blob: 34eeef6edc9bb7f4e5f426f9d723febafd685e5c [file] [log] [blame]
/*
* Copyright 2020-present Open Networking Foundation
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
//Package adaptercoreonu provides the utility for onu devices, flows and statistics
package adaptercoreonu
import (
"context"
"encoding/binary"
"errors"
"strconv"
"sync"
"time"
"github.com/looplab/fsm"
"github.com/opencord/omci-lib-go"
me "github.com/opencord/omci-lib-go/generated"
"github.com/opencord/voltha-lib-go/v3/pkg/log"
of "github.com/opencord/voltha-protos/v3/go/openflow_13"
)
const (
// internal predefined values
cDefaultDownstreamMode = 0
cDefaultTpid = 0x8100
cMaxAllowedFlows = 12 //which might be under discussion, for the moment connected to limit of VLAN's within VTFD
)
const (
// bit mask offsets for EVTOCD VlanTaggingOperationTable related to 32 bits (4 bytes)
cFilterPrioOffset = 28
cFilterVidOffset = 15
cFilterTpidOffset = 12
cFilterEtherTypeOffset = 0
cTreatTTROffset = 30
cTreatPrioOffset = 16
cTreatVidOffset = 3
cTreatTpidOffset = 0
)
const (
// byte offsets for EVTOCD VlanTaggingOperationTable related to overall 16 byte size with slice byte 0 as first Byte (MSB)
cFilterOuterOffset = 0
cFilterInnerOffset = 4
cTreatOuterOffset = 8
cTreatInnerOffset = 12
)
const (
// basic values used within EVTOCD VlanTaggingOperationTable in respect to their bitfields
cPrioIgnoreTag uint32 = 15
cPrioDefaultFilter uint32 = 14
cPrioDoNotFilter uint32 = 8
cDoNotFilterVid uint32 = 4096
cDoNotFilterTPID uint32 = 0
cDoNotFilterEtherType uint32 = 0
cDoNotAddPrio uint32 = 15
cCopyPrioFromInner uint32 = 8
//cDontCarePrio uint32 = 0
cDontCareVid uint32 = 0
cDontCareTpid uint32 = 0
cSetOutputTpidCopyDei uint32 = 4
)
const (
// events of config PON ANI port FSM
vlanEvStart = "vlanEvStart"
vlanEvWaitTechProf = "vlanEvWaitTechProf"
vlanEvContinueConfig = "vlanEvContinueConfig"
vlanEvStartConfig = "vlanEvStartConfig"
vlanEvRxConfigVtfd = "vlanEvRxConfigVtfd"
vlanEvRxConfigEvtocd = "vlanEvRxConfigEvtocd"
vlanEvIncrFlowConfig = "vlanEvIncrFlowConfig"
//vlanEvCleanupConfig = "vlanEvCleanupConfig"
//vlanEvRxCleanVtfd = "vlanEvRxCleanVtfd"
//vlanEvRxCleanEvtocd = "vlanEvRxCleanEvtocd"
//vlanEvTimeoutSimple = "vlanEvTimeoutSimple"
//vlanEvTimeoutMids = "vlanEvTimeoutMids"
vlanEvReset = "vlanEvReset"
vlanEvRestart = "vlanEvRestart"
)
const (
// states of config PON ANI port FSM
vlanStDisabled = "vlanStDisabled"
vlanStStarting = "vlanStStarting"
vlanStWaitingTechProf = "vlanStWaitingTechProf"
vlanStConfigVtfd = "vlanStConfigVtfd"
vlanStConfigEvtocd = "vlanStConfigEvtocd"
vlanStConfigDone = "vlanStConfigDone"
vlanStConfigIncrFlow = "vlanStConfigIncrFlow"
vlanStCleanEvtocd = "vlanStCleanEvtocd"
vlanStCleanVtfd = "vlanStCleanVtfd"
vlanStCleanupDone = "vlanStCleanupDone"
vlanStResetting = "vlanStResetting"
)
//UniVlanConfigFsm defines the structure for the state machine to config the PON ANI ports of ONU UNI ports via OMCI
type UniVlanConfigFsm struct {
pDeviceHandler *deviceHandler
pOmciCC *omciCC
pOnuUniPort *onuUniPort
pUniTechProf *onuUniTechProf
pOnuDB *onuDeviceDB
techProfileID uint16
requestEvent OnuDeviceEvent
omciMIdsResponseReceived chan bool //seperate channel needed for checking multiInstance OMCI message responses
pAdaptFsm *AdapterFsm
acceptIncrementalEvtoOption bool
mutexFlowParams sync.Mutex
uniFlowParamsSlice []uniVlanFlowParams
numUniFlows uint8 // expected number of flows should be less than 12
configuredUniFlow uint8
numVlanFilterEntries uint8
vlanFilterList [12]uint16
vtfdID uint16
evtocdID uint16
}
//NewUniVlanConfigFsm is the 'constructor' for the state machine to config the PON ANI ports of ONU UNI ports via OMCI
func NewUniVlanConfigFsm(apDeviceHandler *deviceHandler, apDevOmciCC *omciCC, apUniPort *onuUniPort, apUniTechProf *onuUniTechProf,
apOnuDB *onuDeviceDB, aTechProfileID uint16, aRequestEvent OnuDeviceEvent, aName string,
aDeviceID string, aCommChannel chan Message,
aAcceptIncrementalEvto bool, aMatchVlan uint16, aSetVlan uint16, aSetPcp uint8) *UniVlanConfigFsm {
instFsm := &UniVlanConfigFsm{
pDeviceHandler: apDeviceHandler,
pOmciCC: apDevOmciCC,
pOnuUniPort: apUniPort,
pUniTechProf: apUniTechProf,
pOnuDB: apOnuDB,
techProfileID: aTechProfileID,
requestEvent: aRequestEvent,
acceptIncrementalEvtoOption: aAcceptIncrementalEvto,
numUniFlows: 0,
configuredUniFlow: 0,
}
instFsm.pAdaptFsm = NewAdapterFsm(aName, aDeviceID, aCommChannel)
if instFsm.pAdaptFsm == nil {
logger.Errorw("UniVlanConfigFsm's AdapterFsm could not be instantiated!!", log.Fields{
"device-id": aDeviceID})
return nil
}
instFsm.pAdaptFsm.pFsm = fsm.NewFSM(
vlanStDisabled,
fsm.Events{
{Name: vlanEvStart, Src: []string{vlanStDisabled}, Dst: vlanStStarting},
{Name: vlanEvWaitTechProf, Src: []string{vlanStStarting}, Dst: vlanStWaitingTechProf},
{Name: vlanEvContinueConfig, Src: []string{vlanStWaitingTechProf}, Dst: vlanStConfigVtfd},
{Name: vlanEvStartConfig, Src: []string{vlanStStarting}, Dst: vlanStConfigVtfd},
{Name: vlanEvRxConfigVtfd, Src: []string{vlanStConfigVtfd}, Dst: vlanStConfigEvtocd},
{Name: vlanEvRxConfigEvtocd, Src: []string{vlanStConfigEvtocd, vlanStConfigIncrFlow},
Dst: vlanStConfigDone},
{Name: vlanEvIncrFlowConfig, Src: []string{vlanStConfigDone}, Dst: vlanStConfigIncrFlow},
/*
{Name: vlanEvTimeoutSimple, Src: []string{
vlanStCreatingDot1PMapper, vlanStCreatingMBPCD, vlanStSettingTconts, vlanStSettingDot1PMapper}, Dst: vlanStStarting},
{Name: vlanEvTimeoutMids, Src: []string{
vlanStCreatingGemNCTPs, vlanStCreatingGemIWs, vlanStSettingPQs}, Dst: vlanStStarting},
*/
// exceptional treatment for all states except vlanStResetting
{Name: vlanEvReset, Src: []string{vlanStStarting, vlanStWaitingTechProf,
vlanStConfigVtfd, vlanStConfigEvtocd, vlanStConfigDone, vlanStConfigIncrFlow,
vlanStCleanEvtocd, vlanStCleanVtfd, vlanStCleanupDone},
Dst: vlanStResetting},
// the only way to get to resource-cleared disabled state again is via "resseting"
{Name: vlanEvRestart, Src: []string{vlanStResetting}, Dst: vlanStDisabled},
},
fsm.Callbacks{
"enter_state": func(e *fsm.Event) { instFsm.pAdaptFsm.logFsmStateChange(e) },
("enter_" + vlanStStarting): func(e *fsm.Event) { instFsm.enterConfigStarting(e) },
("enter_" + vlanStConfigVtfd): func(e *fsm.Event) { instFsm.enterConfigVtfd(e) },
("enter_" + vlanStConfigEvtocd): func(e *fsm.Event) { instFsm.enterConfigEvtocd(e) },
("enter_" + vlanStConfigDone): func(e *fsm.Event) { instFsm.enterVlanConfigDone(e) },
("enter_" + vlanStConfigIncrFlow): func(e *fsm.Event) { instFsm.enterConfigIncrFlow(e) },
("enter_" + vlanStCleanVtfd): func(e *fsm.Event) { instFsm.enterCleanVtfd(e) },
("enter_" + vlanStCleanEvtocd): func(e *fsm.Event) { instFsm.enterCleanEvtocd(e) },
("enter_" + vlanStCleanupDone): func(e *fsm.Event) { instFsm.enterVlanCleanupDone(e) },
("enter_" + vlanStResetting): func(e *fsm.Event) { instFsm.enterResetting(e) },
("enter_" + vlanStDisabled): func(e *fsm.Event) { instFsm.enterDisabled(e) },
},
)
if instFsm.pAdaptFsm.pFsm == nil {
logger.Errorw("UniVlanConfigFsm's Base FSM could not be instantiated!!", log.Fields{
"device-id": aDeviceID})
return nil
}
_ = instFsm.SetUniFlowParams(aTechProfileID, aMatchVlan, aSetVlan, aSetPcp)
logger.Infow("UniVlanConfigFsm created", log.Fields{"device-id": aDeviceID,
"accIncrEvto": instFsm.acceptIncrementalEvtoOption})
return instFsm
}
//SetUniFlowParams verifies on existence of flow parameters to be configured
// and appends a new flow if there is space
func (oFsm *UniVlanConfigFsm) SetUniFlowParams(aTpID uint16, aMatchVlan uint16, aSetVlan uint16, aSetPcp uint8) error {
loFlowParams := uniVlanFlowParams{
TpID: aTpID,
MatchVid: uint32(aMatchVlan),
SetVid: uint32(aSetVlan),
SetPcp: uint32(aSetPcp),
}
// some automatic adjustments on the filter/treat parameters as not specifically configured/ensured by flow configuration parameters
loFlowParams.TagsToRemove = 1 //one tag to remove as default setting
loFlowParams.MatchPcp = cPrioDoNotFilter // do not Filter on prio as default
if loFlowParams.SetVid == uint32(of.OfpVlanId_OFPVID_PRESENT) {
//then matchVlan is don't care and should be overwritten to 'transparent' here to avoid unneeded multiple flow entries
loFlowParams.MatchVid = uint32(of.OfpVlanId_OFPVID_PRESENT)
//TODO!!: maybe be needed to be re-checked at flow deletion (but assume all flows are always deleted togehther)
} else {
if !oFsm.acceptIncrementalEvtoOption {
//then matchVlan is don't care and should be overwritten to 'transparent' here to avoid unneeded multiple flow entries
loFlowParams.MatchVid = uint32(of.OfpVlanId_OFPVID_PRESENT)
}
}
if loFlowParams.MatchVid == uint32(of.OfpVlanId_OFPVID_PRESENT) {
// no prio/vid filtering requested
loFlowParams.TagsToRemove = 0 //no tag pop action
loFlowParams.MatchPcp = cPrioIgnoreTag // no vlan tag filtering
if loFlowParams.SetPcp == cCopyPrioFromInner {
//in case of no filtering and configured PrioCopy ensure default prio setting to 0
// which is required for stacking of untagged, but obviously also ensures prio setting for prio/singletagged
// might collide with NoMatchVid/CopyPrio(/setVid) setting
// this was some precondition setting taken over from py adapter ..
loFlowParams.SetPcp = 0
}
}
flowEntryMatch := false
//mutex protection is required for possible concurrent access to FSM members
oFsm.mutexFlowParams.Lock()
defer oFsm.mutexFlowParams.Unlock()
for _, storedUniFlowParams := range oFsm.uniFlowParamsSlice {
if storedUniFlowParams == loFlowParams {
flowEntryMatch = true
break
}
}
if flowEntryMatch {
logger.Debugw("UniVlanConfigFsm flow setting - flow already exists (ignore)", log.Fields{
"device-id": oFsm.pAdaptFsm.deviceID})
} else {
if oFsm.numUniFlows < cMaxAllowedFlows {
oFsm.uniFlowParamsSlice = append(oFsm.uniFlowParamsSlice, loFlowParams)
oFsm.numUniFlows++
logger.Debugw("UniVlanConfigFsm flow added", log.Fields{
"MatchVid": strconv.FormatInt(int64(loFlowParams.MatchVid), 16),
"SetVid": strconv.FormatInt(int64(loFlowParams.SetVid), 16),
"SetPcp": loFlowParams.SetPcp, "numberofFlows": oFsm.numUniFlows,
"device-id": oFsm.pAdaptFsm.deviceID})
//permanently store flow config for reconcile case
if err := oFsm.pDeviceHandler.storePersUniFlowConfig(oFsm.pOnuUniPort.uniID, &oFsm.uniFlowParamsSlice); err != nil {
logger.Errorw(err.Error(), log.Fields{"device-id": oFsm.pAdaptFsm.deviceID})
return err
}
pConfigVlanStateBaseFsm := oFsm.pAdaptFsm.pFsm
if pConfigVlanStateBaseFsm.Is(vlanStConfigDone) {
//have to re-trigger the FSM to proceed with outstanding incremental flow configuration
// calling some FSM event must be decoupled
go func(a_pBaseFsm *fsm.FSM) {
_ = a_pBaseFsm.Event(vlanEvIncrFlowConfig)
}(pConfigVlanStateBaseFsm)
} // in all other states a new entry will be automatically considered later in that state or
// ignored as not anymore relevant
} else {
logger.Errorw("UniVlanConfigFsm flow limit exceeded", log.Fields{
"device-id": oFsm.pAdaptFsm.deviceID})
return errors.New(" UniVlanConfigFsm flow limit exceeded")
}
}
return nil
}
func (oFsm *UniVlanConfigFsm) enterConfigStarting(e *fsm.Event) {
logger.Debugw("UniVlanConfigFsm start", log.Fields{"in state": e.FSM.Current(),
"device-id": oFsm.pAdaptFsm.deviceID})
// this FSM is not intended for re-start, needs always new creation for a new run
oFsm.omciMIdsResponseReceived = make(chan bool)
// start go routine for processing of LockState messages
go oFsm.processOmciVlanMessages()
//let the state machine run forward from here directly
pConfigVlanStateAFsm := oFsm.pAdaptFsm
if pConfigVlanStateAFsm != nil {
// obviously calling some FSM event here directly does not work - so trying to decouple it ...
go func(a_pAFsm *AdapterFsm) {
if a_pAFsm != nil && a_pAFsm.pFsm != nil {
//stick to pythonAdapter numbering scheme
oFsm.vtfdID = macBridgePortAniEID + oFsm.pOnuUniPort.entityID + oFsm.techProfileID
//cmp also usage in EVTOCDE create in omci_cc
oFsm.evtocdID = macBridgeServiceProfileEID + uint16(oFsm.pOnuUniPort.macBpNo)
if oFsm.pUniTechProf.getTechProfileDone(oFsm.pOnuUniPort.uniID, oFsm.techProfileID) {
// let the vlan processing begin
_ = a_pAFsm.pFsm.Event(vlanEvStartConfig)
} else {
// set to waiting for Techprofile
_ = a_pAFsm.pFsm.Event(vlanEvWaitTechProf)
}
}
}(pConfigVlanStateAFsm)
}
}
func (oFsm *UniVlanConfigFsm) enterConfigVtfd(e *fsm.Event) {
//mutex protection is required for possible concurrent access to FSM members
oFsm.mutexFlowParams.Lock()
if oFsm.uniFlowParamsSlice[0].SetVid == uint32(of.OfpVlanId_OFPVID_PRESENT) {
// meaning transparent setup - no specific VTFD setting required
oFsm.mutexFlowParams.Unlock()
logger.Debugw("UniVlanConfigFsm: no VTFD config required", log.Fields{
"in state": e.FSM.Current(), "device-id": oFsm.pAdaptFsm.deviceID})
// let the FSM proceed ... (from within this state all internal pointers may be expected to be correct)
// obviously calling some FSM event here directly does not work - so trying to decouple it ...
pConfigVlanStateAFsm := oFsm.pAdaptFsm
go func(a_pAFsm *AdapterFsm) {
_ = a_pAFsm.pFsm.Event(vlanEvRxConfigVtfd)
}(pConfigVlanStateAFsm)
} else {
logger.Debugw("UniVlanConfigFsm create VTFD", log.Fields{
"EntitytId": strconv.FormatInt(int64(oFsm.vtfdID), 16),
"in state": e.FSM.Current(), "device-id": oFsm.pAdaptFsm.deviceID})
oFsm.vlanFilterList[0] = uint16(oFsm.uniFlowParamsSlice[0].SetVid) // setVid is assumed to be masked already by the caller to 12 bit
oFsm.mutexFlowParams.Unlock()
vtfdFilterList := make([]uint16, 12) //needed for parameter serialization
vtfdFilterList[0] = oFsm.vlanFilterList[0]
oFsm.numVlanFilterEntries = 1
meParams := me.ParamData{
EntityID: oFsm.vtfdID,
Attributes: me.AttributeValueMap{
"VlanFilterList": vtfdFilterList, //omci lib wants a slice for serialization
"ForwardOperation": uint8(0x10), //VID investigation
"NumberOfEntries": oFsm.numVlanFilterEntries,
},
}
logger.Debugw("UniVlanConfigFsm sendcreate VTFD", log.Fields{
"in state": e.FSM.Current(), "device-id": oFsm.pAdaptFsm.deviceID})
meInstance := oFsm.pOmciCC.sendCreateVtfdVar(context.TODO(), ConstDefaultOmciTimeout, true,
oFsm.pAdaptFsm.commChan, meParams)
//accept also nil as (error) return value for writing to LastTx
// - this avoids misinterpretation of new received OMCI messages
//TODO!!: refactoring improvement requested, here as an example for [VOL-3457]:
// send shall return (dual format) error code that can be used here for immediate error treatment
// (relevant to all used sendXX() methods in this (and other) FSM's)
oFsm.pOmciCC.pLastTxMeInstance = meInstance
}
}
func (oFsm *UniVlanConfigFsm) enterConfigEvtocd(e *fsm.Event) {
logger.Debugw("UniVlanConfigFsm - start config EVTOCD loop", log.Fields{
"in state": e.FSM.Current(), "device-id": oFsm.pAdaptFsm.deviceID})
go oFsm.performConfigEvtocdEntries(0)
}
func (oFsm *UniVlanConfigFsm) enterVlanConfigDone(e *fsm.Event) {
logger.Debugw("UniVlanConfigFsm - checking on more flows", log.Fields{
"in state": e.FSM.Current(), "device-id": oFsm.pAdaptFsm.deviceID})
oFsm.configuredUniFlow++ // one (more) flow configured
if oFsm.numUniFlows > oFsm.configuredUniFlow {
//some further flows are to be configured
// calling some FSM event must be decoupled
pConfigVlanStateBaseFsm := oFsm.pAdaptFsm.pFsm
go func(a_pBaseFsm *fsm.FSM) {
_ = a_pBaseFsm.Event(vlanEvIncrFlowConfig)
}(pConfigVlanStateBaseFsm)
return
}
logger.Debugw("UniVlanConfigFsm - VLAN config done: send dh event notification", log.Fields{
"device-id": oFsm.pAdaptFsm.deviceID})
// it might appear that some flows are requested also after 'flowPushed' event has been generated ...
// state transition notification is checked in deviceHandler
if oFsm.pDeviceHandler != nil {
oFsm.pDeviceHandler.deviceProcStatusUpdate(oFsm.requestEvent)
}
}
func (oFsm *UniVlanConfigFsm) enterConfigIncrFlow(e *fsm.Event) {
logger.Debugw("UniVlanConfigFsm - start config further incremental flow", log.Fields{
"in state": e.FSM.Current(), "recent flow-number": (oFsm.configuredUniFlow),
"device-id": oFsm.pAdaptFsm.deviceID})
oFsm.mutexFlowParams.Lock()
if oFsm.uniFlowParamsSlice[oFsm.configuredUniFlow].SetVid == uint32(of.OfpVlanId_OFPVID_PRESENT) {
// meaning transparent setup - no specific VTFD setting required
oFsm.mutexFlowParams.Unlock()
logger.Debugw("UniVlanConfigFsm: no VTFD config required", log.Fields{
"in state": e.FSM.Current(), "device-id": oFsm.pAdaptFsm.deviceID})
} else {
if oFsm.numVlanFilterEntries == 0 {
//no VTFD yet created
logger.Debugw("UniVlanConfigFsm create VTFD", log.Fields{
"EntitytId": strconv.FormatInt(int64(oFsm.vtfdID), 16),
"in state": e.FSM.Current(), "device-id": oFsm.pAdaptFsm.deviceID})
oFsm.vlanFilterList[0] = uint16(oFsm.uniFlowParamsSlice[oFsm.configuredUniFlow].SetVid) // setVid is assumed to be masked already by the caller to 12 bit
oFsm.mutexFlowParams.Unlock()
vtfdFilterList := make([]uint16, 12) //needed for parameter serialization
vtfdFilterList[0] = oFsm.vlanFilterList[0]
oFsm.numVlanFilterEntries = 1
meParams := me.ParamData{
EntityID: oFsm.vtfdID,
Attributes: me.AttributeValueMap{
"VlanFilterList": vtfdFilterList,
"ForwardOperation": uint8(0x10), //VID investigation
"NumberOfEntries": oFsm.numVlanFilterEntries,
},
}
meInstance := oFsm.pOmciCC.sendCreateVtfdVar(context.TODO(), ConstDefaultOmciTimeout, true,
oFsm.pAdaptFsm.commChan, meParams)
//accept also nil as (error) return value for writing to LastTx
// - this avoids misinterpretation of new received OMCI messages
//TODO!!: refactoring improvement requested, here as an example for [VOL-3457]:
// send shall return (dual format) error code that can be used here for immediate error treatment
// (relevant to all used sendXX() methods in this (and other) FSM's)
oFsm.pOmciCC.pLastTxMeInstance = meInstance
} else {
//VTFD already exists - just modify by 'set'
//TODO!!: but only if the VID is not already present, skipped by now to test basic working
logger.Debugw("UniVlanConfigFsm set VTFD", log.Fields{
"EntitytId": strconv.FormatInt(int64(oFsm.vtfdID), 16),
"in state": e.FSM.Current(), "device-id": oFsm.pAdaptFsm.deviceID})
// setVid is assumed to be masked already by the caller to 12 bit
oFsm.vlanFilterList[oFsm.numVlanFilterEntries] =
uint16(oFsm.uniFlowParamsSlice[oFsm.configuredUniFlow].SetVid)
oFsm.mutexFlowParams.Unlock()
vtfdFilterList := make([]uint16, 12) //needed for parameter serialization
for i := uint8(0); i <= oFsm.numVlanFilterEntries; i++ {
vtfdFilterList[i] = oFsm.vlanFilterList[i]
}
oFsm.numVlanFilterEntries++
meParams := me.ParamData{
EntityID: oFsm.vtfdID,
Attributes: me.AttributeValueMap{
"VlanFilterList": vtfdFilterList,
"NumberOfEntries": oFsm.numVlanFilterEntries,
},
}
meInstance := oFsm.pOmciCC.sendSetVtfdVar(context.TODO(), ConstDefaultOmciTimeout, true,
oFsm.pAdaptFsm.commChan, meParams)
//accept also nil as (error) return value for writing to LastTx
// - this avoids misinterpretation of new received OMCI messages
//TODO!!: refactoring improvement requested, here as an example for [VOL-3457]:
// send shall return (dual format) error code that can be used here for immediate error treatment
// (relevant to all used sendXX() methods in this (and other) FSM's)
oFsm.pOmciCC.pLastTxMeInstance = meInstance
}
//verify response
err := oFsm.waitforOmciResponse()
if err != nil {
logger.Errorw("VTFD create/set failed, aborting VlanConfig FSM!",
log.Fields{"device-id": oFsm.pAdaptFsm.deviceID})
_ = oFsm.pAdaptFsm.pFsm.Event(vlanEvReset)
return
}
}
go oFsm.performConfigEvtocdEntries(oFsm.configuredUniFlow)
}
func (oFsm *UniVlanConfigFsm) enterCleanVtfd(e *fsm.Event) {
logger.Debugw("UniVlanConfigFsm Tx Delete::VTFD", log.Fields{
/*"EntitytId": strconv.FormatInt(int64(oFsm.mapperSP0ID), 16),*/
"in state": e.FSM.Current(), "device-id": oFsm.pAdaptFsm.deviceID})
}
func (oFsm *UniVlanConfigFsm) enterCleanEvtocd(e *fsm.Event) {
logger.Debugw("UniVlanConfigFsm cleanup EVTOCD", log.Fields{
/*"EntitytId": strconv.FormatInt(int64(oFsm.macBPCD0ID), 16),
"TPPtr": strconv.FormatInt(int64(oFsm.mapperSP0ID), 16),*/
"in state": e.FSM.Current(), "device-id": oFsm.pAdaptFsm.deviceID})
}
func (oFsm *UniVlanConfigFsm) enterVlanCleanupDone(e *fsm.Event) {
logger.Debugw("UniVlanConfigFsm - VLAN cleanup done", log.Fields{
"in state": e.FSM.Current(), "device-id": oFsm.pAdaptFsm.deviceID})
//let's reset the state machine in order to release all resources now
pConfigVlanStateAFsm := oFsm.pAdaptFsm
if pConfigVlanStateAFsm != nil {
// obviously calling some FSM event here directly does not work - so trying to decouple it ...
go func(a_pAFsm *AdapterFsm) {
if a_pAFsm != nil && a_pAFsm.pFsm != nil {
_ = a_pAFsm.pFsm.Event(vlanEvReset)
}
}(pConfigVlanStateAFsm)
}
}
func (oFsm *UniVlanConfigFsm) enterResetting(e *fsm.Event) {
logger.Debugw("UniVlanConfigFsm resetting", log.Fields{"device-id": oFsm.pAdaptFsm.deviceID})
pConfigVlanStateAFsm := oFsm.pAdaptFsm
if pConfigVlanStateAFsm != nil {
// abort running message processing
fsmAbortMsg := Message{
Type: TestMsg,
Data: TestMessage{
TestMessageVal: AbortMessageProcessing,
},
}
pConfigVlanStateAFsm.commChan <- fsmAbortMsg
//try to restart the FSM to 'disabled', decouple event transfer
go func(a_pAFsm *AdapterFsm) {
if a_pAFsm != nil && a_pAFsm.pFsm != nil {
_ = a_pAFsm.pFsm.Event(vlanEvRestart)
}
}(pConfigVlanStateAFsm)
}
}
func (oFsm *UniVlanConfigFsm) enterDisabled(e *fsm.Event) {
logger.Debugw("UniVlanConfigFsm enters disabled state", log.Fields{"device-id": oFsm.pAdaptFsm.deviceID})
if oFsm.pDeviceHandler != nil {
//request removal of 'reference' in the Handler (completely clear the FSM)
go oFsm.pDeviceHandler.RemoveVlanFilterFsm(oFsm.pOnuUniPort)
}
}
func (oFsm *UniVlanConfigFsm) processOmciVlanMessages() { //ctx context.Context?
logger.Debugw("Start UniVlanConfigFsm Msg processing", log.Fields{"for device-id": oFsm.pAdaptFsm.deviceID})
loop:
for {
// case <-ctx.Done():
// logger.Info("MibSync Msg", log.Fields{"Message handling canceled via context for device-id": oFsm.pAdaptFsm.deviceID})
// break loop
message, ok := <-oFsm.pAdaptFsm.commChan
if !ok {
logger.Info("UniVlanConfigFsm Rx Msg - could not read from channel", log.Fields{"device-id": oFsm.pAdaptFsm.deviceID})
// but then we have to ensure a restart of the FSM as well - as exceptional procedure
_ = oFsm.pAdaptFsm.pFsm.Event(vlanEvReset)
break loop
}
logger.Debugw("UniVlanConfigFsm Rx Msg", log.Fields{"device-id": oFsm.pAdaptFsm.deviceID})
switch message.Type {
case TestMsg:
msg, _ := message.Data.(TestMessage)
if msg.TestMessageVal == AbortMessageProcessing {
logger.Infow("UniVlanConfigFsm abort ProcessMsg", log.Fields{"for device-id": oFsm.pAdaptFsm.deviceID})
break loop
}
logger.Warnw("UniVlanConfigFsm unknown TestMessage", log.Fields{"device-id": oFsm.pAdaptFsm.deviceID, "MessageVal": msg.TestMessageVal})
case OMCI:
msg, _ := message.Data.(OmciMessage)
oFsm.handleOmciVlanConfigMessage(msg)
default:
logger.Warn("UniVlanConfigFsm Rx unknown message", log.Fields{"device-id": oFsm.pAdaptFsm.deviceID,
"message.Type": message.Type})
}
}
logger.Infow("End UniVlanConfigFsm Msg processing", log.Fields{"device-id": oFsm.pAdaptFsm.deviceID})
}
func (oFsm *UniVlanConfigFsm) handleOmciVlanConfigMessage(msg OmciMessage) {
logger.Debugw("Rx OMCI UniVlanConfigFsm Msg", log.Fields{"device-id": oFsm.pAdaptFsm.deviceID,
"msgType": msg.OmciMsg.MessageType})
switch msg.OmciMsg.MessageType {
case omci.CreateResponseType:
{
msgLayer := (*msg.OmciPacket).Layer(omci.LayerTypeCreateResponse)
if msgLayer == nil {
logger.Error("Omci Msg layer could not be detected for CreateResponse")
return
}
msgObj, msgOk := msgLayer.(*omci.CreateResponse)
if !msgOk {
logger.Error("Omci Msg layer could not be assigned for CreateResponse")
return
}
logger.Debugw("CreateResponse Data", log.Fields{"device-id": oFsm.pAdaptFsm.deviceID, "data-fields": msgObj})
if msgObj.Result != me.Success {
logger.Errorw("Omci CreateResponse Error - later: drive FSM to abort state ?", log.Fields{"Error": msgObj.Result})
// possibly force FSM into abort or ignore some errors for some messages? store error for mgmt display?
return
}
if msgObj.EntityClass == oFsm.pOmciCC.pLastTxMeInstance.GetClassID() &&
msgObj.EntityInstance == oFsm.pOmciCC.pLastTxMeInstance.GetEntityID() {
// maybe we can use just the same eventName for different state transitions like "forward"
// - might be checked, but so far I go for sure and have to inspect the concrete state events ...
switch oFsm.pOmciCC.pLastTxMeInstance.GetName() {
case "VlanTaggingFilterData":
{
if oFsm.configuredUniFlow == 0 {
// Only if CreateResponse is received from first flow entry - let the FSM proceed ...
_ = oFsm.pAdaptFsm.pFsm.Event(vlanEvRxConfigVtfd)
} else { // let the MultiEntity config proceed by stopping the wait function
oFsm.omciMIdsResponseReceived <- true
}
}
}
}
} //CreateResponseType
case omci.SetResponseType:
{
msgLayer := (*msg.OmciPacket).Layer(omci.LayerTypeSetResponse)
if msgLayer == nil {
logger.Error("UniVlanConfigFsm - Omci Msg layer could not be detected for SetResponse")
return
}
msgObj, msgOk := msgLayer.(*omci.SetResponse)
if !msgOk {
logger.Error("UniVlanConfigFsm - Omci Msg layer could not be assigned for SetResponse")
return
}
logger.Debugw("UniVlanConfigFsm SetResponse Data", log.Fields{"deviceId": oFsm.pAdaptFsm.deviceID, "data-fields": msgObj})
if msgObj.Result != me.Success {
logger.Errorw("UniVlanConfigFsm - Omci SetResponse Error - later: drive FSM to abort state ?", log.Fields{"Error": msgObj.Result})
// possibly force FSM into abort or ignore some errors for some messages? store error for mgmt display?
return
}
if msgObj.EntityClass == oFsm.pOmciCC.pLastTxMeInstance.GetClassID() &&
msgObj.EntityInstance == oFsm.pOmciCC.pLastTxMeInstance.GetEntityID() {
switch oFsm.pOmciCC.pLastTxMeInstance.GetName() {
case "VlanTaggingFilterData",
"ExtendedVlanTaggingOperationConfigurationData":
{ // let the MultiEntity config proceed by stopping the wait function
oFsm.omciMIdsResponseReceived <- true
}
}
}
} //SetResponseType
default:
{
logger.Errorw("UniVlanConfigFsm - Rx OMCI unhandled MsgType", log.Fields{"omciMsgType": msg.OmciMsg.MessageType})
return
}
}
}
func (oFsm *UniVlanConfigFsm) performConfigEvtocdEntries(aFlowEntryNo uint8) {
if aFlowEntryNo == 0 {
// EthType set only at first flow element
// EVTOCD ME is expected to exist at this point already from MIB-Download (with AssociationType/Pointer)
// we need to extend the configuration by EthType definition and, to be sure, downstream 'inverse' mode
logger.Debugw("UniVlanConfigFsm Tx Set::EVTOCD", log.Fields{
"EntitytId": strconv.FormatInt(int64(oFsm.evtocdID), 16),
"i/oEthType": strconv.FormatInt(int64(cDefaultTpid), 16),
"device-id": oFsm.pAdaptFsm.deviceID})
meParams := me.ParamData{
EntityID: oFsm.evtocdID,
Attributes: me.AttributeValueMap{
"InputTpid": uint16(cDefaultTpid), //could be possibly retrieved from flow config one day, by now just like py-code base
"OutputTpid": uint16(cDefaultTpid), //could be possibly retrieved from flow config one day, by now just like py-code base
"DownstreamMode": uint8(cDefaultDownstreamMode),
},
}
meInstance := oFsm.pOmciCC.sendSetEvtocdVar(context.TODO(), ConstDefaultOmciTimeout, true,
oFsm.pAdaptFsm.commChan, meParams)
//accept also nil as (error) return value for writing to LastTx
// - this avoids misinterpretation of new received OMCI messages
oFsm.pOmciCC.pLastTxMeInstance = meInstance
//verify response
err := oFsm.waitforOmciResponse()
if err != nil {
logger.Errorw("Evtocd set TPID failed, aborting VlanConfig FSM!",
log.Fields{"device-id": oFsm.pAdaptFsm.deviceID})
_ = oFsm.pAdaptFsm.pFsm.Event(vlanEvReset)
return
}
} //first flow element
oFsm.mutexFlowParams.Lock()
if oFsm.uniFlowParamsSlice[aFlowEntryNo].SetVid == uint32(of.OfpVlanId_OFPVID_PRESENT) {
//transparent transmission required
oFsm.mutexFlowParams.Unlock()
logger.Debugw("UniVlanConfigFsm Tx Set::EVTOCD single tagged transparent rule", log.Fields{
"device-id": oFsm.pAdaptFsm.deviceID})
sliceEvtocdRule := make([]uint8, 16)
// fill vlan tagging operation table bit fields using network=bigEndian order and using slice offset 0 as highest 'word'
binary.BigEndian.PutUint32(sliceEvtocdRule[cFilterOuterOffset:],
cPrioIgnoreTag<<cFilterPrioOffset| // Not an outer-tag rule
cDoNotFilterVid<<cFilterVidOffset| // Do not filter on outer vid
cDoNotFilterTPID<<cFilterTpidOffset) // Do not filter on outer TPID field
binary.BigEndian.PutUint32(sliceEvtocdRule[cFilterInnerOffset:],
cPrioDefaultFilter<<cFilterPrioOffset| // default inner-tag rule
cDoNotFilterVid<<cFilterVidOffset| // Do not filter on inner vid
cDoNotFilterTPID<<cFilterTpidOffset| // Do not filter on inner TPID field
cDoNotFilterEtherType<<cFilterEtherTypeOffset) // Do not filter of EtherType
binary.BigEndian.PutUint32(sliceEvtocdRule[cTreatOuterOffset:],
0<<cTreatTTROffset| // Do not pop any tags
cDoNotAddPrio<<cTreatPrioOffset| // do not add outer tag
cDontCareVid<<cTreatVidOffset| // Outer VID don't care
cDontCareTpid<<cTreatTpidOffset) // Outer TPID field don't care
binary.BigEndian.PutUint32(sliceEvtocdRule[cTreatInnerOffset:],
cDoNotAddPrio<<cTreatPrioOffset| // do not add inner tag
cDontCareVid<<cTreatVidOffset| // Outer VID don't care
cSetOutputTpidCopyDei<<cTreatTpidOffset) // Set TPID = 0x8100
meParams := me.ParamData{
EntityID: oFsm.evtocdID,
Attributes: me.AttributeValueMap{
"ReceivedFrameVlanTaggingOperationTable": sliceEvtocdRule,
},
}
meInstance := oFsm.pOmciCC.sendSetEvtocdVar(context.TODO(), ConstDefaultOmciTimeout, true,
oFsm.pAdaptFsm.commChan, meParams)
//accept also nil as (error) return value for writing to LastTx
// - this avoids misinterpretation of new received OMCI messages
oFsm.pOmciCC.pLastTxMeInstance = meInstance
//verify response
err := oFsm.waitforOmciResponse()
if err != nil {
logger.Errorw("Evtocd set transparent singletagged rule failed, aborting VlanConfig FSM!",
log.Fields{"device-id": oFsm.pAdaptFsm.deviceID})
_ = oFsm.pAdaptFsm.pFsm.Event(vlanEvReset)
return
}
} else {
// according to py-code acceptIncrementalEvto program option decides upon stacking or translation scenario
if oFsm.acceptIncrementalEvtoOption {
// this defines VID translation scenario: singletagged->singletagged (if not transparent)
logger.Debugw("UniVlanConfigFsm Tx Set::EVTOCD single tagged translation rule", log.Fields{
"device-id": oFsm.pAdaptFsm.deviceID})
sliceEvtocdRule := make([]uint8, 16)
// fill vlan tagging operation table bit fields using network=bigEndian order and using slice offset 0 as highest 'word'
binary.BigEndian.PutUint32(sliceEvtocdRule[cFilterOuterOffset:],
cPrioIgnoreTag<<cFilterPrioOffset| // Not an outer-tag rule
cDoNotFilterVid<<cFilterVidOffset| // Do not filter on outer vid
cDoNotFilterTPID<<cFilterTpidOffset) // Do not filter on outer TPID field
binary.BigEndian.PutUint32(sliceEvtocdRule[cFilterInnerOffset:],
oFsm.uniFlowParamsSlice[aFlowEntryNo].MatchPcp<<cFilterPrioOffset| // either DNFonPrio or ignore tag (default) on innerVLAN
oFsm.uniFlowParamsSlice[aFlowEntryNo].MatchVid<<cFilterVidOffset| // either DNFonVid or real filter VID
cDoNotFilterTPID<<cFilterTpidOffset| // Do not filter on inner TPID field
cDoNotFilterEtherType<<cFilterEtherTypeOffset) // Do not filter of EtherType
binary.BigEndian.PutUint32(sliceEvtocdRule[cTreatOuterOffset:],
oFsm.uniFlowParamsSlice[aFlowEntryNo].TagsToRemove<<cTreatTTROffset| // either 1 or 0
cDoNotAddPrio<<cTreatPrioOffset| // do not add outer tag
cDontCareVid<<cTreatVidOffset| // Outer VID don't care
cDontCareTpid<<cTreatTpidOffset) // Outer TPID field don't care
binary.BigEndian.PutUint32(sliceEvtocdRule[cTreatInnerOffset:],
oFsm.uniFlowParamsSlice[aFlowEntryNo].SetPcp<<cTreatPrioOffset| // as configured in flow
oFsm.uniFlowParamsSlice[aFlowEntryNo].SetVid<<cTreatVidOffset| //as configured in flow
cSetOutputTpidCopyDei<<cTreatTpidOffset) // Set TPID = 0x8100
oFsm.mutexFlowParams.Unlock()
meParams := me.ParamData{
EntityID: oFsm.evtocdID,
Attributes: me.AttributeValueMap{
"ReceivedFrameVlanTaggingOperationTable": sliceEvtocdRule,
},
}
meInstance := oFsm.pOmciCC.sendSetEvtocdVar(context.TODO(), ConstDefaultOmciTimeout, true,
oFsm.pAdaptFsm.commChan, meParams)
//accept also nil as (error) return value for writing to LastTx
// - this avoids misinterpretation of new received OMCI messages
oFsm.pOmciCC.pLastTxMeInstance = meInstance
//verify response
err := oFsm.waitforOmciResponse()
if err != nil {
logger.Errorw("Evtocd set singletagged translation rule failed, aborting VlanConfig FSM!",
log.Fields{"device-id": oFsm.pAdaptFsm.deviceID})
_ = oFsm.pAdaptFsm.pFsm.Event(vlanEvReset)
return
}
} else {
//not transparent and not acceptIncrementalEvtoOption untagged/priotagged->singletagged
{ // just for local var's
// this defines stacking scenario: untagged->singletagged
logger.Debugw("UniVlanConfigFsm Tx Set::EVTOCD untagged->singletagged rule", log.Fields{
"device-id": oFsm.pAdaptFsm.deviceID})
sliceEvtocdRule := make([]uint8, 16)
// fill vlan tagging operation table bit fields using network=bigEndian order and using slice offset 0 as highest 'word'
binary.BigEndian.PutUint32(sliceEvtocdRule[cFilterOuterOffset:],
cPrioIgnoreTag<<cFilterPrioOffset| // Not an outer-tag rule
cDoNotFilterVid<<cFilterVidOffset| // Do not filter on outer vid
cDoNotFilterTPID<<cFilterTpidOffset) // Do not filter on outer TPID field
binary.BigEndian.PutUint32(sliceEvtocdRule[cFilterInnerOffset:],
cPrioIgnoreTag<<cFilterPrioOffset| // Not an inner-tag rule
cDoNotFilterVid<<cFilterVidOffset| // Do not filter on inner vid
cDoNotFilterTPID<<cFilterTpidOffset| // Do not filter on inner TPID field
cDoNotFilterEtherType<<cFilterEtherTypeOffset) // Do not filter of EtherType
binary.BigEndian.PutUint32(sliceEvtocdRule[cTreatOuterOffset:],
0<<cTreatTTROffset| // Do not pop any tags
cDoNotAddPrio<<cTreatPrioOffset| // do not add outer tag
cDontCareVid<<cTreatVidOffset| // Outer VID don't care
cDontCareTpid<<cTreatTpidOffset) // Outer TPID field don't care
binary.BigEndian.PutUint32(sliceEvtocdRule[cTreatInnerOffset:],
0<<cTreatPrioOffset| // vlan prio set to 0
// (as done in Py code, maybe better option would be setPcp here, which still could be 0?)
oFsm.uniFlowParamsSlice[aFlowEntryNo].SetVid<<cTreatVidOffset| // Outer VID don't care
cSetOutputTpidCopyDei<<cTreatTpidOffset) // Set TPID = 0x8100
oFsm.mutexFlowParams.Unlock()
meParams := me.ParamData{
EntityID: oFsm.evtocdID,
Attributes: me.AttributeValueMap{
"ReceivedFrameVlanTaggingOperationTable": sliceEvtocdRule,
},
}
meInstance := oFsm.pOmciCC.sendSetEvtocdVar(context.TODO(), ConstDefaultOmciTimeout, true,
oFsm.pAdaptFsm.commChan, meParams)
//accept also nil as (error) return value for writing to LastTx
// - this avoids misinterpretation of new received OMCI messages
oFsm.pOmciCC.pLastTxMeInstance = meInstance
//verify response
err := oFsm.waitforOmciResponse()
if err != nil {
logger.Errorw("Evtocd set untagged->singletagged rule failed, aborting VlanConfig FSM!",
log.Fields{"device-id": oFsm.pAdaptFsm.deviceID})
_ = oFsm.pAdaptFsm.pFsm.Event(vlanEvReset)
return
}
} // just for local var's
{ // just for local var's
// this defines 'stacking' scenario: priotagged->singletagged
logger.Debugw("UniVlanConfigFsm Tx Set::EVTOCD priotagged->singletagged rule", log.Fields{
"device-id": oFsm.pAdaptFsm.deviceID})
sliceEvtocdRule := make([]uint8, 16)
// fill vlan tagging operation table bit fields using network=bigEndian order and using slice offset 0 as highest 'word'
binary.BigEndian.PutUint32(sliceEvtocdRule[cFilterOuterOffset:],
cPrioIgnoreTag<<cFilterPrioOffset| // Not an outer-tag rule
cDoNotFilterVid<<cFilterVidOffset| // Do not filter on outer vid
cDoNotFilterTPID<<cFilterTpidOffset) // Do not filter on outer TPID field
binary.BigEndian.PutUint32(sliceEvtocdRule[cFilterInnerOffset:],
cPrioDoNotFilter<<cFilterPrioOffset| // Do not Filter on innerprio
0<<cFilterVidOffset| // filter on inner vid 0 (prioTagged)
cDoNotFilterTPID<<cFilterTpidOffset| // Do not filter on inner TPID field
cDoNotFilterEtherType<<cFilterEtherTypeOffset) // Do not filter of EtherType
binary.BigEndian.PutUint32(sliceEvtocdRule[cTreatOuterOffset:],
1<<cTreatTTROffset| // pop the prio-tag
cDoNotAddPrio<<cTreatPrioOffset| // do not add outer tag
cDontCareVid<<cTreatVidOffset| // Outer VID don't care
cDontCareTpid<<cTreatTpidOffset) // Outer TPID field don't care
oFsm.mutexFlowParams.Lock()
binary.BigEndian.PutUint32(sliceEvtocdRule[cTreatInnerOffset:],
cCopyPrioFromInner<<cTreatPrioOffset| // vlan copy from PrioTag
// (as done in Py code, maybe better option would be setPcp here, which still could be PrioCopy?)
oFsm.uniFlowParamsSlice[aFlowEntryNo].SetVid<<cTreatVidOffset| // Outer VID as configured
cSetOutputTpidCopyDei<<cTreatTpidOffset) // Set TPID = 0x8100
oFsm.mutexFlowParams.Unlock()
meParams := me.ParamData{
EntityID: oFsm.evtocdID,
Attributes: me.AttributeValueMap{
"ReceivedFrameVlanTaggingOperationTable": sliceEvtocdRule,
},
}
meInstance := oFsm.pOmciCC.sendSetEvtocdVar(context.TODO(), ConstDefaultOmciTimeout, true,
oFsm.pAdaptFsm.commChan, meParams)
//accept also nil as (error) return value for writing to LastTx
// - this avoids misinterpretation of new received OMCI messages
oFsm.pOmciCC.pLastTxMeInstance = meInstance
//verify response
err := oFsm.waitforOmciResponse()
if err != nil {
logger.Errorw("Evtocd set priotagged->singletagged rule failed, aborting VlanConfig FSM!",
log.Fields{"device-id": oFsm.pAdaptFsm.deviceID})
_ = oFsm.pAdaptFsm.pFsm.Event(vlanEvReset)
return
}
} //just for local var's
}
}
// if Config has been done for all GemPort instances let the FSM proceed
logger.Debugw("EVTOCD set loop finished", log.Fields{"device-id": oFsm.pAdaptFsm.deviceID})
_ = oFsm.pAdaptFsm.pFsm.Event(vlanEvRxConfigEvtocd)
}
func (oFsm *UniVlanConfigFsm) waitforOmciResponse() error {
select {
// maybe be also some outside cancel (but no context modeled for the moment ...)
// case <-ctx.Done():
// logger.Infow("LockState-bridge-init message reception canceled", log.Fields{"for device-id": oFsm.pAdaptFsm.deviceID})
case <-time.After(30 * time.Second): //AS FOR THE OTHER OMCI FSM's
logger.Warnw("UniVlanConfigFsm multi entity timeout", log.Fields{"for device-id": oFsm.pAdaptFsm.deviceID})
return errors.New("uniVlanConfigFsm multi entity timeout")
case success := <-oFsm.omciMIdsResponseReceived:
if success {
logger.Debug("UniVlanConfigFsm multi entity response received")
return nil
}
// should not happen so far
logger.Warnw("UniVlanConfigFsm multi entity response error", log.Fields{"for device-id": oFsm.pAdaptFsm.deviceID})
return errors.New("uniVlanConfigFsm multi entity responseError")
}
}