.UniID, usedTpID, true)
}
oFsm.mutexFlowParams.Lock()
}
} else {
if !cancelPendingConfig {
oFsm.updateTechProfileToDelete(ctx, usedTpID)
}
}
//trigger the FSM to remove the relevant rule
if cancelPendingConfig {
//as the uniFlow parameters are already stored (for add) but no explicit removal is done anymore
// the paramSlice has to be updated with rule-removal, which also then updates NumUniFlows
//call from 'non-configured' state of the rules
if err := oFsm.removeFlowFromParamsSlice(ctx, aCookie, false); err != nil {
//something quite inconsistent detected, perhaps just try to recover with FSM reset
oFsm.mutexFlowParams.Unlock()
if fsmErr := pConfigVlanStateBaseFsm.Event(VlanEvReset); fsmErr != nil {
logger.Errorw(ctx, "error in FsmEvent handling UniVlanConfigFsm!",
log.Fields{"fsmState": pConfigVlanStateBaseFsm.Current(), "error": fsmErr, "device-id": oFsm.deviceID})
}
return false //data base update could not be done, return like cookie not found
}
oFsm.requestEventOffset = uint8(cDeviceEventOffsetRemoveWithKvStore) //offset for last flow-remove activity (with kvStore request)
//attention: take care to release and re-take the mutexFlowParams when calling the FSM directly -
// synchronous FSM 'event/state' functions may rely on this mutex
oFsm.mutexFlowParams.Unlock()
if fsmErr := pConfigVlanStateBaseFsm.Event(VlanEvCancelOutstandingConfig); fsmErr != nil {
logger.Errorw(ctx, "error in FsmEvent handling UniVlanConfigFsm!",
log.Fields{"fsmState": pConfigVlanStateBaseFsm.Current(), "error": fsmErr, "device-id": oFsm.deviceID})
}
oFsm.mutexFlowParams.Lock()
return true
}
if pConfigVlanStateBaseFsm.Is(VlanStConfigDone) {
logger.Debugw(ctx, "UniVlanConfigFsm rule removal request", log.Fields{
"device-id": oFsm.deviceID, "uni-id": oFsm.pOnuUniPort.UniID,
"tp-id": loRemoveParams.vlanRuleParams.TpID,
"set-Vlan": loRemoveParams.vlanRuleParams.SetVid})
//have to re-trigger the FSM to proceed with outstanding incremental flow configuration
//attention: take care to release and re-take the mutexFlowParams when calling the FSM directly -
// synchronous FSM 'event/state' functions may rely on this mutex
oFsm.mutexFlowParams.Unlock()
if fsmErr := pConfigVlanStateBaseFsm.Event(VlanEvRemFlowConfig); fsmErr != nil {
logger.Errorw(ctx, "error in FsmEvent handling UniVlanConfigFsm!",
log.Fields{"fsmState": pConfigVlanStateBaseFsm.Current(), "error": fsmErr, "device-id": oFsm.deviceID})
}
oFsm.mutexFlowParams.Lock()
} // if not in the appropriate state a new entry will be automatically considered later
// when the configDone state is reached
return true
}
//removeFlowFromParamsSlice removes a flow from stored uniVlanFlowParamsSlice based on the cookie
// it assumes that adding cookies for this flow (including the actual one to delete) was prevented
// from the start of the deletion request to avoid to much interference
// so when called, there can only be one cookie active for this flow
// requires mutexFlowParams to be locked at call
func (oFsm *UniVlanConfigFsm) removeFlowFromParamsSlice(ctx context.Context, aCookie uint64, aWasConfigured bool) error {
logger.Debugw(ctx, "UniVlanConfigFsm flow removal from ParamsSlice", log.Fields{
"device-id": oFsm.deviceID, "cookie": aCookie})
cookieFound := false
removeFromSlice_loop:
for flow, storedUniFlowParams := range oFsm.uniVlanFlowParamsSlice {
// if UniFlowParams exists, cookieSlice should always have at least one element
cookieSliceLen := len(storedUniFlowParams.CookieSlice)
if cookieSliceLen == 1 {
if storedUniFlowParams.CookieSlice[0] == aCookie {
cookieFound = true
}
} else if cookieSliceLen == 0 {
errStr := "UniVlanConfigFsm unexpected cookie slice length 0 - removal in uniVlanFlowParamsSlice aborted"
logger.Errorw(ctx, errStr, log.Fields{"device-id": oFsm.deviceID})
return errors.New(errStr)
} else {
errStr := "UniVlanConfigFsm flow removal unexpected cookie slice length, but rule removal continued"
logger.Errorw(ctx, errStr, log.Fields{
"cookieSliceLen": len(oFsm.uniVlanFlowParamsSlice), "device-id": oFsm.deviceID})
for _, cookie := range storedUniFlowParams.CookieSlice {
if cookie == aCookie {
cookieFound = true
break
}
}
}
if cookieFound {
logger.Debugw(ctx, "UniVlanConfigFsm flow removal from ParamsSlice - cookie found", log.Fields{
"device-id": oFsm.deviceID, "cookie": aCookie})
//remove the actual element from the addVlanFlow slice
// oFsm.uniVlanFlowParamsSlice[flow].CookieSlice = nil //automatically done by garbage collector
if len(oFsm.uniVlanFlowParamsSlice) <= 1 {
oFsm.NumUniFlows = 0 //no more flows
oFsm.ConfiguredUniFlow = 0 //no more flows configured
oFsm.uniVlanFlowParamsSlice = nil //reset the slice
//at this point it is evident that no flow anymore refers to a still possibly active Techprofile
//request that this profile gets deleted before a new flow add is allowed
logger.Debugw(ctx, "UniVlanConfigFsm flow removal from ParamsSlice - no more flows", log.Fields{
"device-id": oFsm.deviceID})
} else {
oFsm.NumUniFlows--
if aWasConfigured && oFsm.ConfiguredUniFlow > 0 {
oFsm.ConfiguredUniFlow--
}
if !aWasConfigured {
// We did not actually process this flow but was removed before that.
// Indicate success response for the flow to caller who is blocking on a response
oFsm.pushReponseOnFlowResponseChannel(ctx, storedUniFlowParams.RespChan, nil)
}
//cut off the requested flow by slicing out this element
oFsm.uniVlanFlowParamsSlice = append(
oFsm.uniVlanFlowParamsSlice[:flow], oFsm.uniVlanFlowParamsSlice[flow+1:]...)
logger.Debugw(ctx, "UniVlanConfigFsm flow removal - specific flow removed from data", log.Fields{
"device-id": oFsm.deviceID})
}
break removeFromSlice_loop //found the cookie - no further search for this requested cookie
}
} //search all flows
if !cookieFound {
errStr := "UniVlanConfigFsm cookie for removal not found, internal counter not updated"
logger.Errorw(ctx, errStr, log.Fields{"device-id": oFsm.deviceID})
return errors.New(errStr)
}
//if the cookie was found and removed from uniVlanFlowParamsSlice above now write the modified persistency data
// KVStore update will be done after reaching the requested FSM end state (not immediately here)
if err := oFsm.pDeviceHandler.StorePersUniFlowConfig(ctx, oFsm.pOnuUniPort.UniID,
&oFsm.uniVlanFlowParamsSlice, false); err != nil {
logger.Errorw(ctx, err.Error(), log.Fields{"device-id": oFsm.deviceID})
return err
}
return nil
}
// requires mutexFlowParams to be locked at call
func (oFsm *UniVlanConfigFsm) updateTechProfileToDelete(ctx context.Context, usedTpID uint8) {
//here we have to check, if there are still other flows referencing to the actual ProfileId
// before we can request that this profile gets deleted before a new flow add is allowed
tpIDInOtherFlows := false
for _, tpUniFlowParams := range oFsm.uniVlanFlowParamsSlice {
if tpUniFlowParams.VlanRuleParams.TpID == usedTpID {
tpIDInOtherFlows = true
break // search loop can be left
}
}
if tpIDInOtherFlows {
logger.Debugw(ctx, "UniVlanConfigFsm tp-id used in deleted flow is still used in other flows", log.Fields{
"device-id": oFsm.deviceID, "tp-id": usedTpID})
} else {
logger.Debugw(ctx, "UniVlanConfigFsm tp-id used in deleted flow is not used anymore - set TechProfile to-delete", log.Fields{
"device-id": oFsm.deviceID, "tp-id": usedTpID})
// ensure mutexFlowParams not locked before calling some TPProcessing activity (that might already be pending on it)
oFsm.mutexFlowParams.Unlock()
if oFsm.pUniTechProf != nil {
//request that this profile gets deleted before a new flow add is allowed
oFsm.pUniTechProf.SetProfileToDelete(oFsm.pOnuUniPort.UniID, usedTpID, true)
}
oFsm.mutexFlowParams.Lock()
}
}
func (oFsm *UniVlanConfigFsm) enterPreparing(ctx context.Context, e *fsm.Event) {
logger.Debugw(ctx, "UniVlanConfigFsm preparing", log.Fields{"device-id": oFsm.deviceID})
// this FSM is not intended for re-start, needs always new creation for a new run
// (self-destroying - compare enterDisabled())
oFsm.omciMIdsResponseReceived = make(chan bool)
oFsm.chCookieDeleted = make(chan bool)
// start go routine for processing of LockState messages
go oFsm.processOmciVlanMessages(ctx)
//let the state machine run forward from here directly
pConfigVlanStateAFsm := oFsm.PAdaptFsm
if pConfigVlanStateAFsm != nil {
if oFsm.pDeviceHandler.IsSkipOnuConfigReconciling() {
logger.Debugw(ctx, "reconciling - skip omci-config of vlan rule",
log.Fields{"fsmState": oFsm.PAdaptFsm.PFsm.Current(), "device-id": oFsm.deviceID})
// Can't call FSM Event directly, decoupling it
go func(a_pAFsm *cmn.AdapterFsm) {
_ = a_pAFsm.PFsm.Event(VlanEvSkipOmciConfig)
}(pConfigVlanStateAFsm)
return
}
// Can't call FSM Event directly, decoupling it
go func(a_pAFsm *cmn.AdapterFsm) {
_ = a_pAFsm.PFsm.Event(VlanEvPrepareDone)
}(pConfigVlanStateAFsm)
return
}
logger.Errorw(ctx, "UniVlanConfigFsm abort: invalid FSM pointer", log.Fields{
"in state": e.FSM.Current(), "device-id": oFsm.deviceID})
//should never happen, else: recovery would be needed from outside the FSM
}
func (oFsm *UniVlanConfigFsm) enterConfigStarting(ctx context.Context, e *fsm.Event) {
logger.Debugw(ctx, "UniVlanConfigFsm start vlan configuration", log.Fields{"device-id": oFsm.deviceID})
pConfigVlanStateAFsm := oFsm.PAdaptFsm
if pConfigVlanStateAFsm != nil {
oFsm.mutexFlowParams.Lock()
//possibly the entry is not valid anymore based on intermediate delete requests
//just a basic protection ...
if len(oFsm.uniVlanFlowParamsSlice) == 0 {
oFsm.mutexFlowParams.Unlock()
logger.Debugw(ctx, "UniVlanConfigFsm start: no rule entry anymore available", log.Fields{
"device-id": oFsm.deviceID})
// Can't call FSM Event directly, decoupling it
go func(a_pAFsm *cmn.AdapterFsm) {
_ = a_pAFsm.PFsm.Event(VlanEvReset)
}(pConfigVlanStateAFsm)
return
}
//access to uniVlanFlowParamsSlice is done on first element only here per definition
//store the actual rule that shall be worked upon in the following transient states
oFsm.actualUniFlowParam = oFsm.uniVlanFlowParamsSlice[0]
tpID := oFsm.actualUniFlowParam.VlanRuleParams.TpID
oFsm.TpIDWaitingFor = tpID
loSetVlan := oFsm.actualUniFlowParam.VlanRuleParams.SetVid
//attention: take care to release the mutexFlowParams when calling the FSM directly -
// synchronous FSM 'event/state' functions may rely on this mutex
// but it must be released already before calling getTechProfileDone() as it may already be locked
// by the techProfile processing call to VlanFsm.IsFlowRemovePending() (see VOL-4207)
oFsm.mutexFlowParams.Unlock()
loTechProfDone := oFsm.pUniTechProf.getTechProfileDone(ctx, oFsm.pOnuUniPort.UniID, uint8(tpID))
logger.Debugw(ctx, "UniVlanConfigFsm - start with first rule", log.Fields{
"device-id": oFsm.deviceID, "uni-id": oFsm.pOnuUniPort.UniID,
"set-Vlan": loSetVlan, "tp-id": tpID, "ProfDone": loTechProfDone})
// Can't call FSM Event directly, decoupling it
go func(aPAFsm *cmn.AdapterFsm, aTechProfDone bool) {
if aPAFsm != nil && aPAFsm.PFsm != nil {
if aTechProfDone {
// let the vlan processing begin
_ = aPAFsm.PFsm.Event(VlanEvStartConfig)
} else {
// set to waiting for Techprofile
_ = aPAFsm.PFsm.Event(VlanEvWaitTechProf)
}
}
}(pConfigVlanStateAFsm, loTechProfDone)
} else {
logger.Errorw(ctx, "UniVlanConfigFsm abort: invalid FSM pointer", log.Fields{
"in state": e.FSM.Current(), "device-id": oFsm.deviceID})
//should never happen, else: recovery would be needed from outside the FSM
return
}
}
func (oFsm *UniVlanConfigFsm) enterConfigVtfd(ctx context.Context, e *fsm.Event) {
//mutex protection is required for possible concurrent access to FSM members
oFsm.mutexFlowParams.Lock()
oFsm.TpIDWaitingFor = 0 //reset indication to avoid misinterpretation
if oFsm.actualUniFlowParam.VlanRuleParams.SetVid == uint32(of.OfpVlanId_OFPVID_PRESENT) {
// meaning transparent setup - no specific VTFD setting required
oFsm.mutexFlowParams.Unlock()
logger.Debugw(ctx, "UniVlanConfigFsm: no VTFD config required", log.Fields{
"in state": e.FSM.Current(), "device-id": oFsm.deviceID})
// let the FSM proceed ... (from within this state all internal pointers may be expected to be correct)
pConfigVlanStateAFsm := oFsm.PAdaptFsm
// Can't call FSM Event directly, decoupling it
go func(a_pAFsm *cmn.AdapterFsm) {
_ = a_pAFsm.PFsm.Event(VlanEvRxConfigVtfd)
}(pConfigVlanStateAFsm)
} else {
// This attribute uniquely identifies each instance of this managed entity. Through an identical ID,
// this managed entity is implicitly linked to an instance of the MAC bridge port configuration data ME.
vtfdID, _ := cmn.GenerateANISideMBPCDEID(uint16(oFsm.pOnuUniPort.MacBpNo), uint16(oFsm.actualUniFlowParam.VlanRuleParams.TpID))
logger.Debugw(ctx, "UniVlanConfigFsm create VTFD", log.Fields{
"EntitytId": strconv.FormatInt(int64(vtfdID), 16),
"in state": e.FSM.Current(), "device-id": oFsm.deviceID,
"macBpNo": oFsm.pOnuUniPort.MacBpNo, "TpID": oFsm.actualUniFlowParam.VlanRuleParams.TpID})
// setVid is assumed to be masked already by the caller to 12 bit
oFsm.vlanFilterList[0] = uint16(oFsm.actualUniFlowParam.VlanRuleParams.SetVid)
oFsm.mutexFlowParams.Unlock()
vtfdFilterList := make([]uint16, cVtfdTableSize) //needed for parameter serialization
vtfdFilterList[0] = oFsm.vlanFilterList[0]
oFsm.numVlanFilterEntries = 1
meParams := me.ParamData{
EntityID: vtfdID,
Attributes: me.AttributeValueMap{
"VlanFilterList": vtfdFilterList, //omci lib wants a slice for serialization
"ForwardOperation": uint8(0x10), //VID investigation
"NumberOfEntries": oFsm.numVlanFilterEntries,
},
}
logger.Debugw(ctx, "UniVlanConfigFsm sendcreate VTFD", log.Fields{
"in state": e.FSM.Current(), "device-id": oFsm.deviceID})
oFsm.mutexPLastTxMeInstance.Lock()
meInstance, err := oFsm.pOmciCC.SendCreateVtfdVar(log.WithSpanFromContext(context.TODO(), ctx), oFsm.pDeviceHandler.GetOmciTimeout(), true,
oFsm.PAdaptFsm.CommChan, meParams)
if err != nil {
oFsm.mutexPLastTxMeInstance.Unlock()
logger.Errorw(ctx, "VTFD create failed, aborting UniVlanConfig FSM!",
log.Fields{"device-id": oFsm.deviceID})
pConfigVlanStateAFsm := oFsm.PAdaptFsm
if pConfigVlanStateAFsm != nil {
go func(a_pAFsm *cmn.AdapterFsm) {
_ = a_pAFsm.PFsm.Event(VlanEvReset)
}(pConfigVlanStateAFsm)
}
return
}
//accept also nil as (error) return value for writing to LastTx
// - this avoids misinterpretation of new received OMCI messages
//TODO!!: refactoring improvement requested, here as an example for [VOL-3457]:
// send shall return (dual format) error code that can be used here for immediate error treatment
// (relevant to all used sendXX() methods in this (and other) FSM's)
oFsm.pLastTxMeInstance = meInstance
oFsm.mutexPLastTxMeInstance.Unlock()
}
}
func (oFsm *UniVlanConfigFsm) enterConfigEvtocd(ctx context.Context, e *fsm.Event) {
logger.Debugw(ctx, "UniVlanConfigFsm - start config EVTOCD loop", log.Fields{
"device-id": oFsm.deviceID})
oFsm.requestEventOffset = uint8(cDeviceEventOffsetAddWithKvStore) //0 offset for last flow-add activity
go func() {
//using the first element in the slice because it's the first flow per definition here
errEvto := oFsm.performConfigEvtocdEntries(ctx, 0)
//This is correct passing scenario
if errEvto == nil {
oFsm.mutexFlowParams.RLock()
tpID := oFsm.actualUniFlowParam.VlanRuleParams.TpID
vlanID := oFsm.actualUniFlowParam.VlanRuleParams.SetVid
configuredUniFlows := oFsm.ConfiguredUniFlow
// ensure mutexFlowParams not locked before calling some TPProcessing activity (that might already be pending on it)
oFsm.mutexFlowParams.RUnlock()
for _, gemPort := range oFsm.pUniTechProf.getMulticastGemPorts(ctx, oFsm.pOnuUniPort.UniID, uint8(tpID)) {
logger.Infow(ctx, "Setting multicast MEs, with first flow", log.Fields{"deviceID": oFsm.deviceID,
"techProfile": tpID, "gemPort": gemPort, "vlanID": vlanID, "ConfiguredUniFlow": configuredUniFlows})
errCreateAllMulticastME := oFsm.performSettingMulticastME(ctx, tpID, gemPort,
vlanID)
if errCreateAllMulticastME != nil {
logger.Errorw(ctx, "Multicast ME create failed, aborting AniConfig FSM!",
log.Fields{"device-id": oFsm.deviceID})
_ = oFsm.PAdaptFsm.PFsm.Event(VlanEvReset)
}
}
//If this first flow contains a meter, then create TD for related gems.
if oFsm.actualUniFlowParam.Meter != nil {
logger.Debugw(ctx, "Creating Traffic Descriptor", log.Fields{"device-id": oFsm.deviceID, "meter": oFsm.actualUniFlowParam.Meter})
for _, gemPort := range oFsm.pUniTechProf.getBidirectionalGemPortIDsForTP(ctx, oFsm.pOnuUniPort.UniID, tpID) {
logger.Debugw(ctx, "Creating Traffic Descriptor for gem", log.Fields{"device-id": oFsm.deviceID, "meter": oFsm.actualUniFlowParam.Meter, "gem": gemPort})
errCreateTrafficDescriptor := oFsm.createTrafficDescriptor(ctx, oFsm.actualUniFlowParam.Meter, tpID,
oFsm.pOnuUniPort.UniID, gemPort)
if errCreateTrafficDescriptor != nil {
logger.Errorw(ctx, "Create Traffic Descriptor create failed, aborting Ani Config FSM!",
log.Fields{"device-id": oFsm.deviceID})
_ = oFsm.PAdaptFsm.PFsm.Event(VlanEvReset)
}
}
}
//TODO Possibly insert new state for multicast --> possibly another jira/later time.
_ = oFsm.PAdaptFsm.PFsm.Event(VlanEvRxConfigEvtocd)
}
}()
}
func (oFsm *UniVlanConfigFsm) enterVlanConfigDone(ctx context.Context, e *fsm.Event) {
oFsm.mutexFlowParams.Lock()
logger.Infow(ctx, "UniVlanConfigFsm config done - checking on more flows", log.Fields{
"device-id": oFsm.deviceID,
"overall-uni-rules": oFsm.NumUniFlows, "configured-uni-rules": oFsm.ConfiguredUniFlow})
if len(oFsm.uniVlanFlowParamsSlice) > 0 {
oFsm.pushReponseOnFlowResponseChannel(ctx, oFsm.actualUniFlowParam.RespChan, nil)
}
pConfigVlanStateAFsm := oFsm.PAdaptFsm
if pConfigVlanStateAFsm == nil {
oFsm.mutexFlowParams.Unlock()
logger.Errorw(ctx, "UniVlanConfigFsm abort: invalid FSM pointer", log.Fields{
"in state": e.FSM.Current(), "device-id": oFsm.deviceID})
//should never happen, else: recovery would be needed from outside the FSM
return
}
pConfigVlanStateBaseFsm := pConfigVlanStateAFsm.PFsm
if len(oFsm.uniRemoveFlowsSlice) > 0 {
//some further flows are to be removed, removal always starts with the first element
logger.Debugw(ctx, "UniVlanConfigFsm rule removal from ConfigDone", log.Fields{
"device-id": oFsm.deviceID, "uni-id": oFsm.pOnuUniPort.UniID,
"tp-id": oFsm.uniRemoveFlowsSlice[0].vlanRuleParams.TpID,
"set-Vlan": oFsm.uniRemoveFlowsSlice[0].vlanRuleParams.SetVid})
oFsm.mutexFlowParams.Unlock()
// Can't call FSM Event directly, decoupling it
go func(a_pBaseFsm *fsm.FSM) {
_ = a_pBaseFsm.Event(VlanEvRemFlowConfig)
}(pConfigVlanStateBaseFsm)
return
}
if oFsm.pDeviceHandler.IsSkipOnuConfigReconciling() {
oFsm.ConfiguredUniFlow = oFsm.NumUniFlows
if oFsm.lastFlowToReconcile {
logger.Debugw(ctx, "reconciling - flow processing finished", log.Fields{"device-id": oFsm.deviceID})
oFsm.pOnuDeviceEntry.SetReconcilingFlows(false)
oFsm.pOnuDeviceEntry.SetChReconcilingFlowsFinished(true)
}
logger.Debugw(ctx, "reconciling - skip enterVlanConfigDone processing",
log.Fields{"NumUniFlows": oFsm.NumUniFlows, "ConfiguredUniFlow": oFsm.ConfiguredUniFlow, "device-id": oFsm.deviceID})
oFsm.mutexFlowParams.Unlock()
return
}
if oFsm.NumUniFlows > oFsm.ConfiguredUniFlow {
if oFsm.ConfiguredUniFlow == 0 {
oFsm.mutexFlowParams.Unlock()
// this is a restart with a complete new flow, we can re-use the initial flow config control
// including the check, if the related techProfile is (still) available (probably also removed in between)
// Can't call FSM Event directly, decoupling it
go func(a_pBaseFsm *fsm.FSM) {
_ = a_pBaseFsm.Event(VlanEvRenew)
}(pConfigVlanStateBaseFsm)
return
}
//some further flows are to be configured
//store the actual rule that shall be worked upon in the following transient states
if len(oFsm.uniVlanFlowParamsSlice) < int(oFsm.ConfiguredUniFlow) {
//check introduced after having observed some panic in this processing
logger.Errorw(ctx, "error in FsmEvent handling UniVlanConfigFsm in ConfigDone - inconsistent counter",
log.Fields{"ConfiguredUniFlow": oFsm.ConfiguredUniFlow,
"sliceLen": len(oFsm.uniVlanFlowParamsSlice), "device-id": oFsm.deviceID})
oFsm.mutexFlowParams.Unlock()
go func(a_pAFsm *cmn.AdapterFsm) {
_ = a_pAFsm.PFsm.Event(VlanEvReset)
}(pConfigVlanStateAFsm)
return
}
oFsm.actualUniFlowParam = oFsm.uniVlanFlowParamsSlice[oFsm.ConfiguredUniFlow]
//tpId of the next rule to be configured
tpID := oFsm.actualUniFlowParam.VlanRuleParams.TpID
oFsm.TpIDWaitingFor = tpID
loSetVlan := oFsm.actualUniFlowParam.VlanRuleParams.SetVid
//attention: take care to release the mutexFlowParams when calling the FSM directly -
// synchronous FSM 'event/state' functions may rely on this mutex
// but it must be released already before calling getTechProfileDone() as it may already be locked
// by the techProfile processing call to VlanFsm.IsFlowRemovePending() (see VOL-4207)
oFsm.mutexFlowParams.Unlock()
loTechProfDone := oFsm.pUniTechProf.getTechProfileDone(ctx, oFsm.pOnuUniPort.UniID, tpID)
logger.Debugw(ctx, "UniVlanConfigFsm - incremental config request", log.Fields{
"device-id": oFsm.deviceID, "uni-id": oFsm.pOnuUniPort.UniID,
"set-Vlan": loSetVlan, "tp-id": tpID, "ProfDone": loTechProfDone})
// Can't call FSM Event directly, decoupling it
go func(aPBaseFsm *fsm.FSM, aTechProfDone bool) {
if aTechProfDone {
// let the vlan processing continue with next rule
_ = aPBaseFsm.Event(VlanEvIncrFlowConfig)
} else {
// set to waiting for Techprofile
_ = aPBaseFsm.Event(VlanEvWaitTPIncr)
}
}(pConfigVlanStateBaseFsm, loTechProfDone)
return
}
oFsm.mutexFlowParams.Unlock()
logger.Debugw(ctx, "UniVlanConfigFsm - VLAN config done: send dh event notification", log.Fields{
"device-id": oFsm.deviceID})
// it might appear that some flows are requested also after 'flowPushed' event has been generated ...
// state transition notification is checked in deviceHandler
// note: 'flowPushed' event is only generated if all 'pending' rules are configured
if oFsm.pDeviceHandler != nil {
//making use of the add->remove successor enum assumption/definition
go oFsm.pDeviceHandler.DeviceProcStatusUpdate(ctx, cmn.OnuDeviceEvent(uint8(oFsm.requestEvent)+oFsm.requestEventOffset))
}
}
func (oFsm *UniVlanConfigFsm) enterConfigIncrFlow(ctx context.Context, e *fsm.Event) {
if oFsm.pDeviceHandler.IsSkipOnuConfigReconciling() {
logger.Debugw(ctx, "reconciling - skip further processing for incremental flow",
log.Fields{"fsmState": oFsm.PAdaptFsm.PFsm.Current(), "device-id": oFsm.deviceID})
go func(a_pBaseFsm *fsm.FSM) {
_ = a_pBaseFsm.Event(VlanEvSkipIncFlowConfig)
}(oFsm.PAdaptFsm.PFsm)
return
}
oFsm.mutexFlowParams.Lock()
logger.Debugw(ctx, "UniVlanConfigFsm - start config further incremental flow", log.Fields{
"recent flow-number": oFsm.ConfiguredUniFlow,
"device-id": oFsm.deviceID})
oFsm.TpIDWaitingFor = 0 //reset indication to avoid misinterpretation
if oFsm.actualUniFlowParam.VlanRuleParams.SetVid == uint32(of.OfpVlanId_OFPVID_PRESENT) {
// meaning transparent setup - no specific VTFD setting required
logger.Debugw(ctx, "UniVlanConfigFsm: no VTFD config required", log.Fields{
"in state": e.FSM.Current(), "device-id": oFsm.deviceID})
} else {
//TODO!!!: it was not really intended to keep this enter* FSM method waiting on OMCI response (preventing other state transitions)
// so it would be conceptually better to wait for the response in background like for the other multi-entity processing
// but as the OMCI sequence must be ensured, a separate new state would be required - perhaps later
// in practice should have no influence by now as no other state transition is currently accepted (while cancel() is ensured)
if oFsm.numVlanFilterEntries == 0 {
// This attribute uniquely identifies each instance of this managed entity. Through an identical ID,
// this managed entity is implicitly linked to an instance of the MAC bridge port configuration data ME.
vtfdID, _ := cmn.GenerateANISideMBPCDEID(uint16(oFsm.pOnuUniPort.MacBpNo), uint16(oFsm.actualUniFlowParam.VlanRuleParams.TpID))
//no VTFD yet created
logger.Debugw(ctx, "UniVlanConfigFsm create VTFD", log.Fields{
"EntitytId": strconv.FormatInt(int64(vtfdID), 16),
"device-id": oFsm.deviceID,
"macBpNo": oFsm.pOnuUniPort.MacBpNo, "TpID": oFsm.actualUniFlowParam.VlanRuleParams.TpID})
// 'SetVid' below is assumed to be masked already by the caller to 12 bit
oFsm.vlanFilterList[0] = uint16(oFsm.actualUniFlowParam.VlanRuleParams.SetVid)
vtfdFilterList := make([]uint16, cVtfdTableSize) //needed for parameter serialization
vtfdFilterList[0] = oFsm.vlanFilterList[0]
oFsm.numVlanFilterEntries = 1
meParams := me.ParamData{
EntityID: vtfdID,
Attributes: me.AttributeValueMap{
"VlanFilterList": vtfdFilterList,
"ForwardOperation": uint8(0x10), //VID investigation
"NumberOfEntries": oFsm.numVlanFilterEntries,
},
}
oFsm.mutexPLastTxMeInstance.Lock()
meInstance, err := oFsm.pOmciCC.SendCreateVtfdVar(log.WithSpanFromContext(context.TODO(), ctx), oFsm.pDeviceHandler.GetOmciTimeout(), true,
oFsm.PAdaptFsm.CommChan, meParams)
if err != nil {
oFsm.mutexPLastTxMeInstance.Unlock()
oFsm.mutexFlowParams.Unlock()
logger.Errorw(ctx, "VTFD create failed, aborting UniVlanConfig FSM!",
log.Fields{"device-id": oFsm.deviceID})
pConfigVlanStateAFsm := oFsm.PAdaptFsm
if pConfigVlanStateAFsm != nil {
go func(a_pAFsm *cmn.AdapterFsm) {
_ = a_pAFsm.PFsm.Event(VlanEvReset)
}(pConfigVlanStateAFsm)
}
return
}
//accept also nil as (error) return value for writing to LastTx
// - this avoids misinterpretation of new received OMCI messages
//TODO!!: refactoring improvement requested, here as an example for [VOL-3457]:
// send shall return (dual format) error code that can be used here for immediate error treatment
// (relevant to all used sendXX() methods in this (and other) FSM's)
oFsm.pLastTxMeInstance = meInstance
oFsm.mutexPLastTxMeInstance.Unlock()
} else {
// This attribute uniquely identifies each instance of this managed entity. Through an identical ID,
// this managed entity is implicitly linked to an instance of the MAC bridge port configuration data ME.
vtfdID, _ := cmn.GenerateANISideMBPCDEID(uint16(oFsm.pOnuUniPort.MacBpNo), uint16(oFsm.actualUniFlowParam.VlanRuleParams.TpID))
logger.Debugw(ctx, "UniVlanConfigFsm set VTFD", log.Fields{
"EntitytId": strconv.FormatInt(int64(vtfdID), 16),
"device-id": oFsm.deviceID,
"macBpNo": oFsm.pOnuUniPort.MacBpNo, "TpID": oFsm.actualUniFlowParam.VlanRuleParams.TpID})
// setVid is assumed to be masked already by the caller to 12 bit
oFsm.vlanFilterList[oFsm.numVlanFilterEntries] =
uint16(oFsm.actualUniFlowParam.VlanRuleParams.SetVid)
vtfdFilterList := make([]uint16, cVtfdTableSize) //needed for parameter serialization
// FIXME: VOL-3685: Issues with resetting a table entry in EVTOCD ME
// VTFD has to be created afresh with a new entity ID that has the same entity ID as the MBPCD ME for every
// new vlan associated with a different TP.
vtfdFilterList[0] = uint16(oFsm.actualUniFlowParam.VlanRuleParams.SetVid)
oFsm.numVlanFilterEntries++
meParams := me.ParamData{
EntityID: vtfdID,
Attributes: me.AttributeValueMap{
"VlanFilterList": vtfdFilterList,
"ForwardOperation": uint8(0x10), //VID investigation
"NumberOfEntries": oFsm.numVlanFilterEntries,
},
}
oFsm.mutexPLastTxMeInstance.Lock()
meInstance, err := oFsm.pOmciCC.SendCreateVtfdVar(log.WithSpanFromContext(context.TODO(), ctx), oFsm.pDeviceHandler.GetOmciTimeout(), true,
oFsm.PAdaptFsm.CommChan, meParams)
if err != nil {
oFsm.mutexPLastTxMeInstance.Unlock()
oFsm.mutexFlowParams.Unlock()
logger.Errorw(ctx, "UniVlanFsm create Vlan Tagging Filter ME result error",
log.Fields{"device-id": oFsm.deviceID, "Error": err})
_ = oFsm.PAdaptFsm.PFsm.Event(VlanEvReset)
return
}
//accept also nil as (error) return value for writing to LastTx
// - this avoids misinterpretation of new received OMCI messages
//TODO!!: refactoring improvement requested, here as an example for [VOL-3457]:
// send shall return (dual format) error code that can be used here for immediate error treatment
// (relevant to all used sendXX() methods in this (and other) FSM's)
oFsm.pLastTxMeInstance = meInstance
oFsm.mutexPLastTxMeInstance.Unlock()
}
//verify response
err := oFsm.waitforOmciResponse(ctx)
if err != nil {
oFsm.mutexFlowParams.Unlock()
logger.Errorw(ctx, "VTFD create/set failed, aborting VlanConfig FSM!",
log.Fields{"device-id": oFsm.deviceID})
pConfigVlanStateBaseFsm := oFsm.PAdaptFsm.PFsm
// Can't call FSM Event directly, decoupling it
go func(a_pBaseFsm *fsm.FSM) {
_ = a_pBaseFsm.Event(VlanEvReset)
}(pConfigVlanStateBaseFsm)
return
}
}
oFsm.requestEventOffset = uint8(cDeviceEventOffsetAddWithKvStore) //0 offset for last flow-add activity
oFsm.mutexFlowParams.Unlock()
go func() {
oFsm.mutexFlowParams.RLock()
tpID := oFsm.actualUniFlowParam.VlanRuleParams.TpID
configuredUniFlow := oFsm.ConfiguredUniFlow
// ensure mutexFlowParams not locked before calling some TPProcessing activity (that might already be pending on it)
oFsm.mutexFlowParams.RUnlock()
errEvto := oFsm.performConfigEvtocdEntries(ctx, configuredUniFlow)
//This is correct passing scenario
if errEvto == nil {
//TODO Possibly insert new state for multicast --> possibly another jira/later time.
for _, gemPort := range oFsm.pUniTechProf.getMulticastGemPorts(ctx, oFsm.pOnuUniPort.UniID, uint8(tpID)) {
oFsm.mutexFlowParams.RLock()
vlanID := oFsm.actualUniFlowParam.VlanRuleParams.SetVid
logger.Infow(ctx, "Setting multicast MEs for additional flows", log.Fields{"deviceID": oFsm.deviceID,
"techProfile": tpID, "gemPort": gemPort,
"vlanID": vlanID, "ConfiguredUniFlow": configuredUniFlow})
oFsm.mutexFlowParams.RUnlock()
errCreateAllMulticastME := oFsm.performSettingMulticastME(ctx, tpID, gemPort, vlanID)
if errCreateAllMulticastME != nil {
logger.Errorw(ctx, "Multicast ME create failed, aborting AniConfig FSM!",
log.Fields{"device-id": oFsm.deviceID})
_ = oFsm.PAdaptFsm.PFsm.Event(VlanEvReset)
}
}
//If this incremental flow contains a meter, then create TD for related gems.
if oFsm.actualUniFlowParam.Meter != nil {
for _, gemPort := range oFsm.pUniTechProf.getBidirectionalGemPortIDsForTP(ctx, oFsm.pOnuUniPort.UniID, tpID) {
logger.Debugw(ctx, "Creating Traffic Descriptor for gem", log.Fields{"device-id": oFsm.deviceID, "meter": oFsm.actualUniFlowParam.Meter, "gem": gemPort})
errCreateTrafficDescriptor := oFsm.createTrafficDescriptor(ctx, oFsm.actualUniFlowParam.Meter, tpID,
oFsm.pOnuUniPort.UniID, gemPort)
if errCreateTrafficDescriptor != nil {
logger.Errorw(ctx, "Create Traffic Descriptor create failed, aborting Ani Config FSM!",
log.Fields{"device-id": oFsm.deviceID})
_ = oFsm.PAdaptFsm.PFsm.Event(VlanEvReset)
}
}
}
_ = oFsm.PAdaptFsm.PFsm.Event(VlanEvRxConfigEvtocd)
}
}()
}
func (oFsm *UniVlanConfigFsm) enterRemoveFlow(ctx context.Context, e *fsm.Event) {
oFsm.mutexFlowParams.RLock()
logger.Debugw(ctx, "UniVlanConfigFsm - start removing the top remove-flow", log.Fields{
"with last cookie": oFsm.uniRemoveFlowsSlice[0].cookie,
"device-id": oFsm.deviceID})
pConfigVlanStateBaseFsm := oFsm.PAdaptFsm.PFsm
loAllowSpecificOmciConfig := oFsm.pDeviceHandler.IsReadyForOmciConfig()
loVlanEntryClear := uint8(0)
loVlanEntryRmPos := uint8(0x80) //with indication 'invalid' in bit 7
//shallow copy is sufficient as no reference variables are used within struct
loRuleParams := oFsm.uniRemoveFlowsSlice[0].vlanRuleParams
oFsm.mutexFlowParams.RUnlock()
logger.Debugw(ctx, "UniVlanConfigFsm - remove-flow parameters are", log.Fields{
"match vid": loRuleParams.MatchVid, "match Pcp": loRuleParams.MatchPcp,
"set vid": strconv.FormatInt(int64(loRuleParams.SetVid), 16),
"device-id": oFsm.deviceID})
if loRuleParams.SetVid == uint32(of.OfpVlanId_OFPVID_PRESENT) {
// meaning transparent setup - no specific VTFD setting required
logger.Debugw(ctx, "UniVlanConfigFsm: no VTFD removal required for transparent flow", log.Fields{
"in state": e.FSM.Current(), "device-id": oFsm.deviceID})
} else {
vtfdFilterList := make([]uint16, cVtfdTableSize) //needed for parameter serialization and 're-copy'
if oFsm.numVlanFilterEntries == 1 {
vtfdID, _ := cmn.GenerateANISideMBPCDEID(uint16(oFsm.pOnuUniPort.MacBpNo), uint16(loRuleParams.TpID))
//only one active VLAN entry (hopefully the SetVID we want to remove - should be, but not verified ..)
// so we can just delete the VTFD entry
logger.Debugw(ctx, "UniVlanConfigFsm: VTFD delete (no more vlan filters)",
log.Fields{"current vlan list": oFsm.vlanFilterList, "EntitytId": strconv.FormatInt(int64(vtfdID), 16),
"device-id": oFsm.deviceID,
"macBpNo": oFsm.pOnuUniPort.MacBpNo, "TpID": loRuleParams.TpID})
loVlanEntryClear = 1 //full VlanFilter clear request
if loAllowSpecificOmciConfig { //specific OMCI config is expected to work acc. to the device state
oFsm.mutexPLastTxMeInstance.Lock()
meInstance, err := oFsm.pOmciCC.SendDeleteVtfd(log.WithSpanFromContext(context.TODO(), ctx), oFsm.pDeviceHandler.GetOmciTimeout(), true,
oFsm.PAdaptFsm.CommChan, vtfdID)
if err != nil {
oFsm.mutexPLastTxMeInstance.Unlock()
logger.Errorw(ctx, "UniVlanFsm delete Vlan Tagging Filter ME result error",
log.Fields{"device-id": oFsm.deviceID, "Error": err})
_ = oFsm.PAdaptFsm.PFsm.Event(VlanEvReset)
return
}
oFsm.pLastTxMeInstance = meInstance
oFsm.mutexPLastTxMeInstance.Unlock()
} else {
logger.Debugw(ctx, "UniVlanConfigFsm delete VTFD OMCI handling skipped based on device state", log.Fields{
"device-id": oFsm.deviceID, "device-state": oFsm.pDeviceHandler.GetDeviceReasonString()})
}
} else {
//many VTFD already should exists - find and remove the one concerned by the actual remove rule
// by updating the VTFD per set command with new valid list
logger.Debugw(ctx, "UniVlanConfigFsm: VTFD removal of requested VLAN from the list on OMCI",
log.Fields{"current vlan list": oFsm.vlanFilterList,
"set-vlan": loRuleParams.SetVid, "device-id": oFsm.deviceID})
for i := uint8(0); i < oFsm.numVlanFilterEntries; i++ {
if loRuleParams.SetVid == uint32(oFsm.vlanFilterList[i]) {
loVlanEntryRmPos = i
break //abort search
}
}
if loVlanEntryRmPos < cVtfdTableSize {
vtfdID, _ := cmn.GenerateANISideMBPCDEID(uint16(oFsm.pOnuUniPort.MacBpNo), uint16(loRuleParams.TpID))
//valid entry was found - to be eclipsed
loVlanEntryClear = 2 //VlanFilter remove request for a specific entry
for i := uint8(0); i < oFsm.numVlanFilterEntries; i++ {
if i < loVlanEntryRmPos {
vtfdFilterList[i] = oFsm.vlanFilterList[i] //copy original
} else if i < (cVtfdTableSize - 1) {
vtfdFilterList[i] = oFsm.vlanFilterList[i+1] //copy successor (including 0 elements)
} else {
vtfdFilterList[i] = 0 //set last byte if needed
}
}
logger.Debugw(ctx, "UniVlanConfigFsm set VTFD", log.Fields{
"EntitytId": strconv.FormatInt(int64(vtfdID), 16),
"new vlan list": vtfdFilterList, "device-id": oFsm.deviceID,
"macBpNo": oFsm.pOnuUniPort.MacBpNo, "TpID": loRuleParams.TpID})
if loAllowSpecificOmciConfig { //specific OMCI config is expected to work acc. to the device state
// FIXME: VOL-3685: Issues with resetting a table entry in EVTOCD ME
oFsm.mutexPLastTxMeInstance.Lock()
meInstance, err := oFsm.pOmciCC.SendDeleteVtfd(log.WithSpanFromContext(context.TODO(), ctx), oFsm.pDeviceHandler.GetOmciTimeout(), true,
oFsm.PAdaptFsm.CommChan, vtfdID)
if err != nil {
oFsm.mutexPLastTxMeInstance.Unlock()
logger.Errorw(ctx, "UniVlanFsm delete Vlan Tagging Filter ME result error",
log.Fields{"device-id": oFsm.deviceID, "Error": err})
_ = oFsm.PAdaptFsm.PFsm.Event(VlanEvReset)
return
}
oFsm.pLastTxMeInstance = meInstance
oFsm.mutexPLastTxMeInstance.Unlock()
} else {
logger.Debugw(ctx, "UniVlanConfigFsm set VTFD OMCI handling skipped based on device state", log.Fields{
"device-id": oFsm.deviceID, "device-state": oFsm.pDeviceHandler.GetDeviceReasonString()})
}
} else {
logger.Warnw(ctx, "UniVlanConfigFsm: requested VLAN for removal not found in list - ignore and continue (no VTFD set)",
log.Fields{"device-id": oFsm.deviceID})
}
}
if loVlanEntryClear > 0 {
if loAllowSpecificOmciConfig { //specific OMCI config is expected to work acc. to the device state
//waiting on response
err := oFsm.waitforOmciResponse(ctx)
if err != nil {
logger.Errorw(ctx, "VTFD delete/reset failed, aborting VlanConfig FSM!",
log.Fields{"device-id": oFsm.deviceID})
// Can't call FSM Event directly, decoupling it
go func(a_pBaseFsm *fsm.FSM) {
_ = a_pBaseFsm.Event(VlanEvReset)
}(pConfigVlanStateBaseFsm)
return
}
}
oFsm.mutexFlowParams.Lock()
if loVlanEntryClear == 1 {
oFsm.vlanFilterList[0] = 0 //first entry is the only that can contain the previous only-one element
oFsm.numVlanFilterEntries = 0
} else if loVlanEntryClear == 2 {
// new VlanFilterList should be one entry smaller now - copy from last configured entry
// this loop now includes the 0 element on previous last valid entry
for i := uint8(0); i <= oFsm.numVlanFilterEntries; i++ {
oFsm.vlanFilterList[i] = vtfdFilterList[i]
}
oFsm.numVlanFilterEntries--
}
oFsm.mutexFlowParams.Unlock()
}
}
if loAllowSpecificOmciConfig { //specific OMCI config is expected to work acc. to the device state
go oFsm.removeEvtocdEntries(ctx, loRuleParams)
} else {
// OMCI processing is not done, expectation is to have the ONU in some basic config state accordingly
logger.Debugw(ctx, "UniVlanConfigFsm remove EVTOCD OMCI handling skipped based on device state", log.Fields{
"device-id": oFsm.deviceID})
// Can't call FSM Event directly, decoupling it
go func(a_pBaseFsm *fsm.FSM) {
_ = a_pBaseFsm.Event(VlanEvRemFlowDone, loRuleParams.TpID)
}(pConfigVlanStateBaseFsm)
}
}
func (oFsm *UniVlanConfigFsm) enterVlanCleanupDone(ctx context.Context, e *fsm.Event) {
var tpID uint8
// Extract the tpID
if len(e.Args) > 0 {
tpID = e.Args[0].(uint8)
logger.Debugw(ctx, "UniVlanConfigFsm - flow removed for tp id", log.Fields{"device-id": oFsm.deviceID, "tpID": e.Args[0].(uint8)})
} else {
logger.Warnw(ctx, "UniVlanConfigFsm - tp id not available", log.Fields{"device-id": oFsm.deviceID})
}
oFsm.mutexFlowParams.Lock()
deletedCookie := oFsm.uniRemoveFlowsSlice[0].cookie
pConfigVlanStateAFsm := oFsm.PAdaptFsm
if pConfigVlanStateAFsm == nil {
logger.Errorw(ctx, "invalid Fsm pointer - unresolvable - abort",
log.Fields{"device-id": oFsm.deviceID})
//would have to be fixed from outside somehow
return
}
// here we need o finally remove the removed data also from uniVlanFlowParamsSlice and possibly have to
// stop the suspension of a add-activity waiting for the end of removal
//call from 'configured' state of the rule
if err := oFsm.removeFlowFromParamsSlice(ctx, deletedCookie, true); err != nil {
//something quite inconsistent detected, perhaps just try to recover with FSM reset
oFsm.mutexFlowParams.Unlock()
logger.Errorw(ctx, "UniVlanConfigFsm - could not clear database - abort", log.Fields{"device-id": oFsm.deviceID})
go func(a_pAFsm *cmn.AdapterFsm) {
_ = a_pAFsm.PFsm.Event(VlanEvReset)
}(pConfigVlanStateAFsm)
return
}
if oFsm.uniRemoveFlowsSlice[0].isSuspendedOnAdd {
removeChannel := oFsm.uniRemoveFlowsSlice[0].removeChannel
oFsm.mutexFlowParams.Unlock()
removeChannel <- true
oFsm.mutexFlowParams.Lock()
}
logger.Debugw(ctx, "UniVlanConfigFsm - removing the removal data", log.Fields{
"in state": e.FSM.Current(), "device-id": oFsm.deviceID,
"removed cookie": deletedCookie, "waitForDeleteCookie": oFsm.delayNewRuleCookie})
// Store the reference to the flow response channel before this entry in the slice is deleted
flowRespChan := oFsm.uniRemoveFlowsSlice[0].respChan
if len(oFsm.uniRemoveFlowsSlice) <= 1 {
oFsm.uniRemoveFlowsSlice = nil //reset the slice
logger.Debugw(ctx, "UniVlanConfigFsm flow removal - last remove-flow deleted", log.Fields{
"device-id": oFsm.deviceID})
} else {
//cut off the actual flow by slicing out the first element
oFsm.uniRemoveFlowsSlice = append(
oFsm.uniRemoveFlowsSlice[:0],
oFsm.uniRemoveFlowsSlice[1:]...)
logger.Debugw(ctx, "UniVlanConfigFsm flow removal - specific flow deleted from data", log.Fields{
"device-id": oFsm.deviceID})
}
oFsm.mutexFlowParams.Unlock()
oFsm.requestEventOffset = uint8(cDeviceEventOffsetRemoveWithKvStore) //offset for last flow-remove activity (with kvStore request)
//return to the basic config verification state
// Can't call FSM Event directly, decoupling it
go func(a_pAFsm *cmn.AdapterFsm) {
_ = a_pAFsm.PFsm.Event(VlanEvFlowDataRemoved)
}(pConfigVlanStateAFsm)
oFsm.mutexFlowParams.Lock()
noOfFlowRem := len(oFsm.uniRemoveFlowsSlice)
if deletedCookie == oFsm.delayNewRuleCookie {
// flush the channel CookieDeleted to ensure it is not lingering from some previous (aborted) activity
select {
case <-oFsm.chCookieDeleted:
logger.Debug(ctx, "flushed CookieDeleted")
default:
}
oFsm.chCookieDeleted <- true // let the waiting AddFlow thread continue
}
// If all pending flow-removes are completed and TP ID is valid go on processing any pending TP delete
if oFsm.signalOnFlowDelete && noOfFlowRem == 0 && tpID > 0 {
logger.Debugw(ctx, "signal flow removal for pending TP delete", log.Fields{"device-id": oFsm.deviceID, "tpID": tpID})
// If we are here then all flows are removed.
if len(oFsm.flowDeleteChannel) == 0 { //channel not yet in use
oFsm.flowDeleteChannel <- true
oFsm.signalOnFlowDelete = false
}
}
oFsm.mutexFlowParams.Unlock()
// send response on the response channel for the removed flow.
oFsm.pushReponseOnFlowResponseChannel(ctx, flowRespChan, nil)
}
func (oFsm *UniVlanConfigFsm) enterResetting(ctx context.Context, e *fsm.Event) {
logger.Debugw(ctx, "UniVlanConfigFsm resetting", log.Fields{"device-id": oFsm.deviceID})
oFsm.mutexPLastTxMeInstance.Lock()
oFsm.pLastTxMeInstance = nil //to avoid misinterpretation in case of some lingering frame reception processing
oFsm.mutexPLastTxMeInstance.Unlock()
pConfigVlanStateAFsm := oFsm.PAdaptFsm
if pConfigVlanStateAFsm != nil {
// abort running message processing
fsmAbortMsg := cmn.Message{
Type: cmn.TestMsg,
Data: cmn.TestMessage{
TestMessageVal: cmn.AbortMessageProcessing,
},
}
pConfigVlanStateAFsm.CommChan <- fsmAbortMsg
//internal data is not explicitly removed, this is left to garbage collection after complete FSM removal
// but some channels have to be cleared to avoid unintended waiting for events, that have no meaning anymore now
oFsm.mutexFlowParams.RLock()
if oFsm.delayNewRuleCookie != 0 {
// looks like the waiting AddFlow is stuck
oFsm.mutexFlowParams.RUnlock()
//use asynchronous channel sending to avoid stucking on non-waiting receiver
select {
case oFsm.chCookieDeleted <- false: // let the waiting AddFlow thread terminate
default:
}
oFsm.mutexFlowParams.RLock()
}
if len(oFsm.uniRemoveFlowsSlice) > 0 {
for _, removeUniFlowParams := range oFsm.uniRemoveFlowsSlice {
if removeUniFlowParams.isSuspendedOnAdd {
removeChannel := removeUniFlowParams.removeChannel
logger.Debugw(ctx, "UniVlanConfigFsm flow clear-up - abort suspended rule-add", log.Fields{
"device-id": oFsm.deviceID, "cookie": removeUniFlowParams.cookie})
oFsm.mutexFlowParams.RUnlock()
//use asynchronous channel sending to avoid stucking on non-waiting receiver
select {
case removeChannel <- false:
default:
}
oFsm.mutexFlowParams.RLock()
}
// Send response on response channel if the caller is waiting on it.
var err error = nil
if !oFsm.isCanceled {
//only if the FSM is not canceled on external request use some error indication for the respChan
// so only at real internal FSM abortion some error code is sent back
// on the deleteFlow with the hope the system may handle such error situation (possibly retrying)
err = fmt.Errorf("internal-error")
}
//if the FSM was cancelled on external request the assumption is, that all processing has to be stopped
// assumed in connection with some ONU down/removal indication in which case all flows can be considered as removed
oFsm.pushReponseOnFlowResponseChannel(ctx, removeUniFlowParams.respChan, err)
}
}
if oFsm.pDeviceHandler != nil {
if len(oFsm.uniVlanFlowParamsSlice) > 0 {
if !oFsm.isCanceled {
//if the FSM is not canceled on external request use "internal-error" for the respChan
for _, vlanRule := range oFsm.uniVlanFlowParamsSlice {
// Send response on response channel if the caller is waiting on it with according error indication.
oFsm.pushReponseOnFlowResponseChannel(ctx, vlanRule.RespChan, fmt.Errorf("internal-error"))
}
//permanently remove possibly stored persistent data
var emptySlice = make([]cmn.UniVlanFlowParams, 0)
_ = oFsm.pDeviceHandler.StorePersUniFlowConfig(ctx, oFsm.pOnuUniPort.UniID, &emptySlice, true) //ignore errors
} else {
// reset (cancel) of all Fsm is always accompanied by global persistency data removal
// no need to remove specific data in this case here
// TODO: cancelation may also abort a running flowAdd activity in which case it would be better
// to also resopnd on the respChan with some error ("config canceled"), but that is a bit hard to decide here
// so just left open by now
logger.Debugw(ctx, "UniVlanConfigFsm persistency data not cleared", log.Fields{"device-id": oFsm.deviceID})
}
}
oFsm.mutexFlowParams.RUnlock()
//try to let the FSM proceed to 'disabled'
// Can't call FSM Event directly, decoupling it
go func(a_pAFsm *cmn.AdapterFsm) {
if a_pAFsm != nil && a_pAFsm.PFsm != nil {
_ = a_pAFsm.PFsm.Event(VlanEvRestart)
}
}(pConfigVlanStateAFsm)
return
}
oFsm.mutexFlowParams.RUnlock()
logger.Warnw(ctx, "UniVlanConfigFsm - device handler already vanished",
log.Fields{"device-id": oFsm.deviceID})
return
}
logger.Warnw(ctx, "UniVlanConfigFsm - FSM pointer already vanished",
log.Fields{"device-id": oFsm.deviceID})
}
func (oFsm *UniVlanConfigFsm) enterDisabled(ctx context.Context, e *fsm.Event) {
logger.Debugw(ctx, "UniVlanConfigFsm enters disabled state", log.Fields{"device-id": oFsm.deviceID})
if oFsm.pDeviceHandler != nil {
//request removal of 'reference' in the Handler (completely clear the FSM and its data)
go oFsm.pDeviceHandler.RemoveVlanFilterFsm(ctx, oFsm.pOnuUniPort)
return
}
logger.Warnw(ctx, "UniVlanConfigFsm - device handler already vanished",
log.Fields{"device-id": oFsm.deviceID})
}
func (oFsm *UniVlanConfigFsm) processOmciVlanMessages(ctx context.Context) { //ctx context.Context?
logger.Debugw(ctx, "Start UniVlanConfigFsm Msg processing", log.Fields{"for device-id": oFsm.deviceID})
loop:
for {
// case <-ctx.Done():
// logger.Info(ctx,"MibSync Msg", log.Fields{"Message handling canceled via context for device-id": oFsm.deviceID})
// break loop
message, ok := <-oFsm.PAdaptFsm.CommChan
if !ok {
logger.Info(ctx, "UniVlanConfigFsm Rx Msg - could not read from channel", log.Fields{"device-id": oFsm.deviceID})
// but then we have to ensure a restart of the FSM as well - as exceptional procedure
_ = oFsm.PAdaptFsm.PFsm.Event(VlanEvReset)
break loop
}
logger.Debugw(ctx, "UniVlanConfigFsm Rx Msg", log.Fields{"device-id": oFsm.deviceID})
switch message.Type {
case cmn.TestMsg:
msg, _ := message.Data.(cmn.TestMessage)
if msg.TestMessageVal == cmn.AbortMessageProcessing {
logger.Infow(ctx, "UniVlanConfigFsm abort ProcessMsg", log.Fields{"for device-id": oFsm.deviceID})
break loop
}
logger.Warnw(ctx, "UniVlanConfigFsm unknown TestMessage", log.Fields{"device-id": oFsm.deviceID, "MessageVal": msg.TestMessageVal})
case cmn.OMCI:
msg, _ := message.Data.(cmn.OmciMessage)
oFsm.handleOmciVlanConfigMessage(ctx, msg)
default:
logger.Warn(ctx, "UniVlanConfigFsm Rx unknown message", log.Fields{"device-id": oFsm.deviceID,
"message.Type": message.Type})
}
}
logger.Infow(ctx, "End UniVlanConfigFsm Msg processing", log.Fields{"device-id": oFsm.deviceID})
}
func (oFsm *UniVlanConfigFsm) handleOmciVlanConfigMessage(ctx context.Context, msg cmn.OmciMessage) {
logger.Debugw(ctx, "Rx OMCI UniVlanConfigFsm Msg", log.Fields{"device-id": oFsm.deviceID,
"msgType": msg.OmciMsg.MessageType})
switch msg.OmciMsg.MessageType {
case omci.CreateResponseType:
{ // had to shift that to a method to cope with StaticCodeAnalysis restrictions :-(
if err := oFsm.handleOmciCreateResponseMessage(ctx, msg.OmciPacket); err != nil {
logger.Warnw(ctx, "CreateResponse handling aborted", log.Fields{"err": err})
return
}
} //CreateResponseType
case omci.SetResponseType:
{ //leave that here as direct code as most often used
msgLayer := (*msg.OmciPacket).Layer(omci.LayerTypeSetResponse)
if msgLayer == nil {
logger.Errorw(ctx, "Omci Msg layer could not be detected for SetResponse",
log.Fields{"device-id": oFsm.deviceID})
return
}
msgObj, msgOk := msgLayer.(*omci.SetResponse)
if !msgOk {
logger.Errorw(ctx, "Omci Msg layer could not be assigned for SetResponse",
log.Fields{"device-id": oFsm.deviceID})
return
}
logger.Debugw(ctx, "UniVlanConfigFsm SetResponse Data", log.Fields{"device-id": oFsm.deviceID, "data-fields": msgObj})
if msgObj.Result != me.Success {
logger.Errorw(ctx, "UniVlanConfigFsm Omci SetResponse Error - later: drive FSM to abort state ?",
log.Fields{"device-id": oFsm.deviceID, "Error": msgObj.Result})
// possibly force FSM into abort or ignore some errors for some messages? store error for mgmt display?
return
}
oFsm.mutexPLastTxMeInstance.RLock()
if oFsm.pLastTxMeInstance != nil {
if msgObj.EntityClass == oFsm.pLastTxMeInstance.GetClassID() &&
msgObj.EntityInstance == oFsm.pLastTxMeInstance.GetEntityID() {
switch oFsm.pLastTxMeInstance.GetName() {
case "VlanTaggingFilterData", "ExtendedVlanTaggingOperationConfigurationData", "MulticastOperationsProfile", "GemPortNetworkCtp":
{ // let the MultiEntity config proceed by stopping the wait function
oFsm.mutexPLastTxMeInstance.RUnlock()
oFsm.omciMIdsResponseReceived <- true
return
}
default:
{
logger.Warnw(ctx, "Unsupported ME name received!",
log.Fields{"ME name": oFsm.pLastTxMeInstance.GetName(), "device-id": oFsm.deviceID})
}
}
}
} else {
logger.Warnw(ctx, "Pointer to last Tx MeInstance is nil!", log.Fields{"device-id": oFsm.deviceID})
}
oFsm.mutexPLastTxMeInstance.RUnlock()
} //SetResponseType
case omci.DeleteResponseType:
{ // had to shift that to a method to cope with StaticCodeAnalysis restrictions :-(
if err := oFsm.handleOmciDeleteResponseMessage(ctx, msg.OmciPacket); err != nil {
logger.Warnw(ctx, "DeleteResponse handling aborted", log.Fields{"err": err})
return
}
} //DeleteResponseType
default:
{
logger.Errorw(ctx, "Rx OMCI unhandled MsgType",
log.Fields{"omciMsgType": msg.OmciMsg.MessageType, "device-id": oFsm.deviceID})
return
}
}
}
func (oFsm *UniVlanConfigFsm) handleOmciCreateResponseMessage(ctx context.Context, apOmciPacket *gp.Packet) error {
msgLayer := (*apOmciPacket).Layer(omci.LayerTypeCreateResponse)
if msgLayer == nil {
logger.Errorw(ctx, "Omci Msg layer could not be detected for CreateResponse",
log.Fields{"device-id": oFsm.deviceID})
return fmt.Errorf("omci msg layer could not be detected for CreateResponse for device-id %x",
oFsm.deviceID)
}
msgObj, msgOk := msgLayer.(*omci.CreateResponse)
if !msgOk {
logger.Errorw(ctx, "Omci Msg layer could not be assigned for CreateResponse",
log.Fields{"device-id": oFsm.deviceID})
return fmt.Errorf("omci msg layer could not be assigned for CreateResponse for device-id %x",
oFsm.deviceID)
}
logger.Debugw(ctx, "UniVlanConfigFsm CreateResponse Data", log.Fields{"device-id": oFsm.deviceID, "data-fields": msgObj})
if msgObj.Result != me.Success && msgObj.Result != me.InstanceExists {
logger.Errorw(ctx, "Omci CreateResponse Error - later: drive FSM to abort state ?", log.Fields{"device-id": oFsm.deviceID,
"Error": msgObj.Result})
// possibly force FSM into abort or ignore some errors for some messages? store error for mgmt display?
return fmt.Errorf("omci CreateResponse Error for device-id %x",
oFsm.deviceID)
}
oFsm.mutexPLastTxMeInstance.RLock()
if oFsm.pLastTxMeInstance != nil {
if msgObj.EntityClass == oFsm.pLastTxMeInstance.GetClassID() &&
msgObj.EntityInstance == oFsm.pLastTxMeInstance.GetEntityID() {
// to satisfy StaticCodeAnalysis I had to move the small processing into a separate method :-(
switch oFsm.pLastTxMeInstance.GetName() {
case "VlanTaggingFilterData", "MulticastOperationsProfile",
"MulticastSubscriberConfigInfo", "MacBridgePortConfigurationData",
"ExtendedVlanTaggingOperationConfigurationData", "TrafficDescriptor":
{
oFsm.mutexPLastTxMeInstance.RUnlock()
if oFsm.PAdaptFsm.PFsm.Current() == VlanStConfigVtfd {
// Only if CreateResponse is received from first flow entry - let the FSM proceed ...
_ = oFsm.PAdaptFsm.PFsm.Event(VlanEvRxConfigVtfd)
} else { // let the MultiEntity config proceed by stopping the wait function
oFsm.omciMIdsResponseReceived <- true
}
return nil
}
default:
{
logger.Warnw(ctx, "Unsupported ME name received!",
log.Fields{"ME name": oFsm.pLastTxMeInstance.GetName(), "device-id": oFsm.deviceID})
}
}
}
} else {
logger.Warnw(ctx, "Pointer to last Tx MeInstance is nil!", log.Fields{"device-id": oFsm.deviceID})
}
oFsm.mutexPLastTxMeInstance.RUnlock()
return nil
}
func (oFsm *UniVlanConfigFsm) handleOmciDeleteResponseMessage(ctx context.Context, apOmciPacket *gp.Packet) error {
msgLayer := (*apOmciPacket).Layer(omci.LayerTypeDeleteResponse)
if msgLayer == nil {
logger.Errorw(ctx, "UniVlanConfigFsm - Omci Msg layer could not be detected for DeleteResponse",
log.Fields{"device-id": oFsm.deviceID})
return fmt.Errorf("omci msg layer could not be detected for DeleteResponse for device-id %x",
oFsm.deviceID)
}
msgObj, msgOk := msgLayer.(*omci.DeleteResponse)
if !msgOk {
logger.Errorw(ctx, "UniVlanConfigFsm - Omci Msg layer could not be assigned for DeleteResponse",
log.Fields{"device-id": oFsm.deviceID})
return fmt.Errorf("omci msg layer could not be assigned for DeleteResponse for device-id %x",
oFsm.deviceID)
}
logger.Debugw(ctx, "UniVlanConfigFsm DeleteResponse Data", log.Fields{"device-id": oFsm.deviceID, "data-fields": msgObj})
if msgObj.Result != me.Success {
logger.Errorw(ctx, "UniVlanConfigFsm - Omci DeleteResponse Error - later: drive FSM to abort state ?",
log.Fields{"device-id": oFsm.deviceID, "Error": msgObj.Result})
// possibly force FSM into abort or ignore some errors for some messages? store error for mgmt display?
return fmt.Errorf("omci DeleteResponse Error for device-id %x",
oFsm.deviceID)
}
oFsm.mutexPLastTxMeInstance.RLock()
if oFsm.pLastTxMeInstance != nil {
if msgObj.EntityClass == oFsm.pLastTxMeInstance.GetClassID() &&
msgObj.EntityInstance == oFsm.pLastTxMeInstance.GetEntityID() {
switch oFsm.pLastTxMeInstance.GetName() {
case "VlanTaggingFilterData", "ExtendedVlanTaggingOperationConfigurationData", "TrafficDescriptor":
{ // let the MultiEntity config proceed by stopping the wait function
oFsm.mutexPLastTxMeInstance.RUnlock()
oFsm.omciMIdsResponseReceived <- true
return nil
}
default:
{
logger.Warnw(ctx, "Unsupported ME name received!",
log.Fields{"ME name": oFsm.pLastTxMeInstance.GetName(), "device-id": oFsm.deviceID})
}
}
}
} else {
logger.Warnw(ctx, "Pointer to last Tx MeInstance is nil!", log.Fields{"device-id": oFsm.deviceID})
}
oFsm.mutexPLastTxMeInstance.RUnlock()
return nil
}
func (oFsm *UniVlanConfigFsm) performConfigEvtocdEntries(ctx context.Context, aFlowEntryNo uint8) error {
oFsm.mutexFlowParams.RLock()
evtocdID := oFsm.evtocdID
oFsm.mutexFlowParams.RUnlock()
if aFlowEntryNo == 0 {
// EthType set only at first flow element
// EVTOCD ME is expected to exist at this point already from MIB-Download (with AssociationType/Pointer)
// we need to extend the configuration by EthType definition and, to be sure, downstream 'inverse' mode
logger.Debugw(ctx, "UniVlanConfigFsm Tx Create::EVTOCD", log.Fields{
"EntitytId": strconv.FormatInt(int64(evtocdID), 16),
"i/oEthType": strconv.FormatInt(int64(cDefaultTpid), 16),
"device-id": oFsm.deviceID})
associationType := 2 // default to UniPPTP
if oFsm.pOnuUniPort.PortType == cmn.UniVEIP {
associationType = 10
}
// Create the EVTOCD ME
meParams := me.ParamData{
EntityID: evtocdID,
Attributes: me.AttributeValueMap{
"AssociationType": uint8(associationType),
"AssociatedMePointer": oFsm.pOnuUniPort.EntityID,
},
}
oFsm.mutexPLastTxMeInstance.Lock()
meInstance, err := oFsm.pOmciCC.SendCreateEvtocdVar(context.TODO(), oFsm.pDeviceHandler.GetOmciTimeout(),
true, oFsm.PAdaptFsm.CommChan, meParams)
if err != nil {
oFsm.mutexPLastTxMeInstance.Unlock()
logger.Errorw(ctx, "CreateEvtocdVar create failed, aborting UniVlanConfigFsm!",
log.Fields{"device-id": oFsm.deviceID})
_ = oFsm.PAdaptFsm.PFsm.Event(VlanEvReset)
return fmt.Errorf("evtocd instance create failed %s, error %s", oFsm.deviceID, err)
}
//accept also nil as (error) return value for writing to LastTx
// - this avoids misinterpretation of new received OMCI messages
oFsm.pLastTxMeInstance = meInstance
oFsm.mutexPLastTxMeInstance.Unlock()
//verify response
err = oFsm.waitforOmciResponse(ctx)
if err != nil {
logger.Errorw(ctx, "Evtocd create failed, aborting VlanConfig FSM!",
log.Fields{"device-id": oFsm.deviceID})
_ = oFsm.PAdaptFsm.PFsm.Event(VlanEvReset)
return fmt.Errorf("evtocd create failed %s, error %s", oFsm.deviceID, err)
}
// Set the EVTOCD ME default params
meParams = me.ParamData{
EntityID: evtocdID,
Attributes: me.AttributeValueMap{
"InputTpid": uint16(cDefaultTpid), //could be possibly retrieved from flow config one day, by now just like py-code base
"OutputTpid": uint16(cDefaultTpid), //could be possibly retrieved from flow config one day, by now just like py-code base
"DownstreamMode": uint8(cDefaultDownstreamMode),
},
}
oFsm.mutexPLastTxMeInstance.Lock()
meInstance, err = oFsm.pOmciCC.SendSetEvtocdVar(log.WithSpanFromContext(context.TODO(), ctx),
oFsm.pDeviceHandler.GetOmciTimeout(), true,
oFsm.PAdaptFsm.CommChan, meParams)
if err != nil {
oFsm.mutexPLastTxMeInstance.Unlock()
logger.Errorw(ctx, "SetEvtocdVar set failed, aborting UniVlanConfigFsm!",
log.Fields{"device-id": oFsm.deviceID})
_ = oFsm.PAdaptFsm.PFsm.Event(VlanEvReset)
return fmt.Errorf("evtocd instance set failed %s, error %s", oFsm.deviceID, err)
}
//accept also nil as (error) return value for writing to LastTx
// - this avoids misinterpretation of new received OMCI messages
oFsm.pLastTxMeInstance = meInstance
oFsm.mutexPLastTxMeInstance.Unlock()
//verify response
err = oFsm.waitforOmciResponse(ctx)
if err != nil {
logger.Errorw(ctx, "Evtocd set TPID failed, aborting VlanConfig FSM!",
log.Fields{"device-id": oFsm.deviceID})
_ = oFsm.PAdaptFsm.PFsm.Event(VlanEvReset)
return fmt.Errorf("evtocd set TPID failed %s, error %s", oFsm.deviceID, err)
}
} //first flow element
oFsm.mutexFlowParams.RLock()
if oFsm.actualUniFlowParam.VlanRuleParams.SetVid == uint32(of.OfpVlanId_OFPVID_PRESENT) {
//transparent transmission required
oFsm.mutexFlowParams.RUnlock()
logger.Debugw(ctx, "UniVlanConfigFsm Tx Set::EVTOCD single tagged transparent rule", log.Fields{
"device-id": oFsm.deviceID})
sliceEvtocdRule := make([]uint8, 16)
// fill vlan tagging operation table bit fields using network=bigEndian order and using slice offset 0 as highest 'word'
binary.BigEndian.PutUint32(sliceEvtocdRule[cFilterOuterOffset:],
cPrioIgnoreTag<<cFilterPrioOffset| // Not an outer-tag rule
cDoNotFilterVid<<cFilterVidOffset| // Do not filter on outer vid
cDoNotFilterTPID<<cFilterTpidOffset) // Do not filter on outer TPID field
binary.BigEndian.PutUint32(sliceEvtocdRule[cFilterInnerOffset:],
cPrioDefaultFilter<<cFilterPrioOffset| // default inner-tag rule
cDoNotFilterVid<<cFilterVidOffset| // Do not filter on inner vid
cDoNotFilterTPID<<cFilterTpidOffset| // Do not filter on inner TPID field
cDoNotFilterEtherType<<cFilterEtherTypeOffset) // Do not filter of EtherType
binary.BigEndian.PutUint32(sliceEvtocdRule[cTreatOuterOffset:],
0<<cTreatTTROffset| // Do not pop any tags
cDoNotAddPrio<<cTreatPrioOffset| // do not add outer tag
cDontCareVid<<cTreatVidOffset| // Outer VID don't care
cDontCareTpid<<cTreatTpidOffset) // Outer TPID field don't care
binary.BigEndian.PutUint32(sliceEvtocdRule[cTreatInnerOffset:],
cDoNotAddPrio<<cTreatPrioOffset| // do not add inner tag
cDontCareVid<<cTreatVidOffset| // Outer VID don't care
cSetOutputTpidCopyDei<<cTreatTpidOffset) // Set TPID = 0x8100
meParams := me.ParamData{
EntityID: evtocdID,
Attributes: me.AttributeValueMap{
"ReceivedFrameVlanTaggingOperationTable": sliceEvtocdRule,
},
}
oFsm.mutexPLastTxMeInstance.Lock()
meInstance, err := oFsm.pOmciCC.SendSetEvtocdVar(log.WithSpanFromContext(context.TODO(), ctx),
oFsm.pDeviceHandler.GetOmciTimeout(), true,
oFsm.PAdaptFsm.CommChan, meParams)
if err != nil {
oFsm.mutexPLastTxMeInstance.Unlock()
logger.Errorw(ctx, "SetEvtocdVar set failed, aborting UniVlanConfigFsm!",
log.Fields{"device-id": oFsm.deviceID})
_ = oFsm.PAdaptFsm.PFsm.Event(VlanEvReset)
return fmt.Errorf("evtocd instance set failed %s, error %s", oFsm.deviceID, err)
}
//accept also nil as (error) return value for writing to LastTx
// - this avoids misinterpretation of new received OMCI messages
oFsm.pLastTxMeInstance = meInstance
oFsm.mutexPLastTxMeInstance.Unlock()
//verify response
err = oFsm.waitforOmciResponse(ctx)
if err != nil {
logger.Errorw(ctx, "Evtocd set transparent singletagged rule failed, aborting VlanConfig FSM!",
log.Fields{"device-id": oFsm.deviceID})
_ = oFsm.PAdaptFsm.PFsm.Event(VlanEvReset)
return fmt.Errorf("evtocd set transparent singletagged rule failed %s, error %s", oFsm.deviceID, err)
}
} else {
// according to py-code acceptIncrementalEvto program option decides upon stacking or translation scenario
if oFsm.acceptIncrementalEvtoOption {
matchPcp := oFsm.actualUniFlowParam.VlanRuleParams.MatchPcp
matchVid := oFsm.actualUniFlowParam.VlanRuleParams.MatchVid
setPcp := oFsm.actualUniFlowParam.VlanRuleParams.SetPcp
setVid := oFsm.actualUniFlowParam.VlanRuleParams.SetVid
// this defines VID translation scenario: singletagged->singletagged (if not transparent)
logger.Debugw(ctx, "UniVlanConfigFsm Tx Set::EVTOCD single tagged translation rule", log.Fields{
"match-pcp": matchPcp, "match-vid": matchVid, "set-pcp": setPcp, "set-vid:": setVid, "device-id": oFsm.deviceID})
sliceEvtocdRule := make([]uint8, 16)
// fill vlan tagging operation table bit fields using network=bigEndian order and using slice offset 0 as highest 'word'
binary.BigEndian.PutUint32(sliceEvtocdRule[cFilterOuterOffset:],
cPrioIgnoreTag<<cFilterPrioOffset| // Not an outer-tag rule
cDoNotFilterVid<<cFilterVidOffset| // Do not filter on outer vid
cDoNotFilterTPID<<cFilterTpidOffset) // Do not filter on outer TPID field
binary.BigEndian.PutUint32(sliceEvtocdRule[cFilterInnerOffset:],
oFsm.actualUniFlowParam.VlanRuleParams.MatchPcp<<cFilterPrioOffset| // either DNFonPrio or ignore tag (default) on innerVLAN
oFsm.actualUniFlowParam.VlanRuleParams.MatchVid<<cFilterVidOffset| // either DNFonVid or real filter VID
cDoNotFilterTPID<<cFilterTpidOffset| // Do not filter on inner TPID field
cDoNotFilterEtherType<<cFilterEtherTypeOffset) // Do not filter of EtherType
binary.BigEndian.PutUint32(sliceEvtocdRule[cTreatOuterOffset:],
oFsm.actualUniFlowParam.VlanRuleParams.TagsToRemove<<cTreatTTROffset| // either 1 or 0
cDoNotAddPrio<<cTreatPrioOffset| // do not add outer tag
cDontCareVid<<cTreatVidOffset| // Outer VID don't care
cDontCareTpid<<cTreatTpidOffset) // Outer TPID field don't care
binary.BigEndian.PutUint32(sliceEvtocdRule[cTreatInnerOffset:],
oFsm.actualUniFlowParam.VlanRuleParams.SetPcp<<cTreatPrioOffset| // as configured in flow
oFsm.actualUniFlowParam.VlanRuleParams.SetVid<<cTreatVidOffset| //as configured in flow
cSetOutputTpidCopyDei<<cTreatTpidOffset) // Set TPID = 0x8100
oFsm.mutexFlowParams.RUnlock()
meParams := me.ParamData{
EntityID: evtocdID,
Attributes: me.AttributeValueMap{
"ReceivedFrameVlanTaggingOperationTable": sliceEvtocdRule,
},
}
oFsm.mutexPLastTxMeInstance.Lock()
meInstance, err := oFsm.pOmciCC.SendSetEvtocdVar(log.WithSpanFromContext(context.TODO(), ctx),
oFsm.pDeviceHandler.GetOmciTimeout(), true,
oFsm.PAdaptFsm.CommChan, meParams)
if err != nil {
oFsm.mutexPLastTxMeInstance.Unlock()
logger.Errorw(ctx, "SetEvtocdVar set failed, aborting UniVlanConfigFsm!",
log.Fields{"device-id": oFsm.deviceID})
_ = oFsm.PAdaptFsm.PFsm.Event(VlanEvReset)
return fmt.Errorf("evtocd instance set failed %s, error %s", oFsm.deviceID, err)
}
//accept also nil as (error) return value for writing to LastTx
// - this avoids misinterpretation of new received OMCI messages
oFsm.pLastTxMeInstance = meInstance
oFsm.mutexPLastTxMeInstance.Unlock()
//verify response
err = oFsm.waitforOmciResponse(ctx)
if err != nil {
logger.Errorw(ctx, "Evtocd set singletagged translation rule failed, aborting VlanConfig FSM!",
log.Fields{"device-id": oFsm.deviceID})
_ = oFsm.PAdaptFsm.PFsm.Event(VlanEvReset)
return fmt.Errorf("evtocd set singletagged translation rule failed %s, error %s", oFsm.deviceID, err)
}
} else {
//not transparent and not acceptIncrementalEvtoOption untagged/priotagged->singletagged
{ // just for local var's
// this defines stacking scenario: untagged->singletagged
logger.Debugw(ctx, "UniVlanConfigFsm Tx Set::EVTOCD untagged->singletagged rule", log.Fields{
"device-id": oFsm.deviceID})
sliceEvtocdRule := make([]uint8, 16)
// fill vlan tagging operation table bit fields using network=bigEndian order and using slice offset 0 as highest 'word'
binary.BigEndian.PutUint32(sliceEvtocdRule[cFilterOuterOffset:],
cPrioIgnoreTag<<cFilterPrioOffset| // Not an outer-tag rule
cDoNotFilterVid<<cFilterVidOffset| // Do not filter on outer vid
cDoNotFilterTPID<<cFilterTpidOffset) // Do not filter on outer TPID field
binary.BigEndian.PutUint32(sliceEvtocdRule[cFilterInnerOffset:],
cPrioIgnoreTag<<cFilterPrioOffset| // Not an inner-tag rule
cDoNotFilterVid<<cFilterVidOffset| // Do not filter on inner vid
cDoNotFilterTPID<<cFilterTpidOffset| // Do not filter on inner TPID field
cDoNotFilterEtherType<<cFilterEtherTypeOffset) // Do not filter of EtherType
binary.BigEndian.PutUint32(sliceEvtocdRule[cTreatOuterOffset:],
0<<cTreatTTROffset| // Do not pop any tags
cDoNotAddPrio<<cTreatPrioOffset| // do not add outer tag
cDontCareVid<<cTreatVidOffset| // Outer VID don't care
cDontCareTpid<<cTreatTpidOffset) // Outer TPID field don't care
binary.BigEndian.PutUint32(sliceEvtocdRule[cTreatInnerOffset:],
0<<cTreatPrioOffset| // vlan prio set to 0
// (as done in Py code, maybe better option would be setPcp here, which still could be 0?)
oFsm.actualUniFlowParam.VlanRuleParams.SetVid<<cTreatVidOffset| // Outer VID don't care
cSetOutputTpidCopyDei<<cTreatTpidOffset) // Set TPID = 0x8100
oFsm.mutexFlowParams.RUnlock()
meParams := me.ParamData{
EntityID: evtocdID,
Attributes: me.AttributeValueMap{
"ReceivedFrameVlanTaggingOperationTable": sliceEvtocdRule,
},
}
oFsm.mutexPLastTxMeInstance.Lock()
meInstance, err := oFsm.pOmciCC.SendSetEvtocdVar(log.WithSpanFromContext(context.TODO(), ctx),
oFsm.pDeviceHandler.GetOmciTimeout(), true,
oFsm.PAdaptFsm.CommChan, meParams)
if err != nil {
oFsm.mutexPLastTxMeInstance.Unlock()
logger.Errorw(ctx, "SetEvtocdVar set failed, aborting UniVlanConfigFsm!",
log.Fields{"device-id": oFsm.deviceID})
_ = oFsm.PAdaptFsm.PFsm.Event(VlanEvReset)
return fmt.Errorf("evtocd instance set failed %s, error %s", oFsm.deviceID, err)
}
//accept also nil as (error) return value for writing to LastTx
// - this avoids misinterpretation of new received OMCI messages
oFsm.pLastTxMeInstance = meInstance
oFsm.mutexPLastTxMeInstance.Unlock()
//verify response
err = oFsm.waitforOmciResponse(ctx)
if err != nil {
logger.Errorw(ctx, "Evtocd set untagged->singletagged rule failed, aborting VlanConfig FSM!",
log.Fields{"device-id": oFsm.deviceID})
_ = oFsm.PAdaptFsm.PFsm.Event(VlanEvReset)
return fmt.Errorf("evtocd set untagged->singletagged rule failed %s, error %s", oFsm.deviceID, err)
}
} // just for local var's
{ // just for local var's
// this defines 'stacking' scenario: priotagged->singletagged
logger.Debugw(ctx, "UniVlanConfigFsm Tx Set::EVTOCD priotagged->singletagged rule", log.Fields{
"device-id": oFsm.deviceID})
sliceEvtocdRule := make([]uint8, 16)
// fill vlan tagging operation table bit fields using network=bigEndian order and using slice offset 0 as highest 'word'
binary.BigEndian.PutUint32(sliceEvtocdRule[cFilterOuterOffset:],
cPrioIgnoreTag<<cFilterPrioOffset| // Not an outer-tag rule
cDoNotFilterVid<<cFilterVidOffset| // Do not filter on outer vid
cDoNotFilterTPID<<cFilterTpidOffset) // Do not filter on outer TPID field
binary.BigEndian.PutUint32(sliceEvtocdRule[cFilterInnerOffset:],
cPrioDoNotFilter<<cFilterPrioOffset| // Do not Filter on innerprio
0<<cFilterVidOffset| // filter on inner vid 0 (prioTagged)
cDoNotFilterTPID<<cFilterTpidOffset| // Do not filter on inner TPID field
cDoNotFilterEtherType<<cFilterEtherTypeOffset) // Do not filter of EtherType
binary.BigEndian.PutUint32(sliceEvtocdRule[cTreatOuterOffset:],
1<<cTreatTTROffset| // pop the prio-tag
cDoNotAddPrio<<cTreatPrioOffset| // do not add outer tag
cDontCareVid<<cTreatVidOffset| // Outer VID don't care
cDontCareTpid<<cTreatTpidOffset) // Outer TPID field don't care
oFsm.mutexFlowParams.RLock()
binary.BigEndian.PutUint32(sliceEvtocdRule[cTreatInnerOffset:],
cCopyPrioFromInner<<cTreatPrioOffset| // vlan copy from PrioTag
// (as done in Py code, maybe better option would be setPcp here, which still could be PrioCopy?)
oFsm.actualUniFlowParam.VlanRuleParams.SetVid<<cTreatVidOffset| // Outer VID as configured
cSetOutputTpidCopyDei<<cTreatTpidOffset) // Set TPID = 0x8100
oFsm.mutexFlowParams.RUnlock()
meParams := me.ParamData{
EntityID: evtocdID,
Attributes: me.AttributeValueMap{
"ReceivedFrameVlanTaggingOperationTable": sliceEvtocdRule,
},
}
oFsm.mutexPLastTxMeInstance.Lock()
meInstance, err := oFsm.pOmciCC.SendSetEvtocdVar(log.WithSpanFromContext(context.TODO(), ctx),
oFsm.pDeviceHandler.GetOmciTimeout(), true,
oFsm.PAdaptFsm.CommChan, meParams)
if err != nil {
oFsm.mutexPLastTxMeInstance.Unlock()
logger.Errorw(ctx, "SetEvtocdVar set failed, aborting UniVlanConfigFsm!",
log.Fields{"device-id": oFsm.deviceID})
_ = oFsm.PAdaptFsm.PFsm.Event(VlanEvReset)
return fmt.Errorf("evtocd instance set failed %s, error %s", oFsm.deviceID, err)
}
//accept also nil as (error) return value for writing to LastTx
// - this avoids misinterpretation of new received OMCI messages
oFsm.pLastTxMeInstance = meInstance
oFsm.mutexPLastTxMeInstance.Unlock()
//verify response
err = oFsm.waitforOmciResponse(ctx)
if err != nil {
logger.Errorw(ctx, "Evtocd set priotagged->singletagged rule failed, aborting VlanConfig FSM!",
log.Fields{"device-id": oFsm.deviceID})
_ = oFsm.PAdaptFsm.PFsm.Event(VlanEvReset)
return fmt.Errorf("evtocd set priotagged->singletagged rule failed %s, error %s", oFsm.deviceID, err)
}
} //just for local var's
}
}
// if Config has been done for all EVTOCD entries let the FSM proceed
logger.Debugw(ctx, "EVTOCD set loop finished", log.Fields{"device-id": oFsm.deviceID})
oFsm.mutexFlowParams.Lock()
oFsm.ConfiguredUniFlow++ // one (more) flow configured
oFsm.mutexFlowParams.Unlock()
return nil
}
func (oFsm *UniVlanConfigFsm) removeEvtocdEntries(ctx context.Context, aRuleParams cmn.UniVlanRuleParams) {
oFsm.mutexFlowParams.RLock()
evtocdID := oFsm.evtocdID
oFsm.mutexFlowParams.RUnlock()
// configured Input/Output TPID is not modified again - no influence if no filter is applied
if aRuleParams.SetVid == uint32(of.OfpVlanId_OFPVID_PRESENT) {
//transparent transmission was set
//perhaps the config is not needed for removal,
// but the specific InnerTpid setting is removed in favor of the real default forwarding rule
logger.Debugw(ctx, "UniVlanConfigFsm Tx Set::EVTOCD reset to default single tagged rule", log.Fields{
"device-id": oFsm.deviceID})
sliceEvtocdRule := make([]uint8, 16)
// fill vlan tagging operation table bit fields using network=bigEndian order and using slice offset 0 as highest 'word'
binary.BigEndian.PutUint32(sliceEvtocdRule[cFilterOuterOffset:],
cPrioIgnoreTag<<cFilterPrioOffset| // Not an outer-tag rule
cDoNotFilterVid<<cFilterVidOffset| // Do not filter on outer vid
cDoNotFilterTPID<<cFilterTpidOffset) // Do not filter on outer TPID field
binary.BigEndian.PutUint32(sliceEvtocdRule[cFilterInnerOffset:],
cPrioDefaultFilter<<cFilterPrioOffset| // default inner-tag rule
cDoNotFilterVid<<cFilterVidOffset| // Do not filter on inner vid
cDoNotFilterTPID<<cFilterTpidOffset| // Do not filter on inner TPID field
cDoNotFilterEtherType<<cFilterEtherTypeOffset) // Do not filter of EtherType
binary.BigEndian.PutUint32(sliceEvtocdRule[cTreatOuterOffset:],
0<<cTreatTTROffset| // Do not pop any tags
cDoNotAddPrio<<cTreatPrioOffset| // do not add outer tag
cDontCareVid<<cTreatVidOffset| // Outer VID don't care
cDontCareTpid<<cTreatTpidOffset) // Outer TPID field don't care
binary.BigEndian.PutUint32(sliceEvtocdRule[cTreatInnerOffset:],
cDoNotAddPrio<<cTreatPrioOffset| // do not add inner tag
cDontCareVid<<cTreatVidOffset| // Outer VID don't care
cDontCareTpid<<cTreatTpidOffset) // copy TPID and DEI
meParams := me.ParamData{
EntityID: evtocdID,
Attributes: me.AttributeValueMap{
"ReceivedFrameVlanTaggingOperationTable": sliceEvtocdRule,
},
}
oFsm.mutexPLastTxMeInstance.Lock()
meInstance, err := oFsm.pOmciCC.SendSetEvtocdVar(log.WithSpanFromContext(context.TODO(), ctx),
oFsm.pDeviceHandler.GetOmciTimeout(), true,
oFsm.PAdaptFsm.CommChan, meParams)
if err != nil {
oFsm.mutexPLastTxMeInstance.Unlock()
logger.Errorw(ctx, "SetEvtocdVar set failed, aborting UniVlanConfigFsm!",
log.Fields{"device-id": oFsm.deviceID})
_ = oFsm.PAdaptFsm.PFsm.Event(VlanEvReset)
return
}
//accept also nil as (error) return value for writing to LastTx
// - this avoids misinterpretation of new received OMCI messages
oFsm.pLastTxMeInstance = meInstance
oFsm.mutexPLastTxMeInstance.Unlock()
//verify response
err = oFsm.waitforOmciResponse(ctx)
if err != nil {
logger.Errorw(ctx, "Evtocd reset singletagged rule failed, aborting VlanConfig FSM!",
log.Fields{"device-id": oFsm.deviceID})
_ = oFsm.PAdaptFsm.PFsm.Event(VlanEvReset)
return
}
} else {
// according to py-code acceptIncrementalEvto program option decides upon stacking or translation scenario
oFsm.mutexFlowParams.RLock()
if oFsm.acceptIncrementalEvtoOption {
oFsm.mutexFlowParams.RUnlock()
// this defines VID translation scenario: singletagged->singletagged (if not transparent)
logger.Debugw(ctx, "UniVlanConfigFsm Tx Set::EVTOCD clear single tagged translation rule", log.Fields{
"device-id": oFsm.deviceID, "match-vlan": aRuleParams.MatchVid})
sliceEvtocdRule := make([]uint8, 16)
// fill vlan tagging operation table bit fields using network=bigEndian order and using slice offset 0 as highest 'word'
binary.BigEndian.PutUint32(sliceEvtocdRule[cFilterOuterOffset:],
cPrioIgnoreTag<<cFilterPrioOffset| // Not an outer-tag rule
cDoNotFilterVid<<cFilterVidOffset| // Do not filter on outer vid
cDoNotFilterTPID<<cFilterTpidOffset) // Do not filter on outer TPID field
binary.BigEndian.PutUint32(sliceEvtocdRule[cFilterInnerOffset:],
aRuleParams.MatchPcp<<cFilterPrioOffset| // either DNFonPrio or ignore tag (default) on innerVLAN
aRuleParams.MatchVid<<cFilterVidOffset| // either DNFonVid or real filter VID
cDoNotFilterTPID<<cFilterTpidOffset| // Do not filter on inner TPID field
cDoNotFilterEtherType<<cFilterEtherTypeOffset) // Do not filter of EtherType
// delete indication for the indicated Filter
binary.BigEndian.PutUint32(sliceEvtocdRule[cTreatOuterOffset:], 0xFFFFFFFF)
binary.BigEndian.PutUint32(sliceEvtocdRule[cTreatInnerOffset:], 0xFFFFFFFF)
meParams := me.ParamData{
EntityID: evtocdID,
Attributes: me.AttributeValueMap{
"ReceivedFrameVlanTaggingOperationTable": sliceEvtocdRule,
},
}
oFsm.mutexPLastTxMeInstance.Lock()
meInstance, err := oFsm.pOmciCC.SendSetEvtocdVar(log.WithSpanFromContext(context.TODO(), ctx),
oFsm.pDeviceHandler.GetOmciTimeout(), true,
oFsm.PAdaptFsm.CommChan, meParams)
if err != nil {
oFsm.mutexPLastTxMeInstance.Unlock()
logger.Errorw(ctx, "SetEvtocdVar set failed, aborting UniVlanConfigFsm!",
log.Fields{"device-id": oFsm.deviceID})
_ = oFsm.PAdaptFsm.PFsm.Event(VlanEvReset)
return
}
//accept also nil as (error) return value for writing to LastTx
// - this avoids misinterpretation of new received OMCI messages
oFsm.pLastTxMeInstance = meInstance
oFsm.mutexPLastTxMeInstance.Unlock()
//verify response
err = oFsm.waitforOmciResponse(ctx)
if err != nil {
logger.Errorw(ctx, "Evtocd clear singletagged translation rule failed, aborting VlanConfig FSM!",
log.Fields{"device-id": oFsm.deviceID, "match-vlan": aRuleParams.MatchVid})
_ = oFsm.PAdaptFsm.PFsm.Event(VlanEvReset)
return
}
} else {
// VOL-3685
// NOTE: With ALPHA ONUs it was seen that just resetting a particular entry in the EVTOCD table
// and re-configuring a new entry would not work. The old entry is removed and new entry is created
// indeed, but the traffic landing upstream would carry old vlan sometimes.
// This is only a WORKAROUND which basically deletes the entire EVTOCD ME and re-creates it again
// later when the flow is being re-installed.
// Of course this is applicable to case only where single service (or single tcont) is in use and
// there is only one service vlan (oFsm.acceptIncrementalEvtoOption is false in this case).
// Interstingly this problem has not been observed in multi-tcont (or multi-service) scenario (in
// which case the oFsm.acceptIncrementalEvtoOption is set to true).
if oFsm.ConfiguredUniFlow == 1 && !oFsm.acceptIncrementalEvtoOption {
oFsm.mutexFlowParams.RUnlock()
logger.Debugw(ctx, "UniVlanConfigFsm Tx Remove::EVTOCD", log.Fields{"device-id": oFsm.deviceID})
// When there are no more EVTOCD vlan configurations on the ONU and acceptIncrementalEvtoOption
// is not enabled, delete the EVTOCD ME.
meParams := me.ParamData{
EntityID: evtocdID,
}
oFsm.mutexPLastTxMeInstance.Lock()
meInstance, err := oFsm.pOmciCC.SendDeleteEvtocd(log.WithSpanFromContext(context.TODO(), ctx),
oFsm.pDeviceHandler.GetOmciTimeout(), true,
oFsm.PAdaptFsm.CommChan, meParams)
if err != nil {
oFsm.mutexPLastTxMeInstance.Unlock()
logger.Errorw(ctx, "DeleteEvtocdVar delete failed, aborting UniVlanConfigFsm!",
log.Fields{"device-id": oFsm.deviceID})
_ = oFsm.PAdaptFsm.PFsm.Event(VlanEvReset)
return
}
//accept also nil as (error) return value for writing to LastTx
// - this avoids misinterpretation of new received OMCI messages
oFsm.pLastTxMeInstance = meInstance
oFsm.mutexPLastTxMeInstance.Unlock()
//verify response
err = oFsm.waitforOmciResponse(ctx)
if err != nil {
logger.Errorw(ctx, "Evtocd delete rule failed, aborting VlanConfig FSM!",
log.Fields{"device-id": oFsm.deviceID})
_ = oFsm.PAdaptFsm.PFsm.Event(VlanEvReset)
return
}
} else {
// NOTE : We should ideally never ether this section when oFsm.acceptIncrementalEvtoOption is set to false
// This is true for only ATT/DT workflow
logger.Debugw(ctx, "UniVlanConfigFsm: Remove EVTOCD set operation",
log.Fields{"configured-flow": oFsm.ConfiguredUniFlow, "incremental-evto": oFsm.acceptIncrementalEvtoOption})
oFsm.mutexFlowParams.RUnlock()
//not transparent and not acceptIncrementalEvtoOption: untagged/priotagged->singletagged
{ // just for local var's
// this defines stacking scenario: untagged->singletagged
//TODO!! in theory there could be different rules running in setting different PCP/VID'S
// for untagged/priotagged, last rule wins (and remains the only one), maybe that should be
// checked already at flow-add (and rejected) - to be observed if such is possible in Voltha
// delete now assumes there is only one such rule!
logger.Debugw(ctx, "UniVlanConfigFsm Tx Set::EVTOCD reset untagged rule to default", log.Fields{
"device-id": oFsm.deviceID})
sliceEvtocdRule := make([]uint8, 16)
// fill vlan tagging operation table bit fields using network=bigEndian order and using slice offset 0 as highest 'word'
binary.BigEndian.PutUint32(sliceEvtocdRule[cFilterOuterOffset:],
cPrioIgnoreTag<<cFilterPrioOffset| // Not an outer-tag rule
cDoNotFilterVid<<cFilterVidOffset| // Do not filter on outer vid
cDoNotFilterTPID<<cFilterTpidOffset) // Do not filter on outer TPID field
binary.BigEndian.PutUint32(sliceEvtocdRule[cFilterInnerOffset:],
cPrioIgnoreTag<<cFilterPrioOffset| // Not an inner-tag rule
cDoNotFilterVid<<cFilterVidOffset| // Do not filter on inner vid
cDoNotFilterTPID<<cFilterTpidOffset| // Do not filter on inner TPID field
cDoNotFilterEtherType<<cFilterEtherTypeOffset) // Do not filter of EtherType
binary.BigEndian.PutUint32(sliceEvtocdRule[cTreatOuterOffset:],
0<<cTreatTTROffset| // Do not pop any tags
cDoNotAddPrio<<cTreatPrioOffset| // do not add outer tag
cDontCareVid<<cTreatVidOffset| // Outer VID don't care
cDontCareTpid<<cTreatTpidOffset) // Outer TPID field don't care
binary.BigEndian.PutUint32(sliceEvtocdRule[cTreatInnerOffset:],
cDoNotAddPrio<<cTreatPrioOffset| // do not add inner tag
cDontCareVid<<cTreatVidOffset| // Outer VID don't care
cDontCareTpid<<cTreatTpidOffset) // copy TPID and DEI
meParams := me.ParamData{
EntityID: evtocdID,
Attributes: me.AttributeValueMap{
"ReceivedFrameVlanTaggingOperationTable": sliceEvtocdRule,
},
}
oFsm.mutexPLastTxMeInstance.Lock()
meInstance, err := oFsm.pOmciCC.SendSetEvtocdVar(context.TODO(),
oFsm.pDeviceHandler.GetOmciTimeout(), true,
oFsm.PAdaptFsm.CommChan, meParams)
if err != nil {
oFsm.mutexPLastTxMeInstance.Unlock()
logger.Errorw(ctx, "SetEvtocdVar set failed, aborting UniVlanConfigFsm!",
log.Fields{"device-id": oFsm.deviceID})
_ = oFsm.PAdaptFsm.PFsm.Event(VlanEvReset)
return
}
//accept also nil as (error) return value for writing to LastTx
// - this avoids misinterpretation of new received OMCI messages
oFsm.pLastTxMeInstance = meInstance
oFsm.mutexPLastTxMeInstance.Unlock()
//verify response
err = oFsm.waitforOmciResponse(ctx)
if err != nil {
logger.Errorw(ctx, "Evtocd reset untagged rule to default failed, aborting VlanConfig FSM!",
log.Fields{"device-id": oFsm.deviceID})
_ = oFsm.PAdaptFsm.PFsm.Event(VlanEvReset)
return
}
} // just for local var's
{ // just for local var's
// this defines 'stacking' scenario: priotagged->singletagged
logger.Debugw(ctx, "UniVlanConfigFsm Tx Set::EVTOCD delete priotagged rule", log.Fields{
"device-id": oFsm.deviceID})
sliceEvtocdRule := make([]uint8, 16)
// fill vlan tagging operation table bit fields using network=bigEndian order and using slice offset 0 as highest 'word'
binary.BigEndian.PutUint32(sliceEvtocdRule[cFilterOuterOffset:],
cPrioIgnoreTag<<cFilterPrioOffset| // Not an outer-tag rule
cDoNotFilterVid<<cFilterVidOffset| // Do not filter on outer vid
cDoNotFilterTPID<<cFilterTpidOffset) // Do not filter on outer TPID field
binary.BigEndian.PutUint32(sliceEvtocdRule[cFilterInnerOffset:],
cPrioDoNotFilter<<cFilterPrioOffset| // Do not Filter on innerprio
0<<cFilterVidOffset| // filter on inner vid 0 (prioTagged)
cDoNotFilterTPID<<cFilterTpidOffset| // Do not filter on inner TPID field
cDoNotFilterEtherType<<cFilterEtherTypeOffset) // Do not filter of EtherType
// delete indication for the indicated Filter
binary.BigEndian.PutUint32(sliceEvtocdRule[cTreatOuterOffset:], 0xFFFFFFFF)
binary.BigEndian.PutUint32(sliceEvtocdRule[cTreatInnerOffset:], 0xFFFFFFFF)
meParams := me.ParamData{
EntityID: evtocdID,
Attributes: me.AttributeValueMap{
"ReceivedFrameVlanTaggingOperationTable": sliceEvtocdRule,
},
}
oFsm.mutexPLastTxMeInstance.Lock()
meInstance, err := oFsm.pOmciCC.SendSetEvtocdVar(log.WithSpanFromContext(context.TODO(), ctx),
oFsm.pDeviceHandler.GetOmciTimeout(), true,
oFsm.PAdaptFsm.CommChan, meParams)
if err != nil {
oFsm.mutexPLastTxMeInstance.Unlock()
logger.Errorw(ctx, "SetEvtocdVar set failed, aborting UniVlanConfigFsm!",
log.Fields{"device-id": oFsm.deviceID})
_ = oFsm.PAdaptFsm.PFsm.Event(VlanEvReset)
return
}
//accept also nil as (error) return value for writing to LastTx
// - this avoids misinterpretation of new received OMCI messages
oFsm.pLastTxMeInstance = meInstance
oFsm.mutexPLastTxMeInstance.Unlock()
//verify response
err = oFsm.waitforOmciResponse(ctx)
if err != nil {
logger.Errorw(ctx, "Evtocd delete priotagged rule failed, aborting VlanConfig FSM!",
log.Fields{"device-id": oFsm.deviceID})
_ = oFsm.PAdaptFsm.PFsm.Event(VlanEvReset)
return
}
}
} //just for local var's
}
}
// if Config has been done for all EVTOCD entries let the FSM proceed
logger.Debugw(ctx, "EVTOCD filter remove loop finished", log.Fields{"device-id": oFsm.deviceID})
_ = oFsm.PAdaptFsm.PFsm.Event(VlanEvRemFlowDone, aRuleParams.TpID)
}
func (oFsm *UniVlanConfigFsm) waitforOmciResponse(ctx context.Context) error {
oFsm.mutexIsAwaitingResponse.Lock()
if oFsm.isCanceled {
// FSM already canceled before entering wait
logger.Debugw(ctx, "UniVlanConfigFsm wait-for-multi-entity-response aborted (on enter)", log.Fields{"for device-id": oFsm.deviceID})
oFsm.mutexIsAwaitingResponse.Unlock()
return fmt.Errorf(cmn.CErrWaitAborted)
}
oFsm.isAwaitingResponse = true
oFsm.mutexIsAwaitingResponse.Unlock()
select {
// maybe be also some outside cancel (but no context modeled for the moment ...)
// case <-ctx.Done():
// logger.Infow(ctx,"LockState-bridge-init message reception canceled", log.Fields{"for device-id": oFsm.deviceID})
case <-time.After(oFsm.pOmciCC.GetMaxOmciTimeoutWithRetries() * time.Second): //AS FOR THE OTHER OMCI FSM's
logger.Warnw(ctx, "UniVlanConfigFsm multi entity timeout", log.Fields{"for device-id": oFsm.deviceID})
oFsm.mutexIsAwaitingResponse.Lock()
oFsm.isAwaitingResponse = false
oFsm.mutexIsAwaitingResponse.Unlock()
return fmt.Errorf("uniVlanConfigFsm multi entity timeout %s", oFsm.deviceID)
case success := <-oFsm.omciMIdsResponseReceived:
if success {
logger.Debugw(ctx, "UniVlanConfigFsm multi entity response received", log.Fields{"for device-id": oFsm.deviceID})
oFsm.mutexIsAwaitingResponse.Lock()
oFsm.isAwaitingResponse = false
oFsm.mutexIsAwaitingResponse.Unlock()
return nil
}
// waiting was aborted (probably on external request)
logger.Debugw(ctx, "UniVlanConfigFsm wait-for-multi-entity-response aborted", log.Fields{"for device-id": oFsm.deviceID})
oFsm.mutexIsAwaitingResponse.Lock()
oFsm.isAwaitingResponse = false
oFsm.mutexIsAwaitingResponse.Unlock()
return fmt.Errorf(cmn.CErrWaitAborted)
}
}
func (oFsm *UniVlanConfigFsm) performSettingMulticastME(ctx context.Context, tpID uint8, multicastGemPortID uint16, vlanID uint32) error {
logger.Debugw(ctx, "Setting Multicast MEs", log.Fields{"device-id": oFsm.deviceID, "tpID": tpID,
"multicastGemPortID": multicastGemPortID, "vlanID": vlanID})
errCreateMOP := oFsm.performCreatingMulticastOperationProfile(ctx)
if errCreateMOP != nil {
logger.Errorw(ctx, "MulticastOperationProfile create failed, aborting AniConfig FSM!",
log.Fields{"device-id": oFsm.deviceID})
_ = oFsm.PAdaptFsm.PFsm.Event(VlanEvReset)
return fmt.Errorf("creatingMulticastSubscriberConfigInfo responseError %s, error %s", oFsm.deviceID, errCreateMOP)
}
errSettingMOP := oFsm.performSettingMulticastOperationProfile(ctx, multicastGemPortID, vlanID)
if errSettingMOP != nil {
logger.Errorw(ctx, "MulticastOperationProfile setting failed, aborting AniConfig FSM!",
log.Fields{"device-id": oFsm.deviceID})
_ = oFsm.PAdaptFsm.PFsm.Event(VlanEvReset)
return fmt.Errorf("creatingMulticastSubscriberConfigInfo responseError %s, error %s", oFsm.deviceID, errSettingMOP)
}
errCreateMSCI := oFsm.performCreatingMulticastSubscriberConfigInfo(ctx)
if errCreateMSCI != nil {
logger.Errorw(ctx, "MulticastOperationProfile setting failed, aborting AniConfig FSM!",
log.Fields{"device-id": oFsm.deviceID})
_ = oFsm.PAdaptFsm.PFsm.Event(VlanEvReset)
return fmt.Errorf("creatingMulticastSubscriberConfigInfo responseError %s, error %s", oFsm.deviceID, errCreateMSCI)
}
macBpCdEID, errMacBpCdEID := cmn.GenerateMcastANISideMBPCDEID(uint16(oFsm.pOnuUniPort.MacBpNo))
if errMacBpCdEID != nil {
logger.Errorw(ctx, "MulticastMacBridgePortConfigData entity id generation failed, aborting AniConfig FSM!",
log.Fields{"device-id": oFsm.deviceID})
_ = oFsm.PAdaptFsm.PFsm.Event(VlanEvReset)
return fmt.Errorf("generateMcastANISideMBPCDEID responseError %s, error %s", oFsm.deviceID, errMacBpCdEID)
}
logger.Debugw(ctx, "UniVlanConfigFsm set macBpCdEID for mcast", log.Fields{
"EntitytId": strconv.FormatInt(int64(macBpCdEID), 16), "macBpNo": oFsm.pOnuUniPort.MacBpNo,
"in state": oFsm.PAdaptFsm.PFsm.Current(), "device-id": oFsm.deviceID})
meParams := me.ParamData{
EntityID: macBpCdEID,
Attributes: me.AttributeValueMap{
"BridgeIdPointer": cmn.MacBridgeServiceProfileEID + uint16(oFsm.pOnuUniPort.MacBpNo),
"PortNum": 0xf0, //fixed unique ANI side indication
"TpType": 6, //MCGemIWTP
"TpPointer": multicastGemPortID,
},
}
oFsm.mutexPLastTxMeInstance.Lock()
meInstance, err := oFsm.pOmciCC.SendCreateMBPConfigDataVar(context.TODO(),
oFsm.pDeviceHandler.GetOmciTimeout(), true, oFsm.PAdaptFsm.CommChan, meParams)
if err != nil {
oFsm.mutexPLastTxMeInstance.Unlock()
logger.Errorw(ctx, "MBPConfigDataVar create failed, aborting AniConfig FSM!",
log.Fields{"device-id": oFsm.deviceID})
_ = oFsm.PAdaptFsm.PFsm.Event(VlanEvReset)
return fmt.Errorf("creatingMulticastSubscriberConfigInfo createError #{oFsm.deviceID}, error #{err}")
}
//accept also nil as (error) return value for writing to LastTx
// - this avoids misinterpretation of new received OMCI messages
oFsm.pLastTxMeInstance = meInstance
oFsm.mutexPLastTxMeInstance.Unlock()
err = oFsm.waitforOmciResponse(ctx)
if err != nil {
logger.Errorw(ctx, "CreateMBPConfigData failed, aborting AniConfig FSM!",
log.Fields{"device-id": oFsm.deviceID, "MBPConfigDataID": cmn.MacBridgeServiceProfileEID})
_ = oFsm.PAdaptFsm.PFsm.Event(VlanEvReset)
return fmt.Errorf("creatingMulticastSubscriberConfigInfo responseError %s, error %s", oFsm.deviceID, err)
}
// ==> Start creating VTFD for mcast vlan
// This attribute uniquely identifies each instance of this managed entity. Through an identical ID,
// this managed entity is implicitly linked to an instance of the MAC bridge port configuration data ME.
mcastVtfdID := macBpCdEID
logger.Debugw(ctx, "UniVlanConfigFsm set VTFD for mcast", log.Fields{
"EntitytId": strconv.FormatInt(int64(mcastVtfdID), 16), "mcastVlanID": vlanID,
"in state": oFsm.PAdaptFsm.PFsm.Current(), "device-id": oFsm.deviceID})
vtfdFilterList := make([]uint16, cVtfdTableSize) //needed for parameter serialization
// FIXME: VOL-3685: Issues with resetting a table entry in EVTOCD ME
// VTFD has to be created afresh with a new entity ID that has the same entity ID as the MBPCD ME for every
// new vlan associated with a different TP.
vtfdFilterList[0] = uint16(vlanID)
meParams = me.ParamData{
EntityID: mcastVtfdID,
Attributes: me.AttributeValueMap{
"VlanFilterList": vtfdFilterList,
"ForwardOperation": uint8(0x10), //VID investigation
"NumberOfEntries": oFsm.numVlanFilterEntries,
},
}
oFsm.mutexPLastTxMeInstance.Lock()
meInstance, err = oFsm.pOmciCC.SendCreateVtfdVar(context.TODO(),
oFsm.pDeviceHandler.GetOmciTimeout(), true, oFsm.PAdaptFsm.CommChan, meParams)
if err != nil {
oFsm.mutexPLastTxMeInstance.Unlock()
logger.Errorw(ctx, "CreateVtfdVar create failed, aborting UniVlanConfigFsm!",
log.Fields{"device-id": oFsm.deviceID})
_ = oFsm.PAdaptFsm.PFsm.Event(VlanEvReset)
return fmt.Errorf("createMcastVlanFilterData creationError %s, error %s", oFsm.deviceID, err)
}
oFsm.pLastTxMeInstance = meInstance
oFsm.mutexPLastTxMeInstance.Unlock()
err = oFsm.waitforOmciResponse(ctx)
if err != nil {
logger.Errorw(ctx, "CreateMcastVlanFilterData failed, aborting AniConfig FSM!",
log.Fields{"device-id": oFsm.deviceID, "mcastVtfdID": mcastVtfdID})
_ = oFsm.PAdaptFsm.PFsm.Event(VlanEvReset)
return fmt.Errorf("createMcastVlanFilterData responseError %s, error %s", oFsm.deviceID, err)
}
return nil
}
func (oFsm *UniVlanConfigFsm) performCreatingMulticastSubscriberConfigInfo(ctx context.Context) error {
instID, err := cmn.GenerateUNISideMBPCDEID(uint16(oFsm.pOnuUniPort.MacBpNo))
if err != nil {
logger.Errorw(ctx, "error generrating me instance id",
log.Fields{"device-id": oFsm.deviceID, "error": err})
return err
}
logger.Debugw(ctx, "UniVlanConfigFsm create MulticastSubscriberConfigInfo",
log.Fields{"device-id": oFsm.deviceID, "EntityId": instID})
meParams := me.ParamData{
EntityID: instID,
Attributes: me.AttributeValueMap{
"MeType": 0,
//Direct reference to the Operation profile
//TODO ANI side used on UNI side, not the clearest option.
"MulticastOperationsProfilePointer": instID,
},
}
oFsm.mutexPLastTxMeInstance.Lock()
meInstance, err := oFsm.pOmciCC.SendCreateMulticastSubConfigInfoVar(context.TODO(),
oFsm.pDeviceHandler.GetOmciTimeout(), true,
oFsm.PAdaptFsm.CommChan, meParams)
if err != nil {
oFsm.mutexPLastTxMeInstance.Unlock()
logger.Errorw(ctx, "CreateMulticastSubConfigInfoVar create failed, aborting UniVlanConfigFSM!",
log.Fields{"device-id": oFsm.deviceID})
_ = oFsm.PAdaptFsm.PFsm.Event(VlanEvReset)
return fmt.Errorf("creatingMulticastSubscriberConfigInfo interface creationError %s, error %s",
oFsm.deviceID, err)
}
//accept also nil as (error) return value for writing to LastTx
// - this avoids misinterpretation of new received OMCI messages
oFsm.pLastTxMeInstance = meInstance
oFsm.mutexPLastTxMeInstance.Unlock()
//verify response
err = oFsm.waitforOmciResponse(ctx)
if err != nil {
logger.Errorw(ctx, "CreateMulticastSubConfigInfo create failed, aborting AniConfig FSM!",
log.Fields{"device-id": oFsm.deviceID, "MulticastSubConfigInfo": instID})
return fmt.Errorf("creatingMulticastSubscriberConfigInfo responseError %s", oFsm.deviceID)
}
return nil
}
func (oFsm *UniVlanConfigFsm) performCreatingMulticastOperationProfile(ctx context.Context) error {
instID, err := cmn.GenerateUNISideMBPCDEID(uint16(oFsm.pOnuUniPort.MacBpNo))
if err != nil {
logger.Errorw(ctx, "error generating me instance id",
log.Fields{"device-id": oFsm.deviceID, "error": err})
return err
}
logger.Debugw(ctx, "UniVlanConfigFsm create MulticastOperationProfile",
log.Fields{"device-id": oFsm.deviceID, "EntityId": instID})
meParams := me.ParamData{
EntityID: instID,
Attributes: me.AttributeValueMap{
"IgmpVersion": 2,
"IgmpFunction": 0,
//0 means false
"ImmediateLeave": 0,
"Robustness": 2,
"QuerierIpAddress": 0,
"QueryInterval": 125,
"QueryMaxResponseTime": 100,
"LastMemberQueryInterval": 10,
//0 means false
"UnauthorizedJoinRequestBehaviour": 0,
},
}
oFsm.mutexPLastTxMeInstance.Lock()
meInstance, err := oFsm.pOmciCC.SendCreateMulticastOperationProfileVar(context.TODO(),
oFsm.pDeviceHandler.GetOmciTimeout(), true,
oFsm.PAdaptFsm.CommChan, meParams)
if err != nil {
oFsm.mutexPLastTxMeInstance.Unlock()
logger.Errorw(ctx, "CreateMulticastOperationProfileVar create failed, aborting UniVlanConfigFsm!",
log.Fields{"device-id": oFsm.deviceID})
_ = oFsm.PAdaptFsm.PFsm.Event(VlanEvReset)
return fmt.Errorf("createMulticastOperationProfileVar responseError %s, error %s", oFsm.deviceID, err)
}
//accept also nil as (error) return value for writing to LastTx
// - this avoids misinterpretation of new received OMCI messages
oFsm.pLastTxMeInstance = meInstance
oFsm.mutexPLastTxMeInstance.Unlock()
//verify response
err = oFsm.waitforOmciResponse(ctx)
if err != nil {
logger.Errorw(ctx, "CreateMulticastOperationProfile create failed, aborting AniConfig FSM!",
log.Fields{"device-id": oFsm.deviceID, "MulticastOperationProfileID": instID})
return fmt.Errorf("createMulticastOperationProfile responseError %s, error %s", oFsm.deviceID, err)
}
return nil
}
func (oFsm *UniVlanConfigFsm) performSettingMulticastOperationProfile(ctx context.Context, multicastGemPortID uint16, vlanID uint32) error {
instID, err := cmn.GenerateUNISideMBPCDEID(uint16(oFsm.pOnuUniPort.MacBpNo))
if err != nil {
logger.Errorw(ctx, "error generating me instance id",
log.Fields{"device-id": oFsm.deviceID, "error": err})
return err
}
logger.Debugw(ctx, "UniVlanConfigFsm set MulticastOperationProfile",
log.Fields{"device-id": oFsm.deviceID, "EntityId": instID})
//TODO check that this is correct
// Table control
//setCtrl = 1
//rowPartId = 0
//test = 0
//rowKey = 0
tableCtrlStr := "0100000000000000"
tableCtrl := cmn.AsByteSlice(tableCtrlStr)
dynamicAccessCL := make([]uint8, 24)
copy(dynamicAccessCL, tableCtrl)
//Multicast GemPortId
binary.BigEndian.PutUint16(dynamicAccessCL[2:], multicastGemPortID)
// python version waits for installation of flows, see line 723 onward of
// brcm_openomci_onu_handler.py
binary.BigEndian.PutUint16(dynamicAccessCL[4:], uint16(vlanID))
//Source IP all to 0
binary.BigEndian.PutUint32(dynamicAccessCL[6:], cmn.IPToInt32(net.IPv4(0, 0, 0, 0)))
//TODO start and end are hardcoded, get from TP
// Destination IP address start of range
binary.BigEndian.PutUint32(dynamicAccessCL[10:], cmn.IPToInt32(net.IPv4(225, 0, 0, 0)))
// Destination IP address end of range
binary.BigEndian.PutUint32(dynamicAccessCL[14:], cmn.IPToInt32(net.IPv4(239, 255, 255, 255)))
//imputed group bandwidth
binary.BigEndian.PutUint16(dynamicAccessCL[18:], 0)
meParams := me.ParamData{
EntityID: instID,
Attributes: me.AttributeValueMap{
"DynamicAccessControlListTable": dynamicAccessCL,
},
}
oFsm.mutexPLastTxMeInstance.Lock()
meInstance, err := oFsm.pOmciCC.SendSetMulticastOperationProfileVar(context.TODO(),
oFsm.pDeviceHandler.GetOmciTimeout(), true,
oFsm.PAdaptFsm.CommChan, meParams)
if err != nil {
oFsm.mutexPLastTxMeInstance.Unlock()
logger.Errorw(ctx, "SetMulticastOperationProfileVar set failed, aborting UniVlanConfigFsm!",
log.Fields{"device-id": oFsm.deviceID})
_ = oFsm.PAdaptFsm.PFsm.Event(VlanEvReset)
return fmt.Errorf("setMulticastOperationProfile responseError %s, error %s", oFsm.deviceID, err)
}
//accept also nil as (error) return value for writing to LastTx
// - this avoids misinterpretation of new received OMCI messages
oFsm.pLastTxMeInstance = meInstance
oFsm.mutexPLastTxMeInstance.Unlock()
//verify response
err = oFsm.waitforOmciResponse(ctx)
if err != nil {
logger.Errorw(ctx, "CreateMulticastOperationProfile create failed, aborting AniConfig FSM!",
log.Fields{"device-id": oFsm.deviceID, "MulticastOperationProfileID": instID})
return fmt.Errorf("createMulticastOperationProfile responseError %s, error %s", oFsm.deviceID, err)
}
return nil
}
func (oFsm *UniVlanConfigFsm) createTrafficDescriptor(ctx context.Context, aMeter *of.OfpMeterConfig,
tpID uint8, uniID uint8, gemPortID uint16) error {
logger.Infow(ctx, "Starting create traffic descriptor", log.Fields{"device-id": oFsm.deviceID, "uniID": uniID, "tpID": tpID})
// uniTPKey generate id to Traffic Descriptor ME. We need to create two of them. They should be unique. Because of that
// I created unique TD ID by flow direction.
// TODO! Traffic descriptor ME ID will check
trafficDescriptorID := gemPortID
if aMeter == nil {
return fmt.Errorf("meter not found %s", oFsm.deviceID)
}
trafficShapingInfo, err := meters.GetTrafficShapingInfo(ctx, aMeter)
if err != nil {
logger.Errorw(ctx, "Traffic Shaping Info get failed", log.Fields{"device-id": oFsm.deviceID})
return err
}
cir := trafficShapingInfo.Cir + trafficShapingInfo.Gir
cbs := trafficShapingInfo.Cbs
pir := trafficShapingInfo.Pir
pbs := trafficShapingInfo.Pbs
logger.Infow(ctx, "cir-pir-cbs-pbs", log.Fields{"device-id": oFsm.deviceID, "cir": cir, "pir": pir, "cbs": cbs, "pbs": pbs})
meParams := me.ParamData{
EntityID: trafficDescriptorID,
Attributes: me.AttributeValueMap{
"Cir": cir,
"Pir": pir,
"Cbs": cbs,
"Pbs": pbs,
"ColourMode": 1,
"IngressColourMarking": 3,
"EgressColourMarking": 3,
"MeterType": 1,
},
}
oFsm.mutexPLastTxMeInstance.Lock()
meInstance, errCreateTD := oFsm.pOmciCC.SendCreateTDVar(log.WithSpanFromContext(context.TODO(), ctx), oFsm.pDeviceHandler.GetOmciTimeout(),
true, oFsm.PAdaptFsm.CommChan, meParams)
if errCreateTD != nil {
oFsm.mutexPLastTxMeInstance.Unlock()
logger.Errorw(ctx, "Traffic Descriptor create failed", log.Fields{"device-id": oFsm.deviceID})
return err
}
oFsm.pLastTxMeInstance = meInstance
oFsm.mutexPLastTxMeInstance.Unlock()
err = oFsm.waitforOmciResponse(ctx)
if err != nil {
logger.Errorw(ctx, "Traffic Descriptor create failed, aborting VlanConfig FSM!", log.Fields{"device-id": oFsm.deviceID})
return err
}
// Note: in the below request the gemport entity id is same as the gemport id and the traffic descriptor entity id is also same as gemport id
err = oFsm.setTrafficDescriptorToGemPortNWCTP(ctx, gemPortID, gemPortID)
if err != nil {
logger.Errorw(ctx, "Traffic Descriptor set failed to Gem Port Network CTP, aborting VlanConfig FSM!", log.Fields{"device-id": oFsm.deviceID})
return err
}
logger.Infow(ctx, "Set TD Info to GemPortNWCTP successfully", log.Fields{"device-id": oFsm.deviceID, "gem-port-id": gemPortID, "td-id": trafficDescriptorID})
return nil
}
func (oFsm *UniVlanConfigFsm) setTrafficDescriptorToGemPortNWCTP(ctx context.Context, gemPortEntityID uint16, trafficDescriptorEntityID uint16) error {
logger.Debugw(ctx, "Starting Set Traffic Descriptor to GemPortNWCTP",
log.Fields{"device-id": oFsm.deviceID, "gem-port-entity-id": gemPortEntityID, "traffic-descriptor-entity-id": trafficDescriptorEntityID})
meParams := me.ParamData{
EntityID: gemPortEntityID,
Attributes: me.AttributeValueMap{
"TrafficDescriptorProfilePointerForUpstream": trafficDescriptorEntityID,
},
}
oFsm.mutexPLastTxMeInstance.Lock()
meInstance, err := oFsm.pOmciCC.SendSetGemNCTPVar(log.WithSpanFromContext(context.TODO(), ctx),
oFsm.pDeviceHandler.GetOmciTimeout(), true, oFsm.PAdaptFsm.CommChan, meParams)
if err != nil {
oFsm.mutexPLastTxMeInstance.Unlock()
logger.Errorw(ctx, "GemNCTP set failed", log.Fields{"device-id": oFsm.deviceID})
return err
}
oFsm.pLastTxMeInstance = meInstance
oFsm.mutexPLastTxMeInstance.Unlock()
err = oFsm.waitforOmciResponse(ctx)
if err != nil {
logger.Errorw(ctx, "Upstream Traffic Descriptor set failed, aborting VlanConfig FSM!", log.Fields{"device-id": oFsm.deviceID})
return err
}
return nil
}
// IsFlowRemovePending returns true if there are pending flows to remove, else false.
func (oFsm *UniVlanConfigFsm) IsFlowRemovePending(ctx context.Context, aFlowDeleteChannel chan<- bool) bool {
if oFsm == nil {
logger.Error(ctx, "no valid UniVlanConfigFsm!")
return false
}
oFsm.mutexFlowParams.Lock()
defer oFsm.mutexFlowParams.Unlock()
if len(oFsm.uniRemoveFlowsSlice) > 0 {
//flow removal is still ongoing/pending
oFsm.signalOnFlowDelete = true
oFsm.flowDeleteChannel = aFlowDeleteChannel
return true
}
return false
}
func (oFsm *UniVlanConfigFsm) reconcileVlanFilterList(ctx context.Context, aSetVid uint16) {
// VOL-4342 - reconcile vlanFilterList[] for possible later flow removal
if aSetVid == uint16(of.OfpVlanId_OFPVID_PRESENT) {
logger.Debugw(ctx, "reconciling - transparent setup: no VTFD config was required",
log.Fields{"device-id": oFsm.deviceID})
} else {
oFsm.vlanFilterList[oFsm.numVlanFilterEntries] = aSetVid
logger.Debugw(ctx, "reconciling - Vid of VTFD stored in list", log.Fields{
"index": oFsm.numVlanFilterEntries,
"vid": strconv.FormatInt(int64(oFsm.vlanFilterList[oFsm.numVlanFilterEntries]), 16),
"device-id": oFsm.deviceID})
oFsm.numVlanFilterEntries++
}
}
// pushReponseOnFlowResponseChannel pushes response on the response channel if available
func (oFsm *UniVlanConfigFsm) pushReponseOnFlowResponseChannel(ctx context.Context, respChan *chan error, err error) {
if respChan != nil {
// Do it in a non blocking fashion, so that in case the flow handler routine has shutdown for any reason, we do not block here
select {
case *respChan <- err:
logger.Debugw(ctx, "submitted-response-for-flow", log.Fields{"device-id": oFsm.deviceID, "err": err})
default:
}
}
}