blob: befc4a28511921dee00445989f881ec0af135274 [file] [log] [blame]
/*
* Copyright 2020-present Open Networking Foundation
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
//Package adaptercoreonu provides the utility for onu devices, flows and statistics
package adaptercoreonu
import (
"context"
"encoding/binary"
"fmt"
"net"
"strconv"
"sync"
"time"
gp "github.com/google/gopacket"
"github.com/looplab/fsm"
"github.com/opencord/omci-lib-go"
me "github.com/opencord/omci-lib-go/generated"
"github.com/opencord/voltha-lib-go/v4/pkg/log"
of "github.com/opencord/voltha-protos/v4/go/openflow_13"
)
const (
// internal predefined values
cDefaultDownstreamMode = 0
cDefaultTpid = 0x8100
cVtfdTableSize = 12 //as per G.988
cMaxAllowedFlows = cVtfdTableSize //which might be under discussion, for the moment connected to limit of VLAN's within VTFD
)
const (
// bit mask offsets for EVTOCD VlanTaggingOperationTable related to 32 bits (4 bytes)
cFilterPrioOffset = 28
cFilterVidOffset = 15
cFilterTpidOffset = 12
cFilterEtherTypeOffset = 0
cTreatTTROffset = 30
cTreatPrioOffset = 16
cTreatVidOffset = 3
cTreatTpidOffset = 0
)
const (
// byte offsets for EVTOCD VlanTaggingOperationTable related to overall 16 byte size with slice byte 0 as first Byte (MSB)
cFilterOuterOffset = 0
cFilterInnerOffset = 4
cTreatOuterOffset = 8
cTreatInnerOffset = 12
)
const (
// basic values used within EVTOCD VlanTaggingOperationTable in respect to their bitfields
cPrioIgnoreTag uint32 = 15
cPrioDefaultFilter uint32 = 14
cPrioDoNotFilter uint32 = 8
cDoNotFilterVid uint32 = 4096
cDoNotFilterTPID uint32 = 0
cDoNotFilterEtherType uint32 = 0
cDoNotAddPrio uint32 = 15
cCopyPrioFromInner uint32 = 8
//cDontCarePrio uint32 = 0
cDontCareVid uint32 = 0
cDontCareTpid uint32 = 0
cSetOutputTpidCopyDei uint32 = 4
)
const (
// events of config PON ANI port FSM
vlanEvStart = "vlanEvStart"
vlanEvWaitTechProf = "vlanEvWaitTechProf"
vlanEvContinueConfig = "vlanEvContinueConfig"
vlanEvStartConfig = "vlanEvStartConfig"
vlanEvRxConfigVtfd = "vlanEvRxConfigVtfd"
vlanEvRxConfigEvtocd = "vlanEvRxConfigEvtocd"
vlanEvWaitTPIncr = "vlanEvWaitTPIncr"
vlanEvIncrFlowConfig = "vlanEvIncrFlowConfig"
vlanEvRenew = "vlanEvRenew"
vlanEvRemFlowConfig = "vlanEvRemFlowConfig"
vlanEvRemFlowDone = "vlanEvRemFlowDone"
vlanEvFlowDataRemoved = "vlanEvFlowDataRemoved"
//vlanEvTimeoutSimple = "vlanEvTimeoutSimple"
//vlanEvTimeoutMids = "vlanEvTimeoutMids"
vlanEvReset = "vlanEvReset"
vlanEvRestart = "vlanEvRestart"
)
const (
// states of config PON ANI port FSM
vlanStDisabled = "vlanStDisabled"
vlanStStarting = "vlanStStarting"
vlanStWaitingTechProf = "vlanStWaitingTechProf"
vlanStConfigVtfd = "vlanStConfigVtfd"
vlanStConfigEvtocd = "vlanStConfigEvtocd"
vlanStConfigDone = "vlanStConfigDone"
vlanStIncrFlowWaitTP = "vlanStIncrFlowWaitTP"
vlanStConfigIncrFlow = "vlanStConfigIncrFlow"
vlanStRemoveFlow = "vlanStRemoveFlow"
vlanStCleanupDone = "vlanStCleanupDone"
vlanStResetting = "vlanStResetting"
)
type uniVlanRuleParams struct {
TpID uint8 `json:"tp_id"`
MatchVid uint32 `json:"match_vid"` //use uint32 types for allowing immediate bitshifting
MatchPcp uint32 `json:"match_pcp"`
TagsToRemove uint32 `json:"tags_to_remove"`
SetVid uint32 `json:"set_vid"`
SetPcp uint32 `json:"set_pcp"`
}
type uniVlanFlowParams struct {
CookieSlice []uint64 `json:"cookie_slice"`
VlanRuleParams uniVlanRuleParams `json:"vlan_rule_params"`
}
type uniRemoveVlanFlowParams struct {
cookie uint64 //just the last cookie valid for removal
vlanRuleParams uniVlanRuleParams
}
//UniVlanConfigFsm defines the structure for the state machine to config the PON ANI ports of ONU UNI ports via OMCI
type UniVlanConfigFsm struct {
pDeviceHandler *deviceHandler
deviceID string
pOmciCC *omciCC
pOnuUniPort *onuUniPort
pUniTechProf *onuUniTechProf
pOnuDB *onuDeviceDB
requestEvent OnuDeviceEvent
omciMIdsResponseReceived chan bool //seperate channel needed for checking multiInstance OMCI message responses
pAdaptFsm *AdapterFsm
acceptIncrementalEvtoOption bool
clearPersistency bool
mutexFlowParams sync.RWMutex
uniVlanFlowParamsSlice []uniVlanFlowParams
uniRemoveFlowsSlice []uniRemoveVlanFlowParams
numUniFlows uint8 // expected number of flows should be less than 12
configuredUniFlow uint8
numRemoveFlows uint8
numVlanFilterEntries uint8
vlanFilterList [cVtfdTableSize]uint16
evtocdID uint16
pLastTxMeInstance *me.ManagedEntity
requestEventOffset uint8
TpIDWaitingFor uint8
}
//NewUniVlanConfigFsm is the 'constructor' for the state machine to config the PON ANI ports
// of ONU UNI ports via OMCI
func NewUniVlanConfigFsm(ctx context.Context, apDeviceHandler *deviceHandler, apDevOmciCC *omciCC, apUniPort *onuUniPort,
apUniTechProf *onuUniTechProf, apOnuDB *onuDeviceDB, aTechProfileID uint8,
aRequestEvent OnuDeviceEvent, aName string, aCommChannel chan Message, aAcceptIncrementalEvto bool,
aCookieSlice []uint64, aMatchVlan uint16, aSetVlan uint16, aSetPcp uint8) *UniVlanConfigFsm {
instFsm := &UniVlanConfigFsm{
pDeviceHandler: apDeviceHandler,
deviceID: apDeviceHandler.deviceID,
pOmciCC: apDevOmciCC,
pOnuUniPort: apUniPort,
pUniTechProf: apUniTechProf,
pOnuDB: apOnuDB,
requestEvent: aRequestEvent,
acceptIncrementalEvtoOption: aAcceptIncrementalEvto,
numUniFlows: 0,
configuredUniFlow: 0,
numRemoveFlows: 0,
clearPersistency: true,
}
instFsm.pAdaptFsm = NewAdapterFsm(aName, instFsm.deviceID, aCommChannel)
if instFsm.pAdaptFsm == nil {
logger.Errorw(ctx, "UniVlanConfigFsm's AdapterFsm could not be instantiated!!", log.Fields{
"device-id": instFsm.deviceID})
return nil
}
instFsm.pAdaptFsm.pFsm = fsm.NewFSM(
vlanStDisabled,
fsm.Events{
{Name: vlanEvStart, Src: []string{vlanStDisabled}, Dst: vlanStStarting},
{Name: vlanEvWaitTechProf, Src: []string{vlanStStarting}, Dst: vlanStWaitingTechProf},
{Name: vlanEvContinueConfig, Src: []string{vlanStWaitingTechProf}, Dst: vlanStConfigVtfd},
{Name: vlanEvStartConfig, Src: []string{vlanStStarting}, Dst: vlanStConfigVtfd},
{Name: vlanEvRxConfigVtfd, Src: []string{vlanStConfigVtfd}, Dst: vlanStConfigEvtocd},
{Name: vlanEvRxConfigEvtocd, Src: []string{vlanStConfigEvtocd, vlanStConfigIncrFlow},
Dst: vlanStConfigDone},
{Name: vlanEvRenew, Src: []string{vlanStConfigDone}, Dst: vlanStStarting},
{Name: vlanEvWaitTPIncr, Src: []string{vlanStConfigDone}, Dst: vlanStIncrFlowWaitTP},
{Name: vlanEvIncrFlowConfig, Src: []string{vlanStConfigDone, vlanStIncrFlowWaitTP},
Dst: vlanStConfigIncrFlow},
{Name: vlanEvRemFlowConfig, Src: []string{vlanStConfigDone}, Dst: vlanStRemoveFlow},
{Name: vlanEvRemFlowDone, Src: []string{vlanStRemoveFlow}, Dst: vlanStCleanupDone},
{Name: vlanEvFlowDataRemoved, Src: []string{vlanStCleanupDone}, Dst: vlanStConfigDone},
/*
{Name: vlanEvTimeoutSimple, Src: []string{
vlanStCreatingDot1PMapper, vlanStCreatingMBPCD, vlanStSettingTconts, vlanStSettingDot1PMapper}, Dst: vlanStStarting},
{Name: vlanEvTimeoutMids, Src: []string{
vlanStCreatingGemNCTPs, vlanStCreatingGemIWs, vlanStSettingPQs}, Dst: vlanStStarting},
*/
// exceptional treatment for all states except vlanStResetting
{Name: vlanEvReset, Src: []string{vlanStStarting, vlanStWaitingTechProf,
vlanStConfigVtfd, vlanStConfigEvtocd, vlanStConfigDone, vlanStConfigIncrFlow,
vlanStRemoveFlow, vlanStCleanupDone},
Dst: vlanStResetting},
// the only way to get to resource-cleared disabled state again is via "resseting"
{Name: vlanEvRestart, Src: []string{vlanStResetting}, Dst: vlanStDisabled},
},
fsm.Callbacks{
"enter_state": func(e *fsm.Event) { instFsm.pAdaptFsm.logFsmStateChange(ctx, e) },
"enter_" + vlanStStarting: func(e *fsm.Event) { instFsm.enterConfigStarting(ctx, e) },
"enter_" + vlanStConfigVtfd: func(e *fsm.Event) { instFsm.enterConfigVtfd(ctx, e) },
"enter_" + vlanStConfigEvtocd: func(e *fsm.Event) { instFsm.enterConfigEvtocd(ctx, e) },
"enter_" + vlanStConfigDone: func(e *fsm.Event) { instFsm.enterVlanConfigDone(ctx, e) },
"enter_" + vlanStConfigIncrFlow: func(e *fsm.Event) { instFsm.enterConfigIncrFlow(ctx, e) },
"enter_" + vlanStRemoveFlow: func(e *fsm.Event) { instFsm.enterRemoveFlow(ctx, e) },
"enter_" + vlanStCleanupDone: func(e *fsm.Event) { instFsm.enterVlanCleanupDone(ctx, e) },
"enter_" + vlanStResetting: func(e *fsm.Event) { instFsm.enterResetting(ctx, e) },
"enter_" + vlanStDisabled: func(e *fsm.Event) { instFsm.enterDisabled(ctx, e) },
},
)
if instFsm.pAdaptFsm.pFsm == nil {
logger.Errorw(ctx, "UniVlanConfigFsm's Base FSM could not be instantiated!!", log.Fields{
"device-id": instFsm.deviceID})
return nil
}
_ = instFsm.initUniFlowParams(ctx, aTechProfileID, aCookieSlice, aMatchVlan, aSetVlan, aSetPcp)
logger.Debugw(ctx, "UniVlanConfigFsm created", log.Fields{"device-id": instFsm.deviceID,
"accIncrEvto": instFsm.acceptIncrementalEvtoOption})
return instFsm
}
//initUniFlowParams is a simplified form of SetUniFlowParams() used for first flow parameters configuration
func (oFsm *UniVlanConfigFsm) initUniFlowParams(ctx context.Context, aTpID uint8, aCookieSlice []uint64,
aMatchVlan uint16, aSetVlan uint16, aSetPcp uint8) error {
loRuleParams := uniVlanRuleParams{
TpID: aTpID,
MatchVid: uint32(aMatchVlan),
SetVid: uint32(aSetVlan),
SetPcp: uint32(aSetPcp),
}
// some automatic adjustments on the filter/treat parameters as not specifically configured/ensured by flow configuration parameters
loRuleParams.TagsToRemove = 1 //one tag to remove as default setting
loRuleParams.MatchPcp = cPrioDoNotFilter // do not Filter on prio as default
if loRuleParams.SetVid == uint32(of.OfpVlanId_OFPVID_PRESENT) {
//then matchVlan is don't care and should be overwritten to 'transparent' here to avoid unneeded multiple flow entries
loRuleParams.MatchVid = uint32(of.OfpVlanId_OFPVID_PRESENT)
//TODO!!: maybe be needed to be re-checked at flow deletion (but assume all flows are always deleted togehther)
} else {
if !oFsm.acceptIncrementalEvtoOption {
//then matchVlan is don't care and should be overwritten to 'transparent' here to avoid unneeded multiple flow entries
loRuleParams.MatchVid = uint32(of.OfpVlanId_OFPVID_PRESENT)
}
}
if loRuleParams.MatchVid == uint32(of.OfpVlanId_OFPVID_PRESENT) {
// no prio/vid filtering requested
loRuleParams.TagsToRemove = 0 //no tag pop action
loRuleParams.MatchPcp = cPrioIgnoreTag // no vlan tag filtering
if loRuleParams.SetPcp == cCopyPrioFromInner {
//in case of no filtering and configured PrioCopy ensure default prio setting to 0
// which is required for stacking of untagged, but obviously also ensures prio setting for prio/singletagged
// might collide with NoMatchVid/CopyPrio(/setVid) setting
// this was some precondition setting taken over from py adapter ..
loRuleParams.SetPcp = 0
}
}
loFlowParams := uniVlanFlowParams{VlanRuleParams: loRuleParams}
loFlowParams.CookieSlice = make([]uint64, 0)
loFlowParams.CookieSlice = append(loFlowParams.CookieSlice, aCookieSlice...)
//no mutex protection is required for initial access and adding the first flow is always possible
oFsm.uniVlanFlowParamsSlice = make([]uniVlanFlowParams, 0)
oFsm.uniVlanFlowParamsSlice = append(oFsm.uniVlanFlowParamsSlice, loFlowParams)
logger.Debugw(ctx, "first UniVlanConfigFsm flow added", log.Fields{
"Cookies": oFsm.uniVlanFlowParamsSlice[0].CookieSlice,
"MatchVid": strconv.FormatInt(int64(loRuleParams.MatchVid), 16),
"SetVid": strconv.FormatInt(int64(loRuleParams.SetVid), 16),
"SetPcp": loRuleParams.SetPcp,
"device-id": oFsm.deviceID})
oFsm.numUniFlows = 1
oFsm.uniRemoveFlowsSlice = make([]uniRemoveVlanFlowParams, 0) //initially nothing to remove
//permanently store flow config for reconcile case
if err := oFsm.pDeviceHandler.storePersUniFlowConfig(ctx, oFsm.pOnuUniPort.uniID,
&oFsm.uniVlanFlowParamsSlice); err != nil {
logger.Errorw(ctx, err.Error(), log.Fields{"device-id": oFsm.deviceID})
return err
}
return nil
}
//GetWaitingTpID returns the TpId that the FSM might be waiting for continuation (0 if none)
func (oFsm *UniVlanConfigFsm) GetWaitingTpID() uint8 {
//mutex protection is required for possible concurrent access to FSM members
oFsm.mutexFlowParams.RLock()
defer oFsm.mutexFlowParams.RUnlock()
return oFsm.TpIDWaitingFor
}
//RequestClearPersistency sets the internal flag to not clear persistency data (false=NoClear)
func (oFsm *UniVlanConfigFsm) RequestClearPersistency(aClear bool) {
//mutex protection is required for possible concurrent access to FSM members
oFsm.mutexFlowParams.RLock()
defer oFsm.mutexFlowParams.RUnlock()
oFsm.clearPersistency = aClear
}
//SetUniFlowParams verifies on existence of flow parameters to be configured,
// optionally udates the cookie list or appends a new flow if there is space
// if possible the FSM is trigggerd to start with the processing
// ignore complexity by now
// nolint: gocyclo
func (oFsm *UniVlanConfigFsm) SetUniFlowParams(ctx context.Context, aTpID uint8, aCookieSlice []uint64,
aMatchVlan uint16, aSetVlan uint16, aSetPcp uint8) error {
loRuleParams := uniVlanRuleParams{
TpID: aTpID,
MatchVid: uint32(aMatchVlan),
SetVid: uint32(aSetVlan),
SetPcp: uint32(aSetPcp),
}
// some automatic adjustments on the filter/treat parameters as not specifically configured/ensured by flow configuration parameters
loRuleParams.TagsToRemove = 1 //one tag to remove as default setting
loRuleParams.MatchPcp = cPrioDoNotFilter // do not Filter on prio as default
if loRuleParams.SetVid == uint32(of.OfpVlanId_OFPVID_PRESENT) {
//then matchVlan is don't care and should be overwritten to 'transparent' here to avoid unneeded multiple flow entries
loRuleParams.MatchVid = uint32(of.OfpVlanId_OFPVID_PRESENT)
//TODO!!: maybe be needed to be re-checked at flow deletion (but assume all flows are always deleted togehther)
} else {
if !oFsm.acceptIncrementalEvtoOption {
//then matchVlan is don't care and should be overwritten to 'transparent' here to avoid unneeded multiple flow entries
loRuleParams.MatchVid = uint32(of.OfpVlanId_OFPVID_PRESENT)
}
}
if loRuleParams.MatchVid == uint32(of.OfpVlanId_OFPVID_PRESENT) {
// no prio/vid filtering requested
loRuleParams.TagsToRemove = 0 //no tag pop action
loRuleParams.MatchPcp = cPrioIgnoreTag // no vlan tag filtering
if loRuleParams.SetPcp == cCopyPrioFromInner {
//in case of no filtering and configured PrioCopy ensure default prio setting to 0
// which is required for stacking of untagged, but obviously also ensures prio setting for prio/singletagged
// might collide with NoMatchVid/CopyPrio(/setVid) setting
// this was some precondition setting taken over from py adapter ..
loRuleParams.SetPcp = 0
}
}
flowEntryMatch := false
flowCookieModify := false
//mutex protection is required for possible concurrent access to FSM members
oFsm.mutexFlowParams.Lock()
defer oFsm.mutexFlowParams.Unlock()
for flow, storedUniFlowParams := range oFsm.uniVlanFlowParamsSlice {
//TODO: Verify if using e.g. hashes for the structures here for comparison may generate
// countable run time optimization (perhaps with including the hash in kvStore storage?)
if storedUniFlowParams.VlanRuleParams == loRuleParams {
flowEntryMatch = true
logger.Debugw(ctx, "UniVlanConfigFsm flow setting - rule already exists", log.Fields{
"device-id": oFsm.deviceID})
var cookieMatch bool
for _, newCookie := range aCookieSlice { // for all cookies available in the arguments
cookieMatch = false
for _, cookie := range storedUniFlowParams.CookieSlice {
if cookie == newCookie {
logger.Debugw(ctx, "UniVlanConfigFsm flow setting - and cookie already exists", log.Fields{
"device-id": oFsm.deviceID, "cookie": cookie})
cookieMatch = true
break //found new cookie - no further search for this requested cookie
}
}
if !cookieMatch {
logger.Debugw(ctx, "UniVlanConfigFsm flow setting -adding new cookie", log.Fields{
"device-id": oFsm.deviceID, "cookie": newCookie})
//as range works with copies of the slice we have to write to the original slice!!
oFsm.uniVlanFlowParamsSlice[flow].CookieSlice = append(oFsm.uniVlanFlowParamsSlice[flow].CookieSlice,
newCookie)
flowCookieModify = true
}
} //for all new cookies
break // found rule - no further rule search
}
}
if !flowEntryMatch { //it is a new rule
if oFsm.numUniFlows < cMaxAllowedFlows {
loFlowParams := uniVlanFlowParams{VlanRuleParams: loRuleParams}
loFlowParams.CookieSlice = make([]uint64, 0)
loFlowParams.CookieSlice = append(loFlowParams.CookieSlice, aCookieSlice...)
oFsm.uniVlanFlowParamsSlice = append(oFsm.uniVlanFlowParamsSlice, loFlowParams)
logger.Debugw(ctx, "UniVlanConfigFsm flow add", log.Fields{
"Cookies": oFsm.uniVlanFlowParamsSlice[oFsm.numUniFlows].CookieSlice,
"MatchVid": strconv.FormatInt(int64(loRuleParams.MatchVid), 16),
"SetVid": strconv.FormatInt(int64(loRuleParams.SetVid), 16),
"SetPcp": loRuleParams.SetPcp, "numberofFlows": oFsm.numUniFlows + 1,
"device-id": oFsm.deviceID})
oFsm.numUniFlows++
// note: theoretical it would be possible to clear the same rule from the remove slice
// (for entries that have not yet been started with removal)
// but that is getting quite complicated - maybe a future optimization in case it should prove reasonable
// anyway the precondition here is that the FSM checks for rules to delete first and adds new rules afterwards
pConfigVlanStateBaseFsm := oFsm.pAdaptFsm.pFsm
if pConfigVlanStateBaseFsm.Is(vlanStConfigDone) {
//have to re-trigger the FSM to proceed with outstanding incremental flow configuration
// calling some FSM event must be decoupled
if oFsm.configuredUniFlow == 0 {
// this is a restart with a complete new flow, we can re-use the initial flow config control
// including the check, if the related techProfile is (still) available (probably also removed in between)
// calling some FSM event must be decoupled
go func(a_pBaseFsm *fsm.FSM) {
_ = a_pBaseFsm.Event(vlanEvRenew)
}(pConfigVlanStateBaseFsm)
} else {
//some further flows are to be configured
//tpId of the next rule to be configured
tpID := oFsm.uniVlanFlowParamsSlice[oFsm.configuredUniFlow].VlanRuleParams.TpID
loTechProfDone := oFsm.pUniTechProf.getTechProfileDone(ctx, oFsm.pOnuUniPort.uniID, tpID)
oFsm.TpIDWaitingFor = tpID
logger.Debugw(ctx, "UniVlanConfigFsm - incremental config (on setConfig)", log.Fields{
"device-id": oFsm.deviceID, "uni-id": oFsm.pOnuUniPort.uniID, "tp-id": tpID,
"ProfDone": loTechProfDone})
go func(aPBaseFsm *fsm.FSM, aTechProfDone bool) {
if aTechProfDone {
// let the vlan processing continue with next rule
_ = aPBaseFsm.Event(vlanEvIncrFlowConfig)
} else {
// set to waiting for Techprofile
_ = aPBaseFsm.Event(vlanEvWaitTPIncr)
}
}(pConfigVlanStateBaseFsm, loTechProfDone)
}
} // if not in the appropriate state a new entry will be automatically considered later
// when the configDone state is reached
} else {
logger.Errorw(ctx, "UniVlanConfigFsm flow limit exceeded", log.Fields{
"device-id": oFsm.deviceID, "flow-number": oFsm.numUniFlows})
return fmt.Errorf(" UniVlanConfigFsm flow limit exceeded %s", oFsm.deviceID)
}
} else {
// no activity within the FSM for OMCI processing, the deviceReason may be updated immediately
if oFsm.numUniFlows == oFsm.configuredUniFlow {
//all requested rules really have been configured
// state transition notification is checked in deviceHandler
if oFsm.pDeviceHandler != nil {
//also the related TechProfile was already configured
logger.Debugw(ctx, "UniVlanConfigFsm rule already set - send immediate add-success event for reason update", log.Fields{
"device-id": oFsm.deviceID})
go oFsm.pDeviceHandler.deviceProcStatusUpdate(ctx, oFsm.requestEvent)
}
} else {
// avoid device reason update as the rule config connected to this flow may still be in progress
// and the device reason should only be updated on success of rule config
logger.Debugw(ctx, "UniVlanConfigFsm rule already set but configuration ongoing, suppress early add-success event for reason update",
log.Fields{"device-id": oFsm.deviceID,
"NumberofRules": oFsm.numUniFlows, "Configured rules": oFsm.configuredUniFlow})
}
}
if !flowEntryMatch || flowCookieModify { // some change was done to the flow entries
//permanently store flow config for reconcile case
if err := oFsm.pDeviceHandler.storePersUniFlowConfig(ctx, oFsm.pOnuUniPort.uniID, &oFsm.uniVlanFlowParamsSlice); err != nil {
logger.Errorw(ctx, err.Error(), log.Fields{"device-id": oFsm.deviceID})
return err
}
}
return nil
}
//RemoveUniFlowParams verifies on existence of flow cookie,
// if found removes cookie from flow cookie list and if this is empty
// initiates removal of the flow related configuration from the ONU (via OMCI)
func (oFsm *UniVlanConfigFsm) RemoveUniFlowParams(ctx context.Context, aCookie uint64) error {
flowCookieMatch := false
//mutex protection is required for possible concurrent access to FSM members
oFsm.mutexFlowParams.Lock()
defer oFsm.mutexFlowParams.Unlock()
for flow, storedUniFlowParams := range oFsm.uniVlanFlowParamsSlice {
for i, cookie := range storedUniFlowParams.CookieSlice {
if cookie == aCookie {
logger.Debugw(ctx, "UniVlanConfigFsm flow removal - cookie found", log.Fields{
"device-id": oFsm.deviceID, "cookie": cookie})
flowCookieMatch = true
//remove the cookie from the cookie slice and verify it is getting empty
if len(storedUniFlowParams.CookieSlice) == 1 {
logger.Debugw(ctx, "UniVlanConfigFsm flow removal - full flow removal", log.Fields{
"device-id": oFsm.deviceID})
oFsm.numUniFlows--
//create a new element for the removeVlanFlow slice
loRemoveParams := uniRemoveVlanFlowParams{
vlanRuleParams: storedUniFlowParams.VlanRuleParams,
cookie: storedUniFlowParams.CookieSlice[0],
}
oFsm.uniRemoveFlowsSlice = append(oFsm.uniRemoveFlowsSlice, loRemoveParams)
//and remove the actual element from the addVlanFlow slice
// oFsm.uniVlanFlowParamsSlice[flow].CookieSlice = nil //automatically done by garbage collector
if len(oFsm.uniVlanFlowParamsSlice) <= 1 {
oFsm.numUniFlows = 0 //no more flows
oFsm.configuredUniFlow = 0 //no more flows configured
oFsm.uniVlanFlowParamsSlice = nil //reset the slice
//at this point it is evident that no flow anymore refers to a still possibly active Techprofile
//request that this profile gets deleted before a new flow add is allowed
oFsm.pUniTechProf.setProfileToDelete(oFsm.pOnuUniPort.uniID, loRemoveParams.vlanRuleParams.TpID, true)
logger.Debugw(ctx, "UniVlanConfigFsm flow removal - no more flows", log.Fields{
"device-id": oFsm.deviceID})
} else {
oFsm.numUniFlows--
if oFsm.configuredUniFlow > 0 {
oFsm.configuredUniFlow--
//TODO!! might be needed to consider still outstanding configure requests ..
// so a flow at removal might still not be configured !?!
}
usedTpID := storedUniFlowParams.VlanRuleParams.TpID
//cut off the requested flow by slicing out this element
oFsm.uniVlanFlowParamsSlice = append(
oFsm.uniVlanFlowParamsSlice[:flow], oFsm.uniVlanFlowParamsSlice[flow+1:]...)
//here we have to check, if there are still other flows referencing to the actual ProfileId
// before we can request that this profile gets deleted before a new flow add is allowed
tpIDInOtherFlows := false
for _, tpUniFlowParams := range oFsm.uniVlanFlowParamsSlice {
if tpUniFlowParams.VlanRuleParams.TpID == usedTpID {
tpIDInOtherFlows = true
break // search loop can be left
}
}
if tpIDInOtherFlows {
logger.Debugw(ctx, "UniVlanConfigFsm tp-id used in deleted flow is still used in other flows", log.Fields{
"device-id": oFsm.deviceID, "tp-id": usedTpID})
} else {
logger.Debugw(ctx, "UniVlanConfigFsm tp-id used in deleted flow is not used anymore", log.Fields{
"device-id": oFsm.deviceID, "tp-id": usedTpID})
//request that this profile gets deleted before a new flow add is allowed
oFsm.pUniTechProf.setProfileToDelete(oFsm.pOnuUniPort.uniID, usedTpID, true)
}
logger.Debugw(ctx, "UniVlanConfigFsm flow removal - specific flow removed from data", log.Fields{
"device-id": oFsm.deviceID})
}
//trigger the FSM to remove the relevant rule
pConfigVlanStateBaseFsm := oFsm.pAdaptFsm.pFsm
if pConfigVlanStateBaseFsm.Is(vlanStConfigDone) {
//have to re-trigger the FSM to proceed with outstanding incremental flow configuration
// calling some FSM event must be decoupled
go func(a_pBaseFsm *fsm.FSM) {
_ = a_pBaseFsm.Event(vlanEvRemFlowConfig)
}(pConfigVlanStateBaseFsm)
} // if not in the appropriate state a new entry will be automatically considered later
// when the configDone state is reached
} else {
//cut off the requested cookie by slicing out this element
oFsm.uniVlanFlowParamsSlice[flow].CookieSlice = append(
oFsm.uniVlanFlowParamsSlice[flow].CookieSlice[:i],
oFsm.uniVlanFlowParamsSlice[flow].CookieSlice[i+1:]...)
// no activity within the FSM for OMCI processing, the deviceReason may be updated immediately
// state transition notification is checked in deviceHandler
if oFsm.pDeviceHandler != nil {
//making use of the add->remove successor enum assumption/definition
go oFsm.pDeviceHandler.deviceProcStatusUpdate(ctx, OnuDeviceEvent(uint8(oFsm.requestEvent)+1))
}
logger.Debugw(ctx, "UniVlanConfigFsm flow removal - rule persists with still valid cookies", log.Fields{
"device-id": oFsm.deviceID, "cookies": oFsm.uniVlanFlowParamsSlice[flow].CookieSlice})
}
//permanently store the modified flow config for reconcile case
if oFsm.pDeviceHandler != nil {
if err := oFsm.pDeviceHandler.storePersUniFlowConfig(ctx, oFsm.pOnuUniPort.uniID, &oFsm.uniVlanFlowParamsSlice); err != nil {
logger.Errorw(ctx, err.Error(), log.Fields{"device-id": oFsm.deviceID})
return err
}
}
break //found the cookie - no further search for this requested cookie
}
}
if flowCookieMatch { //cookie already found: no need for further search in other flows
break
}
} //search all flows
if !flowCookieMatch { //some cookie remove-request for a cookie that does not exist in the FSM data
logger.Warnw(ctx, "UniVlanConfigFsm flow removal - remove-cookie not found", log.Fields{
"device-id": oFsm.deviceID, "remove-cookie": aCookie})
// but accept the request with success as no such cookie (flow) does exist
// no activity within the FSM for OMCI processing, the deviceReason may be updated immediately
// state transition notification is checked in deviceHandler
if oFsm.pDeviceHandler != nil {
//making use of the add->remove successor enum assumption/definition
go oFsm.pDeviceHandler.deviceProcStatusUpdate(ctx, OnuDeviceEvent(uint8(oFsm.requestEvent)+1))
}
return nil
} //unknown cookie
return nil
}
func (oFsm *UniVlanConfigFsm) enterConfigStarting(ctx context.Context, e *fsm.Event) {
logger.Debugw(ctx, "UniVlanConfigFsm start", log.Fields{"in state": e.FSM.Current(),
"device-id": oFsm.deviceID})
// this FSM is not intended for re-start, needs always new creation for a new run
// (self-destroying - compare enterDisabled())
oFsm.omciMIdsResponseReceived = make(chan bool)
// start go routine for processing of LockState messages
go oFsm.processOmciVlanMessages(ctx)
//let the state machine run forward from here directly
pConfigVlanStateAFsm := oFsm.pAdaptFsm
if pConfigVlanStateAFsm != nil {
// obviously calling some FSM event here directly does not work - so trying to decouple it ...
oFsm.mutexFlowParams.Lock()
tpID := oFsm.uniVlanFlowParamsSlice[oFsm.configuredUniFlow].VlanRuleParams.TpID
oFsm.TpIDWaitingFor = tpID
oFsm.mutexFlowParams.Unlock()
loTechProfDone := oFsm.pUniTechProf.getTechProfileDone(ctx, oFsm.pOnuUniPort.uniID, uint8(tpID))
//cmp also usage in EVTOCDE create in omci_cc
oFsm.evtocdID = macBridgeServiceProfileEID + uint16(oFsm.pOnuUniPort.macBpNo)
go func(aPAFsm *AdapterFsm, aTechProfDone bool) {
if aPAFsm != nil && aPAFsm.pFsm != nil {
if aTechProfDone {
// let the vlan processing begin
_ = aPAFsm.pFsm.Event(vlanEvStartConfig)
} else {
// set to waiting for Techprofile
_ = aPAFsm.pFsm.Event(vlanEvWaitTechProf)
}
}
}(pConfigVlanStateAFsm, loTechProfDone)
} else {
logger.Errorw(ctx, "UniVlanConfigFsm abort: invalid FSM pointer", log.Fields{
"in state": e.FSM.Current(), "device-id": oFsm.deviceID})
//should never happen, else: recovery would be needed from outside the FSM
return
}
}
func (oFsm *UniVlanConfigFsm) enterConfigVtfd(ctx context.Context, e *fsm.Event) {
//mutex protection is required for possible concurrent access to FSM members
oFsm.mutexFlowParams.Lock()
oFsm.TpIDWaitingFor = 0 //reset indication to avoid misinterpretation
if len(oFsm.uniVlanFlowParamsSlice) == 0 {
//possibly the entry is not valid anymore based on intermediate delete requests
//just a basic protection ...
oFsm.mutexFlowParams.Unlock()
pConfigVlanStateAFsm := oFsm.pAdaptFsm
go func(a_pAFsm *AdapterFsm) {
_ = a_pAFsm.pFsm.Event(vlanEvReset)
}(pConfigVlanStateAFsm)
return
}
if oFsm.uniVlanFlowParamsSlice[0].VlanRuleParams.SetVid == uint32(of.OfpVlanId_OFPVID_PRESENT) {
// meaning transparent setup - no specific VTFD setting required
oFsm.mutexFlowParams.Unlock()
logger.Debugw(ctx, "UniVlanConfigFsm: no VTFD config required", log.Fields{
"in state": e.FSM.Current(), "device-id": oFsm.deviceID})
// let the FSM proceed ... (from within this state all internal pointers may be expected to be correct)
// obviously calling some FSM event here directly does not work - so trying to decouple it ...
pConfigVlanStateAFsm := oFsm.pAdaptFsm
go func(a_pAFsm *AdapterFsm) {
_ = a_pAFsm.pFsm.Event(vlanEvRxConfigVtfd)
}(pConfigVlanStateAFsm)
} else {
// This attribute uniquely identifies each instance of this managed entity. Through an identical ID,
// this managed entity is implicitly linked to an instance of the MAC bridge port configuration data ME.
vtfdID := macBridgePortAniEID + oFsm.pOnuUniPort.entityID + uint16(oFsm.uniVlanFlowParamsSlice[0].VlanRuleParams.TpID)
logger.Debugw(ctx, "UniVlanConfigFsm create VTFD", log.Fields{
"EntitytId": strconv.FormatInt(int64(vtfdID), 16),
"in state": e.FSM.Current(), "device-id": oFsm.deviceID})
// setVid is assumed to be masked already by the caller to 12 bit
oFsm.vlanFilterList[0] = uint16(oFsm.uniVlanFlowParamsSlice[0].VlanRuleParams.SetVid)
oFsm.mutexFlowParams.Unlock()
vtfdFilterList := make([]uint16, cVtfdTableSize) //needed for parameter serialization
vtfdFilterList[0] = oFsm.vlanFilterList[0]
oFsm.numVlanFilterEntries = 1
meParams := me.ParamData{
EntityID: vtfdID,
Attributes: me.AttributeValueMap{
"VlanFilterList": vtfdFilterList, //omci lib wants a slice for serialization
"ForwardOperation": uint8(0x10), //VID investigation
"NumberOfEntries": oFsm.numVlanFilterEntries,
},
}
logger.Debugw(ctx, "UniVlanConfigFsm sendcreate VTFD", log.Fields{
"in state": e.FSM.Current(), "device-id": oFsm.deviceID})
meInstance := oFsm.pOmciCC.sendCreateVtfdVar(log.WithSpanFromContext(context.TODO(), ctx), ConstDefaultOmciTimeout, true,
oFsm.pAdaptFsm.commChan, meParams)
//accept also nil as (error) return value for writing to LastTx
// - this avoids misinterpretation of new received OMCI messages
//TODO!!: refactoring improvement requested, here as an example for [VOL-3457]:
// send shall return (dual format) error code that can be used here for immediate error treatment
// (relevant to all used sendXX() methods in this (and other) FSM's)
oFsm.pLastTxMeInstance = meInstance
}
}
func (oFsm *UniVlanConfigFsm) enterConfigEvtocd(ctx context.Context, e *fsm.Event) {
logger.Debugw(ctx, "UniVlanConfigFsm - start config EVTOCD loop", log.Fields{
"in state": e.FSM.Current(), "device-id": oFsm.deviceID})
oFsm.requestEventOffset = 0 //0 offset for last flow-add activity
go func() {
tpID := oFsm.uniVlanFlowParamsSlice[0].VlanRuleParams.TpID
vlanID := oFsm.uniVlanFlowParamsSlice[0].VlanRuleParams.SetVid
errEvto := oFsm.performConfigEvtocdEntries(ctx, oFsm.configuredUniFlow)
//This is correct passing scenario
if errEvto == nil {
for _, gemPort := range oFsm.pUniTechProf.getMulticastGemPorts(ctx, oFsm.pOnuUniPort.uniID, uint8(tpID)) {
logger.Infow(ctx, "Setting multicast MEs, with first flow", log.Fields{"deviceID": oFsm.deviceID,
"techProfile": tpID, "gemPort": gemPort, "vlanID": vlanID, "configuredUniFlow": oFsm.configuredUniFlow})
//can Use the first elements in the slice because it's the first flow.
errCreateAllMulticastME := oFsm.performSettingMulticastME(ctx, tpID, gemPort,
vlanID)
if errCreateAllMulticastME != nil {
logger.Errorw(ctx, "Multicast ME create failed, aborting AniConfig FSM!",
log.Fields{"device-id": oFsm.deviceID})
_ = oFsm.pAdaptFsm.pFsm.Event(vlanEvReset)
}
}
//TODO Possibly insert new state for multicast --> possibly another jira/later time.
_ = oFsm.pAdaptFsm.pFsm.Event(vlanEvRxConfigEvtocd)
}
}()
}
func (oFsm *UniVlanConfigFsm) enterVlanConfigDone(ctx context.Context, e *fsm.Event) {
oFsm.mutexFlowParams.Lock()
logger.Debugw(ctx, "UniVlanConfigFsm - checking on more flows", log.Fields{
"in state": e.FSM.Current(), "device-id": oFsm.deviceID,
"overall-uni-rules": oFsm.numUniFlows, "configured-uni-rules": oFsm.configuredUniFlow})
pConfigVlanStateAFsm := oFsm.pAdaptFsm
if pConfigVlanStateAFsm == nil {
oFsm.mutexFlowParams.Unlock()
logger.Errorw(ctx, "UniVlanConfigFsm abort: invalid FSM pointer", log.Fields{
"in state": e.FSM.Current(), "device-id": oFsm.deviceID})
//should never happen, else: recovery would be needed from outside the FSM
return
}
pConfigVlanStateBaseFsm := pConfigVlanStateAFsm.pFsm
if len(oFsm.uniRemoveFlowsSlice) > 0 {
oFsm.mutexFlowParams.Unlock()
//some further flows are to be removed, removal always starts with the first element
// calling some FSM event must be decoupled
go func(a_pBaseFsm *fsm.FSM) {
_ = a_pBaseFsm.Event(vlanEvRemFlowConfig)
}(pConfigVlanStateBaseFsm)
return
}
if oFsm.numUniFlows > oFsm.configuredUniFlow {
if oFsm.configuredUniFlow == 0 {
oFsm.mutexFlowParams.Unlock()
// this is a restart with a complete new flow, we can re-use the initial flow config control
// including the check, if the related techProfile is (still) available (probably also removed in between)
// calling some FSM event must be decoupled
go func(a_pBaseFsm *fsm.FSM) {
_ = a_pBaseFsm.Event(vlanEvRenew)
}(pConfigVlanStateBaseFsm)
return
}
//some further flows are to be configured
//tpId of the next rule to be configured
tpID := oFsm.uniVlanFlowParamsSlice[oFsm.configuredUniFlow].VlanRuleParams.TpID
oFsm.TpIDWaitingFor = tpID
oFsm.mutexFlowParams.Unlock()
loTechProfDone := oFsm.pUniTechProf.getTechProfileDone(ctx, oFsm.pOnuUniPort.uniID, tpID)
logger.Debugw(ctx, "UniVlanConfigFsm - incremental config", log.Fields{
"device-id": oFsm.deviceID, "uni-id": oFsm.pOnuUniPort.uniID, "tp-id": tpID,
"ProfDone": loTechProfDone})
go func(aPBaseFsm *fsm.FSM, aTechProfDone bool) {
if aTechProfDone {
// let the vlan processing continue with next rule
_ = aPBaseFsm.Event(vlanEvIncrFlowConfig)
} else {
// set to waiting for Techprofile
_ = aPBaseFsm.Event(vlanEvWaitTPIncr)
}
}(pConfigVlanStateBaseFsm, loTechProfDone)
return
}
oFsm.mutexFlowParams.Unlock()
logger.Debugw(ctx, "UniVlanConfigFsm - VLAN config done: send dh event notification", log.Fields{
"device-id": oFsm.deviceID})
// it might appear that some flows are requested also after 'flowPushed' event has been generated ...
// state transition notification is checked in deviceHandler
// note: 'flowPushed' event is only generated if all 'pending' rules are configured
if oFsm.pDeviceHandler != nil {
//making use of the add->remove successor enum assumption/definition
go oFsm.pDeviceHandler.deviceProcStatusUpdate(ctx, OnuDeviceEvent(uint8(oFsm.requestEvent)+oFsm.requestEventOffset))
}
}
func (oFsm *UniVlanConfigFsm) enterConfigIncrFlow(ctx context.Context, e *fsm.Event) {
logger.Debugw(ctx, "UniVlanConfigFsm - start config further incremental flow", log.Fields{
"in state": e.FSM.Current(), "recent flow-number": oFsm.configuredUniFlow,
"device-id": oFsm.deviceID})
oFsm.mutexFlowParams.Lock()
oFsm.TpIDWaitingFor = 0 //reset indication to avoid misinterpretation
if uint8(len(oFsm.uniVlanFlowParamsSlice)) < oFsm.configuredUniFlow {
//possibly the entry is not valid anymore based on intermediate delete requests
//just a basic protection ...
oFsm.mutexFlowParams.Unlock()
pConfigVlanStateAFsm := oFsm.pAdaptFsm
go func(a_pAFsm *AdapterFsm) {
_ = a_pAFsm.pFsm.Event(vlanEvReset)
}(pConfigVlanStateAFsm)
return
}
if oFsm.uniVlanFlowParamsSlice[oFsm.configuredUniFlow].VlanRuleParams.SetVid == uint32(of.OfpVlanId_OFPVID_PRESENT) {
// meaning transparent setup - no specific VTFD setting required
oFsm.mutexFlowParams.Unlock()
logger.Debugw(ctx, "UniVlanConfigFsm: no VTFD config required", log.Fields{
"in state": e.FSM.Current(), "device-id": oFsm.deviceID})
} else {
if oFsm.numVlanFilterEntries == 0 {
// This attribute uniquely identifies each instance of this managed entity. Through an identical ID,
// this managed entity is implicitly linked to an instance of the MAC bridge port configuration data ME.
vtfdID := macBridgePortAniEID + oFsm.pOnuUniPort.entityID + uint16(oFsm.uniVlanFlowParamsSlice[0].VlanRuleParams.TpID)
//no VTFD yet created
logger.Debugw(ctx, "UniVlanConfigFsm create VTFD", log.Fields{
"EntitytId": strconv.FormatInt(int64(vtfdID), 16),
"in state": e.FSM.Current(), "device-id": oFsm.deviceID})
// FIXME: VOL-3673: using oFsm.uniVlanFlowParamsSlice[0] is incorrect here, as the relevant (first) VTFD may
// result from some incremented rule (not all rules enforce a VTFD configuration). But this is Ok for the
// current scenarios we support.
// 'SetVid' below is assumed to be masked already by the caller to 12 bit
oFsm.vlanFilterList[0] = uint16(oFsm.uniVlanFlowParamsSlice[0].VlanRuleParams.SetVid)
oFsm.mutexFlowParams.Unlock()
vtfdFilterList := make([]uint16, cVtfdTableSize) //needed for parameter serialization
vtfdFilterList[0] = oFsm.vlanFilterList[0]
oFsm.numVlanFilterEntries = 1
meParams := me.ParamData{
EntityID: vtfdID,
Attributes: me.AttributeValueMap{
"VlanFilterList": vtfdFilterList,
"ForwardOperation": uint8(0x10), //VID investigation
"NumberOfEntries": oFsm.numVlanFilterEntries,
},
}
meInstance := oFsm.pOmciCC.sendCreateVtfdVar(log.WithSpanFromContext(context.TODO(), ctx), ConstDefaultOmciTimeout, true,
oFsm.pAdaptFsm.commChan, meParams)
//accept also nil as (error) return value for writing to LastTx
// - this avoids misinterpretation of new received OMCI messages
//TODO!!: refactoring improvement requested, here as an example for [VOL-3457]:
// send shall return (dual format) error code that can be used here for immediate error treatment
// (relevant to all used sendXX() methods in this (and other) FSM's)
oFsm.pLastTxMeInstance = meInstance
} else {
// This attribute uniquely identifies each instance of this managed entity. Through an identical ID,
// this managed entity is implicitly linked to an instance of the MAC bridge port configuration data ME.
vtfdID := macBridgePortAniEID + oFsm.pOnuUniPort.entityID +
uint16(oFsm.uniVlanFlowParamsSlice[oFsm.configuredUniFlow].VlanRuleParams.TpID)
logger.Debugw(ctx, "UniVlanConfigFsm set VTFD", log.Fields{
"EntitytId": strconv.FormatInt(int64(vtfdID), 16),
"in state": e.FSM.Current(), "device-id": oFsm.deviceID})
// setVid is assumed to be masked already by the caller to 12 bit
oFsm.vlanFilterList[oFsm.numVlanFilterEntries] =
uint16(oFsm.uniVlanFlowParamsSlice[oFsm.configuredUniFlow].VlanRuleParams.SetVid)
vtfdFilterList := make([]uint16, cVtfdTableSize) //needed for parameter serialization
// FIXME: VOL-3685: Issues with resetting a table entry in EVTOCD ME
// VTFD has to be created afresh with a new entity ID that has the same entity ID as the MBPCD ME for every
// new vlan associated with a different TP.
vtfdFilterList[0] = uint16(oFsm.uniVlanFlowParamsSlice[oFsm.configuredUniFlow].VlanRuleParams.SetVid)
oFsm.mutexFlowParams.Unlock()
oFsm.numVlanFilterEntries++
meParams := me.ParamData{
EntityID: vtfdID,
Attributes: me.AttributeValueMap{
"VlanFilterList": vtfdFilterList,
"ForwardOperation": uint8(0x10), //VID investigation
"NumberOfEntries": oFsm.numVlanFilterEntries,
},
}
meInstance := oFsm.pOmciCC.sendCreateVtfdVar(log.WithSpanFromContext(context.TODO(), ctx), ConstDefaultOmciTimeout, true,
oFsm.pAdaptFsm.commChan, meParams)
//accept also nil as (error) return value for writing to LastTx
// - this avoids misinterpretation of new received OMCI messages
//TODO!!: refactoring improvement requested, here as an example for [VOL-3457]:
// send shall return (dual format) error code that can be used here for immediate error treatment
// (relevant to all used sendXX() methods in this (and other) FSM's)
oFsm.pLastTxMeInstance = meInstance
}
//verify response
err := oFsm.waitforOmciResponse(ctx)
if err != nil {
logger.Errorw(ctx, "VTFD create/set failed, aborting VlanConfig FSM!",
log.Fields{"device-id": oFsm.deviceID})
pConfigVlanStateBaseFsm := oFsm.pAdaptFsm.pFsm
go func(a_pBaseFsm *fsm.FSM) {
_ = a_pBaseFsm.Event(vlanEvReset)
}(pConfigVlanStateBaseFsm)
return
}
}
oFsm.requestEventOffset = 0 //0 offset for last flow-add activity
go func() {
tpID := oFsm.uniVlanFlowParamsSlice[oFsm.configuredUniFlow].VlanRuleParams.TpID
errEvto := oFsm.performConfigEvtocdEntries(ctx, oFsm.configuredUniFlow)
//This is correct passing scenario
if errEvto == nil {
//TODO Possibly insert new state for multicast --> possibly another jira/later time.
for _, gemPort := range oFsm.pUniTechProf.getMulticastGemPorts(ctx, oFsm.pOnuUniPort.uniID, uint8(tpID)) {
vlanID := oFsm.uniVlanFlowParamsSlice[oFsm.configuredUniFlow-1].VlanRuleParams.SetVid
logger.Infow(ctx, "Setting multicast MEs for additional flows", log.Fields{"deviceID": oFsm.deviceID,
"techProfile": tpID, "gemPort": gemPort,
"vlanID": vlanID, "configuredUniFlow": oFsm.configuredUniFlow})
//-1 is to use the last configured flow
errCreateAllMulticastME := oFsm.performSettingMulticastME(ctx, tpID, gemPort, vlanID)
if errCreateAllMulticastME != nil {
logger.Errorw(ctx, "Multicast ME create failed, aborting AniConfig FSM!",
log.Fields{"device-id": oFsm.deviceID})
_ = oFsm.pAdaptFsm.pFsm.Event(vlanEvReset)
}
}
_ = oFsm.pAdaptFsm.pFsm.Event(vlanEvRxConfigEvtocd)
}
}()
}
func (oFsm *UniVlanConfigFsm) enterRemoveFlow(ctx context.Context, e *fsm.Event) {
oFsm.mutexFlowParams.RLock()
logger.Debugw(ctx, "UniVlanConfigFsm - start removing the top remove-flow", log.Fields{
"in state": e.FSM.Current(), "with last cookie": oFsm.uniRemoveFlowsSlice[0].cookie,
"device-id": oFsm.deviceID})
pConfigVlanStateBaseFsm := oFsm.pAdaptFsm.pFsm
loAllowSpecificOmciConfig := oFsm.pDeviceHandler.ReadyForSpecificOmciConfig
loVlanEntryClear := uint8(0)
loVlanEntryRmPos := uint8(0x80) //with indication 'invalid' in bit 7
//shallow copy is sufficient as no reference variables are used within struct
loRuleParams := oFsm.uniRemoveFlowsSlice[0].vlanRuleParams
oFsm.mutexFlowParams.RUnlock()
logger.Debugw(ctx, "UniVlanConfigFsm - remove-flow parameters are", log.Fields{
"match vid": loRuleParams.MatchVid, "match Pcp": loRuleParams.MatchPcp,
"set vid": strconv.FormatInt(int64(loRuleParams.SetVid), 16),
"device-id": oFsm.deviceID})
if loRuleParams.SetVid == uint32(of.OfpVlanId_OFPVID_PRESENT) {
// meaning transparent setup - no specific VTFD setting required
logger.Debugw(ctx, "UniVlanConfigFsm: no VTFD removal required for transparent flow", log.Fields{
"in state": e.FSM.Current(), "device-id": oFsm.deviceID})
} else {
vtfdFilterList := make([]uint16, cVtfdTableSize) //needed for parameter serialization and 're-copy'
if oFsm.numVlanFilterEntries == 1 {
vtfdID := macBridgePortAniEID + oFsm.pOnuUniPort.entityID + uint16(loRuleParams.TpID)
//only one active VLAN entry (hopefully the SetVID we want to remove - should be, but not verified ..)
// so we can just delete the VTFD entry
logger.Debugw(ctx, "UniVlanConfigFsm: VTFD delete (no more vlan filters)",
log.Fields{"current vlan list": oFsm.vlanFilterList,
"in state": e.FSM.Current(), "device-id": oFsm.deviceID})
loVlanEntryClear = 1 //full VlanFilter clear request
if loAllowSpecificOmciConfig { //specific OMCI config is expected to work acc. to the device state
meInstance := oFsm.pOmciCC.sendDeleteVtfd(log.WithSpanFromContext(context.TODO(), ctx), ConstDefaultOmciTimeout, true,
oFsm.pAdaptFsm.commChan, vtfdID)
oFsm.pLastTxMeInstance = meInstance
} else {
logger.Debugw(ctx, "UniVlanConfigFsm delete VTFD OMCI handling skipped based on device state", log.Fields{
"device-id": oFsm.deviceID, "device-state": deviceReasonMap[oFsm.pDeviceHandler.deviceReason]})
}
} else {
//many VTFD already should exists - find and remove the one concerned by the actual remove rule
// by updating the VTFD per set command with new valid list
logger.Debugw(ctx, "UniVlanConfigFsm: VTFD removal of requested VLAN from the list on OMCI",
log.Fields{"current vlan list": oFsm.vlanFilterList,
"set-vlan": loRuleParams.SetVid, "device-id": oFsm.deviceID})
for i := uint8(0); i < oFsm.numVlanFilterEntries; i++ {
if loRuleParams.SetVid == uint32(oFsm.vlanFilterList[i]) {
loVlanEntryRmPos = i
break //abort search
}
}
if loVlanEntryRmPos < cVtfdTableSize {
vtfdID := macBridgePortAniEID + oFsm.pOnuUniPort.entityID + uint16(loRuleParams.TpID)
//valid entry was found - to be eclipsed
loVlanEntryClear = 2 //VlanFilter remove request for a specific entry
for i := uint8(0); i < oFsm.numVlanFilterEntries; i++ {
if i < loVlanEntryRmPos {
vtfdFilterList[i] = oFsm.vlanFilterList[i] //copy original
} else if i < (cVtfdTableSize - 1) {
vtfdFilterList[i] = oFsm.vlanFilterList[i+1] //copy successor (including 0 elements)
} else {
vtfdFilterList[i] = 0 //set last byte if needed
}
}
logger.Debugw(ctx, "UniVlanConfigFsm set VTFD", log.Fields{
"EntitytId": strconv.FormatInt(int64(vtfdID), 16),
"new vlan list": vtfdFilterList, "device-id": oFsm.deviceID})
if loAllowSpecificOmciConfig { //specific OMCI config is expected to work acc. to the device state
// FIXME: VOL-3685: Issues with resetting a table entry in EVTOCD ME
meInstance := oFsm.pOmciCC.sendDeleteVtfd(log.WithSpanFromContext(context.TODO(), ctx), ConstDefaultOmciTimeout, true,
oFsm.pAdaptFsm.commChan, vtfdID)
oFsm.pLastTxMeInstance = meInstance
} else {
logger.Debugw(ctx, "UniVlanConfigFsm set VTFD OMCI handling skipped based on device state", log.Fields{
"device-id": oFsm.deviceID, "device-state": deviceReasonMap[oFsm.pDeviceHandler.deviceReason]})
}
} else {
logger.Warnw(ctx, "UniVlanConfigFsm: requested VLAN for removal not found in list - ignore and continue (no VTFD set)",
log.Fields{"device-id": oFsm.deviceID})
}
}
if loVlanEntryClear > 0 {
if loAllowSpecificOmciConfig { //specific OMCI config is expected to work acc. to the device state
//waiting on response
err := oFsm.waitforOmciResponse(ctx)
if err != nil {
logger.Errorw(ctx, "VTFD delete/reset failed, aborting VlanConfig FSM!",
log.Fields{"device-id": oFsm.deviceID})
// calling some FSM event must be decoupled
go func(a_pBaseFsm *fsm.FSM) {
_ = a_pBaseFsm.Event(vlanEvReset)
}(pConfigVlanStateBaseFsm)
return
}
}
if loVlanEntryClear == 1 {
oFsm.vlanFilterList[0] = 0 //first entry is the only that can contain the previous only-one element
oFsm.numVlanFilterEntries = 0
} else if loVlanEntryClear == 2 {
// new VlanFilterList should be one entry smaller now - copy from last configured entry
// this loop now includes the 0 element on previous last valid entry
for i := uint8(0); i <= oFsm.numVlanFilterEntries; i++ {
oFsm.vlanFilterList[i] = vtfdFilterList[i]
}
oFsm.numVlanFilterEntries--
}
}
}
if loAllowSpecificOmciConfig { //specific OMCI config is expected to work acc. to the device state
go oFsm.removeEvtocdEntries(ctx, loRuleParams)
} else {
// OMCI processing is not done, expectation is to have the ONU in some basic config state accordingly
logger.Debugw(ctx, "UniVlanConfigFsm remove EVTOCD OMCI handling skipped based on device state", log.Fields{
"device-id": oFsm.deviceID})
// calling some FSM event must be decoupled
go func(a_pBaseFsm *fsm.FSM) {
_ = a_pBaseFsm.Event(vlanEvRemFlowDone)
}(pConfigVlanStateBaseFsm)
}
}
func (oFsm *UniVlanConfigFsm) enterVlanCleanupDone(ctx context.Context, e *fsm.Event) {
logger.Debugw(ctx, "UniVlanConfigFsm - removing the removal data", log.Fields{
"in state": e.FSM.Current(), "device-id": oFsm.deviceID})
oFsm.mutexFlowParams.Lock()
if len(oFsm.uniRemoveFlowsSlice) <= 1 {
oFsm.uniRemoveFlowsSlice = nil //reset the slice
logger.Debugw(ctx, "UniVlanConfigFsm flow removal - last remove-flow deleted", log.Fields{
"device-id": oFsm.deviceID})
} else {
//cut off the actual flow by slicing out the first element
oFsm.uniRemoveFlowsSlice = append(
oFsm.uniRemoveFlowsSlice[:0],
oFsm.uniRemoveFlowsSlice[1:]...)
logger.Debugw(ctx, "UniVlanConfigFsm flow removal - specific flow deleted from data", log.Fields{
"device-id": oFsm.deviceID})
}
oFsm.mutexFlowParams.Unlock()
oFsm.requestEventOffset = 1 //offset 1 for last flow-remove activity
//return to the basic config verification state
pConfigVlanStateAFsm := oFsm.pAdaptFsm
if pConfigVlanStateAFsm != nil {
// obviously calling some FSM event here directly does not work - so trying to decouple it ...
go func(a_pAFsm *AdapterFsm) {
if a_pAFsm != nil && a_pAFsm.pFsm != nil {
_ = a_pAFsm.pFsm.Event(vlanEvFlowDataRemoved)
}
}(pConfigVlanStateAFsm)
}
}
func (oFsm *UniVlanConfigFsm) enterResetting(ctx context.Context, e *fsm.Event) {
logger.Debugw(ctx, "UniVlanConfigFsm resetting", log.Fields{"device-id": oFsm.deviceID})
pConfigVlanStateAFsm := oFsm.pAdaptFsm
if pConfigVlanStateAFsm != nil {
// abort running message processing
fsmAbortMsg := Message{
Type: TestMsg,
Data: TestMessage{
TestMessageVal: AbortMessageProcessing,
},
}
pConfigVlanStateAFsm.commChan <- fsmAbortMsg
//try to restart the FSM to 'disabled', decouple event transfer
go func(a_pAFsm *AdapterFsm) {
if a_pAFsm != nil && a_pAFsm.pFsm != nil {
_ = a_pAFsm.pFsm.Event(vlanEvRestart)
}
}(pConfigVlanStateAFsm)
}
}
func (oFsm *UniVlanConfigFsm) enterDisabled(ctx context.Context, e *fsm.Event) {
logger.Debugw(ctx, "UniVlanConfigFsm enters disabled state", log.Fields{"device-id": oFsm.deviceID})
oFsm.pLastTxMeInstance = nil
if oFsm.pDeviceHandler != nil {
//TODO: to clarify with improved error treatment for VlanConfigFsm (timeout,reception) errors
// current code removes the complete FSM including all flow/rule configuration done so far
// this might be a bit to much, it would require fully new flow config from rwCore (at least on OnuDown/up)
// maybe a more sophisticated approach is possible without clearing the data
if oFsm.clearPersistency {
//permanently remove possibly stored persistent data
if len(oFsm.uniVlanFlowParamsSlice) > 0 {
var emptySlice = make([]uniVlanFlowParams, 0)
_ = oFsm.pDeviceHandler.storePersUniFlowConfig(ctx, oFsm.pOnuUniPort.uniID, &emptySlice) //ignore errors
}
} else {
logger.Debugw(ctx, "UniVlanConfigFsm persistency data not cleared", log.Fields{"device-id": oFsm.deviceID})
}
//request removal of 'reference' in the Handler (completely clear the FSM and its data)
go oFsm.pDeviceHandler.RemoveVlanFilterFsm(ctx, oFsm.pOnuUniPort)
}
}
func (oFsm *UniVlanConfigFsm) processOmciVlanMessages(ctx context.Context) { //ctx context.Context?
logger.Debugw(ctx, "Start UniVlanConfigFsm Msg processing", log.Fields{"for device-id": oFsm.deviceID})
loop:
for {
// case <-ctx.Done():
// logger.Info(ctx,"MibSync Msg", log.Fields{"Message handling canceled via context for device-id": oFsm.deviceID})
// break loop
message, ok := <-oFsm.pAdaptFsm.commChan
if !ok {
logger.Info(ctx, "UniVlanConfigFsm Rx Msg - could not read from channel", log.Fields{"device-id": oFsm.deviceID})
// but then we have to ensure a restart of the FSM as well - as exceptional procedure
_ = oFsm.pAdaptFsm.pFsm.Event(vlanEvReset)
break loop
}
logger.Debugw(ctx, "UniVlanConfigFsm Rx Msg", log.Fields{"device-id": oFsm.deviceID})
switch message.Type {
case TestMsg:
msg, _ := message.Data.(TestMessage)
if msg.TestMessageVal == AbortMessageProcessing {
logger.Infow(ctx, "UniVlanConfigFsm abort ProcessMsg", log.Fields{"for device-id": oFsm.deviceID})
break loop
}
logger.Warnw(ctx, "UniVlanConfigFsm unknown TestMessage", log.Fields{"device-id": oFsm.deviceID, "MessageVal": msg.TestMessageVal})
case OMCI:
msg, _ := message.Data.(OmciMessage)
oFsm.handleOmciVlanConfigMessage(ctx, msg)
default:
logger.Warn(ctx, "UniVlanConfigFsm Rx unknown message", log.Fields{"device-id": oFsm.deviceID,
"message.Type": message.Type})
}
}
logger.Infow(ctx, "End UniVlanConfigFsm Msg processing", log.Fields{"device-id": oFsm.deviceID})
}
func (oFsm *UniVlanConfigFsm) handleOmciVlanConfigMessage(ctx context.Context, msg OmciMessage) {
logger.Debugw(ctx, "Rx OMCI UniVlanConfigFsm Msg", log.Fields{"device-id": oFsm.deviceID,
"msgType": msg.OmciMsg.MessageType})
switch msg.OmciMsg.MessageType {
case omci.CreateResponseType:
{ // had to shift that to a method to cope with StaticCodeAnalysis restrictions :-(
if err := oFsm.handleOmciCreateResponseMessage(ctx, msg.OmciPacket); err != nil {
logger.Warnw(ctx, "CreateResponse handling aborted", log.Fields{"err": err})
return
}
} //CreateResponseType
case omci.SetResponseType:
{ //leave that here as direct code as most often used
msgLayer := (*msg.OmciPacket).Layer(omci.LayerTypeSetResponse)
if msgLayer == nil {
logger.Errorw(ctx, "Omci Msg layer could not be detected for SetResponse",
log.Fields{"device-id": oFsm.deviceID})
return
}
msgObj, msgOk := msgLayer.(*omci.SetResponse)
if !msgOk {
logger.Errorw(ctx, "Omci Msg layer could not be assigned for SetResponse",
log.Fields{"device-id": oFsm.deviceID})
return
}
logger.Debugw(ctx, "UniVlanConfigFsm SetResponse Data", log.Fields{"device-id": oFsm.deviceID, "data-fields": msgObj})
if msgObj.Result != me.Success {
logger.Errorw(ctx, "UniVlanConfigFsm Omci SetResponse Error - later: drive FSM to abort state ?",
log.Fields{"device-id": oFsm.deviceID, "Error": msgObj.Result})
// possibly force FSM into abort or ignore some errors for some messages? store error for mgmt display?
return
}
if msgObj.EntityClass == oFsm.pLastTxMeInstance.GetClassID() &&
msgObj.EntityInstance == oFsm.pLastTxMeInstance.GetEntityID() {
switch oFsm.pLastTxMeInstance.GetName() {
case "VlanTaggingFilterData", "ExtendedVlanTaggingOperationConfigurationData", "MulticastOperationsProfile":
{ // let the MultiEntity config proceed by stopping the wait function
oFsm.omciMIdsResponseReceived <- true
}
}
}
} //SetResponseType
case omci.DeleteResponseType:
{ // had to shift that to a method to cope with StaticCodeAnalysis restrictions :-(
if err := oFsm.handleOmciDeleteResponseMessage(ctx, msg.OmciPacket); err != nil {
logger.Warnw(ctx, "DeleteResponse handling aborted", log.Fields{"err": err})
return
}
} //DeleteResponseType
default:
{
logger.Errorw(ctx, "Rx OMCI unhandled MsgType",
log.Fields{"omciMsgType": msg.OmciMsg.MessageType, "device-id": oFsm.deviceID})
return
}
}
}
func (oFsm *UniVlanConfigFsm) handleOmciCreateResponseMessage(ctx context.Context, apOmciPacket *gp.Packet) error {
msgLayer := (*apOmciPacket).Layer(omci.LayerTypeCreateResponse)
if msgLayer == nil {
logger.Errorw(ctx, "Omci Msg layer could not be detected for CreateResponse",
log.Fields{"device-id": oFsm.deviceID})
return fmt.Errorf("omci msg layer could not be detected for CreateResponse for device-id %x",
oFsm.deviceID)
}
msgObj, msgOk := msgLayer.(*omci.CreateResponse)
if !msgOk {
logger.Errorw(ctx, "Omci Msg layer could not be assigned for CreateResponse",
log.Fields{"device-id": oFsm.deviceID})
return fmt.Errorf("omci msg layer could not be assigned for CreateResponse for device-id %x",
oFsm.deviceID)
}
logger.Debugw(ctx, "UniVlanConfigFsm CreateResponse Data", log.Fields{"device-id": oFsm.deviceID, "data-fields": msgObj})
if msgObj.Result != me.Success && msgObj.Result != me.InstanceExists {
logger.Errorw(ctx, "Omci CreateResponse Error - later: drive FSM to abort state ?", log.Fields{"device-id": oFsm.deviceID,
"Error": msgObj.Result})
// possibly force FSM into abort or ignore some errors for some messages? store error for mgmt display?
return fmt.Errorf("omci CreateResponse Error for device-id %x",
oFsm.deviceID)
}
if msgObj.EntityClass == oFsm.pLastTxMeInstance.GetClassID() &&
msgObj.EntityInstance == oFsm.pLastTxMeInstance.GetEntityID() {
// to satisfy StaticCodeAnalysis I had to move the small processing into a separate method :-(
switch oFsm.pLastTxMeInstance.GetName() {
case "VlanTaggingFilterData", "MulticastOperationsProfile",
"MulticastSubscriberConfigInfo", "MacBridgePortConfigurationData",
"ExtendedVlanTaggingOperationConfigurationData":
{
if oFsm.pAdaptFsm.pFsm.Current() == vlanStConfigVtfd {
// Only if CreateResponse is received from first flow entry - let the FSM proceed ...
_ = oFsm.pAdaptFsm.pFsm.Event(vlanEvRxConfigVtfd)
} else { // let the MultiEntity config proceed by stopping the wait function
oFsm.omciMIdsResponseReceived <- true
}
}
}
}
return nil
}
func (oFsm *UniVlanConfigFsm) handleOmciDeleteResponseMessage(ctx context.Context, apOmciPacket *gp.Packet) error {
msgLayer := (*apOmciPacket).Layer(omci.LayerTypeDeleteResponse)
if msgLayer == nil {
logger.Errorw(ctx, "UniVlanConfigFsm - Omci Msg layer could not be detected for DeleteResponse",
log.Fields{"device-id": oFsm.deviceID})
return fmt.Errorf("omci msg layer could not be detected for DeleteResponse for device-id %x",
oFsm.deviceID)
}
msgObj, msgOk := msgLayer.(*omci.DeleteResponse)
if !msgOk {
logger.Errorw(ctx, "UniVlanConfigFsm - Omci Msg layer could not be assigned for DeleteResponse",
log.Fields{"device-id": oFsm.deviceID})
return fmt.Errorf("omci msg layer could not be assigned for DeleteResponse for device-id %x",
oFsm.deviceID)
}
logger.Debugw(ctx, "UniVlanConfigFsm DeleteResponse Data", log.Fields{"device-id": oFsm.deviceID, "data-fields": msgObj})
if msgObj.Result != me.Success {
logger.Errorw(ctx, "UniVlanConfigFsm - Omci DeleteResponse Error - later: drive FSM to abort state ?",
log.Fields{"device-id": oFsm.deviceID, "Error": msgObj.Result})
// possibly force FSM into abort or ignore some errors for some messages? store error for mgmt display?
return fmt.Errorf("omci DeleteResponse Error for device-id %x",
oFsm.deviceID)
}
if msgObj.EntityClass == oFsm.pLastTxMeInstance.GetClassID() &&
msgObj.EntityInstance == oFsm.pLastTxMeInstance.GetEntityID() {
switch oFsm.pLastTxMeInstance.GetName() {
case "VlanTaggingFilterData", "ExtendedVlanTaggingOperationConfigurationData":
{ // let the MultiEntity config proceed by stopping the wait function
oFsm.omciMIdsResponseReceived <- true
}
}
}
return nil
}
func (oFsm *UniVlanConfigFsm) performConfigEvtocdEntries(ctx context.Context, aFlowEntryNo uint8) error {
if aFlowEntryNo == 0 {
// EthType set only at first flow element
// EVTOCD ME is expected to exist at this point already from MIB-Download (with AssociationType/Pointer)
// we need to extend the configuration by EthType definition and, to be sure, downstream 'inverse' mode
logger.Debugw(ctx, "UniVlanConfigFsm Tx Create::EVTOCD", log.Fields{
"EntitytId": strconv.FormatInt(int64(oFsm.evtocdID), 16),
"i/oEthType": strconv.FormatInt(int64(cDefaultTpid), 16),
"device-id": oFsm.deviceID})
associationType := 2 // default to uniPPTP
if oFsm.pOnuUniPort.portType == uniVEIP {
associationType = 10
}
// Create the EVTOCD ME
meParams := me.ParamData{
EntityID: oFsm.evtocdID,
Attributes: me.AttributeValueMap{
"InputTpid": uint16(cDefaultTpid), //could be possibly retrieved from flow config one day, by now just like py-code base
"OutputTpid": uint16(cDefaultTpid), //could be possibly retrieved from flow config one day, by now just like py-code base
"DownstreamMode": uint8(cDefaultDownstreamMode),
"AssociationType": uint8(associationType),
"AssociatedMePointer": oFsm.pOnuUniPort.entityID,
},
}
meInstance := oFsm.pOmciCC.sendCreateEvtocdVar(context.TODO(), ConstDefaultOmciTimeout, true,
oFsm.pAdaptFsm.commChan, meParams)
//accept also nil as (error) return value for writing to LastTx
// - this avoids misinterpretation of new received OMCI messages
oFsm.pLastTxMeInstance = meInstance
//verify response
err := oFsm.waitforOmciResponse(ctx)
if err != nil {
logger.Errorw(ctx, "Evtocd create failed, aborting VlanConfig FSM!",
log.Fields{"device-id": oFsm.deviceID})
_ = oFsm.pAdaptFsm.pFsm.Event(vlanEvReset)
return fmt.Errorf("evtocd create failed %s, error %s", oFsm.deviceID, err)
}
// Set the EVTOCD ME default params
meParams = me.ParamData{
EntityID: oFsm.evtocdID,
Attributes: me.AttributeValueMap{
"InputTpid": uint16(cDefaultTpid), //could be possibly retrieved from flow config one day, by now just like py-code base
"OutputTpid": uint16(cDefaultTpid), //could be possibly retrieved from flow config one day, by now just like py-code base
"DownstreamMode": uint8(cDefaultDownstreamMode),
},
}
meInstance = oFsm.pOmciCC.sendSetEvtocdVar(log.WithSpanFromContext(context.TODO(), ctx), ConstDefaultOmciTimeout, true,
oFsm.pAdaptFsm.commChan, meParams)
//accept also nil as (error) return value for writing to LastTx
// - this avoids misinterpretation of new received OMCI messages
oFsm.pLastTxMeInstance = meInstance
//verify response
err = oFsm.waitforOmciResponse(ctx)
if err != nil {
logger.Errorw(ctx, "Evtocd set TPID failed, aborting VlanConfig FSM!",
log.Fields{"device-id": oFsm.deviceID})
_ = oFsm.pAdaptFsm.pFsm.Event(vlanEvReset)
return fmt.Errorf("evtocd set TPID failed %s, error %s", oFsm.deviceID, err)
}
} //first flow element
oFsm.mutexFlowParams.RLock()
if uint8(len(oFsm.uniVlanFlowParamsSlice)) < aFlowEntryNo {
//possibly the entry is not valid anymore based on intermediate delete requests
//just a basic protection ...
oFsm.mutexFlowParams.RUnlock()
pConfigVlanStateAFsm := oFsm.pAdaptFsm
go func(a_pAFsm *AdapterFsm) {
_ = a_pAFsm.pFsm.Event(vlanEvReset)
}(pConfigVlanStateAFsm)
return nil
}
if oFsm.uniVlanFlowParamsSlice[aFlowEntryNo].VlanRuleParams.SetVid == uint32(of.OfpVlanId_OFPVID_PRESENT) {
//transparent transmission required
oFsm.mutexFlowParams.RUnlock()
logger.Debugw(ctx, "UniVlanConfigFsm Tx Set::EVTOCD single tagged transparent rule", log.Fields{
"device-id": oFsm.deviceID})
sliceEvtocdRule := make([]uint8, 16)
// fill vlan tagging operation table bit fields using network=bigEndian order and using slice offset 0 as highest 'word'
binary.BigEndian.PutUint32(sliceEvtocdRule[cFilterOuterOffset:],
cPrioIgnoreTag<<cFilterPrioOffset| // Not an outer-tag rule
cDoNotFilterVid<<cFilterVidOffset| // Do not filter on outer vid
cDoNotFilterTPID<<cFilterTpidOffset) // Do not filter on outer TPID field
binary.BigEndian.PutUint32(sliceEvtocdRule[cFilterInnerOffset:],
cPrioDefaultFilter<<cFilterPrioOffset| // default inner-tag rule
cDoNotFilterVid<<cFilterVidOffset| // Do not filter on inner vid
cDoNotFilterTPID<<cFilterTpidOffset| // Do not filter on inner TPID field
cDoNotFilterEtherType<<cFilterEtherTypeOffset) // Do not filter of EtherType
binary.BigEndian.PutUint32(sliceEvtocdRule[cTreatOuterOffset:],
0<<cTreatTTROffset| // Do not pop any tags
cDoNotAddPrio<<cTreatPrioOffset| // do not add outer tag
cDontCareVid<<cTreatVidOffset| // Outer VID don't care
cDontCareTpid<<cTreatTpidOffset) // Outer TPID field don't care
binary.BigEndian.PutUint32(sliceEvtocdRule[cTreatInnerOffset:],
cDoNotAddPrio<<cTreatPrioOffset| // do not add inner tag
cDontCareVid<<cTreatVidOffset| // Outer VID don't care
cSetOutputTpidCopyDei<<cTreatTpidOffset) // Set TPID = 0x8100
meParams := me.ParamData{
EntityID: oFsm.evtocdID,
Attributes: me.AttributeValueMap{
"ReceivedFrameVlanTaggingOperationTable": sliceEvtocdRule,
},
}
meInstance := oFsm.pOmciCC.sendSetEvtocdVar(log.WithSpanFromContext(context.TODO(), ctx), ConstDefaultOmciTimeout, true,
oFsm.pAdaptFsm.commChan, meParams)
//accept also nil as (error) return value for writing to LastTx
// - this avoids misinterpretation of new received OMCI messages
oFsm.pLastTxMeInstance = meInstance
//verify response
err := oFsm.waitforOmciResponse(ctx)
if err != nil {
logger.Errorw(ctx, "Evtocd set transparent singletagged rule failed, aborting VlanConfig FSM!",
log.Fields{"device-id": oFsm.deviceID})
_ = oFsm.pAdaptFsm.pFsm.Event(vlanEvReset)
return fmt.Errorf("evtocd set transparent singletagged rule failed %s, error %s", oFsm.deviceID, err)
}
} else {
// according to py-code acceptIncrementalEvto program option decides upon stacking or translation scenario
if oFsm.acceptIncrementalEvtoOption {
matchPcp := oFsm.uniVlanFlowParamsSlice[aFlowEntryNo].VlanRuleParams.MatchPcp
matchVid := oFsm.uniVlanFlowParamsSlice[aFlowEntryNo].VlanRuleParams.MatchVid
setPcp := oFsm.uniVlanFlowParamsSlice[aFlowEntryNo].VlanRuleParams.SetPcp
setVid := oFsm.uniVlanFlowParamsSlice[aFlowEntryNo].VlanRuleParams.SetVid
// this defines VID translation scenario: singletagged->singletagged (if not transparent)
logger.Debugw(ctx, "UniVlanConfigFsm Tx Set::EVTOCD single tagged translation rule", log.Fields{
"match-pcp": matchPcp, "match-vid": matchVid, "set-pcp": setPcp, "set-vid:": setVid, "device-id": oFsm.deviceID})
sliceEvtocdRule := make([]uint8, 16)
// fill vlan tagging operation table bit fields using network=bigEndian order and using slice offset 0 as highest 'word'
binary.BigEndian.PutUint32(sliceEvtocdRule[cFilterOuterOffset:],
cPrioIgnoreTag<<cFilterPrioOffset| // Not an outer-tag rule
cDoNotFilterVid<<cFilterVidOffset| // Do not filter on outer vid
cDoNotFilterTPID<<cFilterTpidOffset) // Do not filter on outer TPID field
binary.BigEndian.PutUint32(sliceEvtocdRule[cFilterInnerOffset:],
oFsm.uniVlanFlowParamsSlice[aFlowEntryNo].VlanRuleParams.MatchPcp<<cFilterPrioOffset| // either DNFonPrio or ignore tag (default) on innerVLAN
oFsm.uniVlanFlowParamsSlice[aFlowEntryNo].VlanRuleParams.MatchVid<<cFilterVidOffset| // either DNFonVid or real filter VID
cDoNotFilterTPID<<cFilterTpidOffset| // Do not filter on inner TPID field
cDoNotFilterEtherType<<cFilterEtherTypeOffset) // Do not filter of EtherType
binary.BigEndian.PutUint32(sliceEvtocdRule[cTreatOuterOffset:],
oFsm.uniVlanFlowParamsSlice[aFlowEntryNo].VlanRuleParams.TagsToRemove<<cTreatTTROffset| // either 1 or 0
cDoNotAddPrio<<cTreatPrioOffset| // do not add outer tag
cDontCareVid<<cTreatVidOffset| // Outer VID don't care
cDontCareTpid<<cTreatTpidOffset) // Outer TPID field don't care
binary.BigEndian.PutUint32(sliceEvtocdRule[cTreatInnerOffset:],
oFsm.uniVlanFlowParamsSlice[aFlowEntryNo].VlanRuleParams.SetPcp<<cTreatPrioOffset| // as configured in flow
oFsm.uniVlanFlowParamsSlice[aFlowEntryNo].VlanRuleParams.SetVid<<cTreatVidOffset| //as configured in flow
cSetOutputTpidCopyDei<<cTreatTpidOffset) // Set TPID = 0x8100
oFsm.mutexFlowParams.RUnlock()
meParams := me.ParamData{
EntityID: oFsm.evtocdID,
Attributes: me.AttributeValueMap{
"ReceivedFrameVlanTaggingOperationTable": sliceEvtocdRule,
},
}
meInstance := oFsm.pOmciCC.sendSetEvtocdVar(log.WithSpanFromContext(context.TODO(), ctx), ConstDefaultOmciTimeout, true,
oFsm.pAdaptFsm.commChan, meParams)
//accept also nil as (error) return value for writing to LastTx
// - this avoids misinterpretation of new received OMCI messages
oFsm.pLastTxMeInstance = meInstance
//verify response
err := oFsm.waitforOmciResponse(ctx)
if err != nil {
logger.Errorw(ctx, "Evtocd set singletagged translation rule failed, aborting VlanConfig FSM!",
log.Fields{"device-id": oFsm.deviceID})
_ = oFsm.pAdaptFsm.pFsm.Event(vlanEvReset)
return fmt.Errorf("evtocd set singletagged translation rule failed %s, error %s", oFsm.deviceID, err)
}
} else {
//not transparent and not acceptIncrementalEvtoOption untagged/priotagged->singletagged
{ // just for local var's
// this defines stacking scenario: untagged->singletagged
logger.Debugw(ctx, "UniVlanConfigFsm Tx Set::EVTOCD untagged->singletagged rule", log.Fields{
"device-id": oFsm.deviceID})
sliceEvtocdRule := make([]uint8, 16)
// fill vlan tagging operation table bit fields using network=bigEndian order and using slice offset 0 as highest 'word'
binary.BigEndian.PutUint32(sliceEvtocdRule[cFilterOuterOffset:],
cPrioIgnoreTag<<cFilterPrioOffset| // Not an outer-tag rule
cDoNotFilterVid<<cFilterVidOffset| // Do not filter on outer vid
cDoNotFilterTPID<<cFilterTpidOffset) // Do not filter on outer TPID field
binary.BigEndian.PutUint32(sliceEvtocdRule[cFilterInnerOffset:],
cPrioIgnoreTag<<cFilterPrioOffset| // Not an inner-tag rule
cDoNotFilterVid<<cFilterVidOffset| // Do not filter on inner vid
cDoNotFilterTPID<<cFilterTpidOffset| // Do not filter on inner TPID field
cDoNotFilterEtherType<<cFilterEtherTypeOffset) // Do not filter of EtherType
binary.BigEndian.PutUint32(sliceEvtocdRule[cTreatOuterOffset:],
0<<cTreatTTROffset| // Do not pop any tags
cDoNotAddPrio<<cTreatPrioOffset| // do not add outer tag
cDontCareVid<<cTreatVidOffset| // Outer VID don't care
cDontCareTpid<<cTreatTpidOffset) // Outer TPID field don't care
binary.BigEndian.PutUint32(sliceEvtocdRule[cTreatInnerOffset:],
0<<cTreatPrioOffset| // vlan prio set to 0
// (as done in Py code, maybe better option would be setPcp here, which still could be 0?)
oFsm.uniVlanFlowParamsSlice[aFlowEntryNo].VlanRuleParams.SetVid<<cTreatVidOffset| // Outer VID don't care
cSetOutputTpidCopyDei<<cTreatTpidOffset) // Set TPID = 0x8100
oFsm.mutexFlowParams.RUnlock()
meParams := me.ParamData{
EntityID: oFsm.evtocdID,
Attributes: me.AttributeValueMap{
"ReceivedFrameVlanTaggingOperationTable": sliceEvtocdRule,
},
}
meInstance := oFsm.pOmciCC.sendSetEvtocdVar(log.WithSpanFromContext(context.TODO(), ctx), ConstDefaultOmciTimeout, true,
oFsm.pAdaptFsm.commChan, meParams)
//accept also nil as (error) return value for writing to LastTx
// - this avoids misinterpretation of new received OMCI messages
oFsm.pLastTxMeInstance = meInstance
//verify response
err := oFsm.waitforOmciResponse(ctx)
if err != nil {
logger.Errorw(ctx, "Evtocd set untagged->singletagged rule failed, aborting VlanConfig FSM!",
log.Fields{"device-id": oFsm.deviceID})
_ = oFsm.pAdaptFsm.pFsm.Event(vlanEvReset)
return fmt.Errorf("evtocd set untagged->singletagged rule failed %s, error %s", oFsm.deviceID, err)
}
} // just for local var's
{ // just for local var's
// this defines 'stacking' scenario: priotagged->singletagged
logger.Debugw(ctx, "UniVlanConfigFsm Tx Set::EVTOCD priotagged->singletagged rule", log.Fields{
"device-id": oFsm.deviceID})
sliceEvtocdRule := make([]uint8, 16)
// fill vlan tagging operation table bit fields using network=bigEndian order and using slice offset 0 as highest 'word'
binary.BigEndian.PutUint32(sliceEvtocdRule[cFilterOuterOffset:],
cPrioIgnoreTag<<cFilterPrioOffset| // Not an outer-tag rule
cDoNotFilterVid<<cFilterVidOffset| // Do not filter on outer vid
cDoNotFilterTPID<<cFilterTpidOffset) // Do not filter on outer TPID field
binary.BigEndian.PutUint32(sliceEvtocdRule[cFilterInnerOffset:],
cPrioDoNotFilter<<cFilterPrioOffset| // Do not Filter on innerprio
0<<cFilterVidOffset| // filter on inner vid 0 (prioTagged)
cDoNotFilterTPID<<cFilterTpidOffset| // Do not filter on inner TPID field
cDoNotFilterEtherType<<cFilterEtherTypeOffset) // Do not filter of EtherType
binary.BigEndian.PutUint32(sliceEvtocdRule[cTreatOuterOffset:],
1<<cTreatTTROffset| // pop the prio-tag
cDoNotAddPrio<<cTreatPrioOffset| // do not add outer tag
cDontCareVid<<cTreatVidOffset| // Outer VID don't care
cDontCareTpid<<cTreatTpidOffset) // Outer TPID field don't care
oFsm.mutexFlowParams.RLock()
binary.BigEndian.PutUint32(sliceEvtocdRule[cTreatInnerOffset:],
cCopyPrioFromInner<<cTreatPrioOffset| // vlan copy from PrioTag
// (as done in Py code, maybe better option would be setPcp here, which still could be PrioCopy?)
oFsm.uniVlanFlowParamsSlice[aFlowEntryNo].VlanRuleParams.SetVid<<cTreatVidOffset| // Outer VID as configured
cSetOutputTpidCopyDei<<cTreatTpidOffset) // Set TPID = 0x8100
oFsm.mutexFlowParams.RUnlock()
meParams := me.ParamData{
EntityID: oFsm.evtocdID,
Attributes: me.AttributeValueMap{
"ReceivedFrameVlanTaggingOperationTable": sliceEvtocdRule,
},
}
meInstance := oFsm.pOmciCC.sendSetEvtocdVar(log.WithSpanFromContext(context.TODO(), ctx), ConstDefaultOmciTimeout, true,
oFsm.pAdaptFsm.commChan, meParams)
//accept also nil as (error) return value for writing to LastTx
// - this avoids misinterpretation of new received OMCI messages
oFsm.pLastTxMeInstance = meInstance
//verify response
err := oFsm.waitforOmciResponse(ctx)
if err != nil {
logger.Errorw(ctx, "Evtocd set priotagged->singletagged rule failed, aborting VlanConfig FSM!",
log.Fields{"device-id": oFsm.deviceID})
_ = oFsm.pAdaptFsm.pFsm.Event(vlanEvReset)
return fmt.Errorf("evtocd set priotagged->singletagged rule failed %s, error %s", oFsm.deviceID, err)
}
} //just for local var's
}
}
// if Config has been done for all EVTOCD entries let the FSM proceed
logger.Debugw(ctx, "EVTOCD set loop finished", log.Fields{"device-id": oFsm.deviceID})
oFsm.configuredUniFlow++ // one (more) flow configured
return nil
}
func (oFsm *UniVlanConfigFsm) removeEvtocdEntries(ctx context.Context, aRuleParams uniVlanRuleParams) {
// configured Input/Output TPID is not modified again - no influence if no filter is applied
if aRuleParams.SetVid == uint32(of.OfpVlanId_OFPVID_PRESENT) {
//transparent transmission was set
//perhaps the config is not needed for removal,
// but the specific InnerTpid setting is removed in favor of the real default forwarding rule
logger.Debugw(ctx, "UniVlanConfigFsm Tx Set::EVTOCD reset to default single tagged rule", log.Fields{
"device-id": oFsm.deviceID})
sliceEvtocdRule := make([]uint8, 16)
// fill vlan tagging operation table bit fields using network=bigEndian order and using slice offset 0 as highest 'word'
binary.BigEndian.PutUint32(sliceEvtocdRule[cFilterOuterOffset:],
cPrioIgnoreTag<<cFilterPrioOffset| // Not an outer-tag rule
cDoNotFilterVid<<cFilterVidOffset| // Do not filter on outer vid
cDoNotFilterTPID<<cFilterTpidOffset) // Do not filter on outer TPID field
binary.BigEndian.PutUint32(sliceEvtocdRule[cFilterInnerOffset:],
cPrioDefaultFilter<<cFilterPrioOffset| // default inner-tag rule
cDoNotFilterVid<<cFilterVidOffset| // Do not filter on inner vid
cDoNotFilterTPID<<cFilterTpidOffset| // Do not filter on inner TPID field
cDoNotFilterEtherType<<cFilterEtherTypeOffset) // Do not filter of EtherType
binary.BigEndian.PutUint32(sliceEvtocdRule[cTreatOuterOffset:],
0<<cTreatTTROffset| // Do not pop any tags
cDoNotAddPrio<<cTreatPrioOffset| // do not add outer tag
cDontCareVid<<cTreatVidOffset| // Outer VID don't care
cDontCareTpid<<cTreatTpidOffset) // Outer TPID field don't care
binary.BigEndian.PutUint32(sliceEvtocdRule[cTreatInnerOffset:],
cDoNotAddPrio<<cTreatPrioOffset| // do not add inner tag
cDontCareVid<<cTreatVidOffset| // Outer VID don't care
cDontCareTpid<<cTreatTpidOffset) // copy TPID and DEI
meParams := me.ParamData{
EntityID: oFsm.evtocdID,
Attributes: me.AttributeValueMap{
"ReceivedFrameVlanTaggingOperationTable": sliceEvtocdRule,
},
}
meInstance := oFsm.pOmciCC.sendSetEvtocdVar(log.WithSpanFromContext(context.TODO(), ctx), ConstDefaultOmciTimeout, true,
oFsm.pAdaptFsm.commChan, meParams)
//accept also nil as (error) return value for writing to LastTx
// - this avoids misinterpretation of new received OMCI messages
oFsm.pLastTxMeInstance = meInstance
//verify response
err := oFsm.waitforOmciResponse(ctx)
if err != nil {
logger.Errorw(ctx, "Evtocd reset singletagged rule failed, aborting VlanConfig FSM!",
log.Fields{"device-id": oFsm.deviceID})
_ = oFsm.pAdaptFsm.pFsm.Event(vlanEvReset)
return
}
} else {
// according to py-code acceptIncrementalEvto program option decides upon stacking or translation scenario
if oFsm.acceptIncrementalEvtoOption {
// this defines VID translation scenario: singletagged->singletagged (if not transparent)
logger.Debugw(ctx, "UniVlanConfigFsm Tx Set::EVTOCD clear single tagged translation rule", log.Fields{
"device-id": oFsm.deviceID, "match-vlan": aRuleParams.MatchVid})
sliceEvtocdRule := make([]uint8, 16)
// fill vlan tagging operation table bit fields using network=bigEndian order and using slice offset 0 as highest 'word'
binary.BigEndian.PutUint32(sliceEvtocdRule[cFilterOuterOffset:],
cPrioIgnoreTag<<cFilterPrioOffset| // Not an outer-tag rule
cDoNotFilterVid<<cFilterVidOffset| // Do not filter on outer vid
cDoNotFilterTPID<<cFilterTpidOffset) // Do not filter on outer TPID field
binary.BigEndian.PutUint32(sliceEvtocdRule[cFilterInnerOffset:],
aRuleParams.MatchPcp<<cFilterPrioOffset| // either DNFonPrio or ignore tag (default) on innerVLAN
aRuleParams.MatchVid<<cFilterVidOffset| // either DNFonVid or real filter VID
cDoNotFilterTPID<<cFilterTpidOffset| // Do not filter on inner TPID field
cDoNotFilterEtherType<<cFilterEtherTypeOffset) // Do not filter of EtherType
// delete indication for the indicated Filter
binary.BigEndian.PutUint32(sliceEvtocdRule[cTreatOuterOffset:], 0xFFFFFFFF)
binary.BigEndian.PutUint32(sliceEvtocdRule[cTreatInnerOffset:], 0xFFFFFFFF)
meParams := me.ParamData{
EntityID: oFsm.evtocdID,
Attributes: me.AttributeValueMap{
"ReceivedFrameVlanTaggingOperationTable": sliceEvtocdRule,
},
}
meInstance := oFsm.pOmciCC.sendSetEvtocdVar(log.WithSpanFromContext(context.TODO(), ctx), ConstDefaultOmciTimeout, true,
oFsm.pAdaptFsm.commChan, meParams)
//accept also nil as (error) return value for writing to LastTx
// - this avoids misinterpretation of new received OMCI messages
oFsm.pLastTxMeInstance = meInstance
//verify response
err := oFsm.waitforOmciResponse(ctx)
if err != nil {
logger.Errorw(ctx, "Evtocd clear singletagged translation rule failed, aborting VlanConfig FSM!",
log.Fields{"device-id": oFsm.deviceID, "match-vlan": aRuleParams.MatchVid})
_ = oFsm.pAdaptFsm.pFsm.Event(vlanEvReset)
return
}
} else {
// VOL-3685
// NOTE: With ALPHA ONUs it was seen that just resetting a particular entry in the EVTOCD table
// and re-configuring a new entry would not work. The old entry is removed and new entry is created
// indeed, but the traffic landing upstream would carry old vlan sometimes.
// This is only a WORKAROUND which basically deletes the entire EVTOCD ME and re-creates it again
// later when the flow is being re-installed.
// Of course this is applicable to case only where single service (or single tcont) is in use and
// there is only one service vlan (oFsm.acceptIncrementalEvtoOption is false in this case).
// Interstingly this problem has not been observed in multi-tcont (or multi-service) scenario (in
// which case the oFsm.acceptIncrementalEvtoOption is set to true).
if oFsm.configuredUniFlow == 0 && !oFsm.acceptIncrementalEvtoOption {
logger.Debugw(ctx, "UniVlanConfigFsm Tx Remove::EVTOCD", log.Fields{"device-id": oFsm.deviceID})
// When there are no more EVTOCD vlan configurations on the ONU and acceptIncrementalEvtoOption
// is not enabled, delete the EVTOCD ME.
meParams := me.ParamData{
EntityID: oFsm.evtocdID,
}
meInstance := oFsm.pOmciCC.sendDeleteEvtocd(log.WithSpanFromContext(context.TODO(), ctx), ConstDefaultOmciTimeout, true,
oFsm.pAdaptFsm.commChan, meParams)
//accept also nil as (error) return value for writing to LastTx
// - this avoids misinterpretation of new received OMCI messages
oFsm.pLastTxMeInstance = meInstance
//verify response
err := oFsm.waitforOmciResponse(ctx)
if err != nil {
logger.Errorw(ctx, "Evtocd delete rule failed, aborting VlanConfig FSM!",
log.Fields{"device-id": oFsm.deviceID})
_ = oFsm.pAdaptFsm.pFsm.Event(vlanEvReset)
return
}
} else {
// NOTE : We should ideally never ether this section when oFsm.acceptIncrementalEvtoOption is set to false
// This is true for only ATT/DT workflow
logger.Debugw(ctx, "UniVlanConfigFsm: Remove EVTOCD set operation",
log.Fields{"configured-flow": oFsm.configuredUniFlow, "incremental-evto": oFsm.acceptIncrementalEvtoOption})
//not transparent and not acceptIncrementalEvtoOption: untagged/priotagged->singletagged
{ // just for local var's
// this defines stacking scenario: untagged->singletagged
//TODO!! in theory there could be different rules running in setting different PCP/VID'S
// for untagged/priotagged, last rule wins (and remains the only one), maybe that should be
// checked already at flow-add (and rejected) - to be observed if such is possible in Voltha
// delete now assumes there is only one such rule!
logger.Debugw(ctx, "UniVlanConfigFsm Tx Set::EVTOCD reset untagged rule to default", log.Fields{
"device-id": oFsm.deviceID})
sliceEvtocdRule := make([]uint8, 16)
// fill vlan tagging operation table bit fields using network=bigEndian order and using slice offset 0 as highest 'word'
binary.BigEndian.PutUint32(sliceEvtocdRule[cFilterOuterOffset:],
cPrioIgnoreTag<<cFilterPrioOffset| // Not an outer-tag rule
cDoNotFilterVid<<cFilterVidOffset| // Do not filter on outer vid
cDoNotFilterTPID<<cFilterTpidOffset) // Do not filter on outer TPID field
binary.BigEndian.PutUint32(sliceEvtocdRule[cFilterInnerOffset:],
cPrioIgnoreTag<<cFilterPrioOffset| // Not an inner-tag rule
cDoNotFilterVid<<cFilterVidOffset| // Do not filter on inner vid
cDoNotFilterTPID<<cFilterTpidOffset| // Do not filter on inner TPID field
cDoNotFilterEtherType<<cFilterEtherTypeOffset) // Do not filter of EtherType
binary.BigEndian.PutUint32(sliceEvtocdRule[cTreatOuterOffset:],
0<<cTreatTTROffset| // Do not pop any tags
cDoNotAddPrio<<cTreatPrioOffset| // do not add outer tag
cDontCareVid<<cTreatVidOffset| // Outer VID don't care
cDontCareTpid<<cTreatTpidOffset) // Outer TPID field don't care
binary.BigEndian.PutUint32(sliceEvtocdRule[cTreatInnerOffset:],
cDoNotAddPrio<<cTreatPrioOffset| // do not add inner tag
cDontCareVid<<cTreatVidOffset| // Outer VID don't care
cDontCareTpid<<cTreatTpidOffset) // copy TPID and DEI
meParams := me.ParamData{
EntityID: oFsm.evtocdID,
Attributes: me.AttributeValueMap{
"ReceivedFrameVlanTaggingOperationTable": sliceEvtocdRule,
},
}
meInstance := oFsm.pOmciCC.sendSetEvtocdVar(context.TODO(), ConstDefaultOmciTimeout, true,
oFsm.pAdaptFsm.commChan, meParams)
//accept also nil as (error) return value for writing to LastTx
// - this avoids misinterpretation of new received OMCI messages
oFsm.pLastTxMeInstance = meInstance
//verify response
err := oFsm.waitforOmciResponse(ctx)
if err != nil {
logger.Errorw(ctx, "Evtocd reset untagged rule to default failed, aborting VlanConfig FSM!",
log.Fields{"device-id": oFsm.deviceID})
_ = oFsm.pAdaptFsm.pFsm.Event(vlanEvReset)
return
}
} // just for local var's
{ // just for local var's
// this defines 'stacking' scenario: priotagged->singletagged
logger.Debugw(ctx, "UniVlanConfigFsm Tx Set::EVTOCD delete priotagged rule", log.Fields{
"device-id": oFsm.deviceID})
sliceEvtocdRule := make([]uint8, 16)
// fill vlan tagging operation table bit fields using network=bigEndian order and using slice offset 0 as highest 'word'
binary.BigEndian.PutUint32(sliceEvtocdRule[cFilterOuterOffset:],
cPrioIgnoreTag<<cFilterPrioOffset| // Not an outer-tag rule
cDoNotFilterVid<<cFilterVidOffset| // Do not filter on outer vid
cDoNotFilterTPID<<cFilterTpidOffset) // Do not filter on outer TPID field
binary.BigEndian.PutUint32(sliceEvtocdRule[cFilterInnerOffset:],
cPrioDoNotFilter<<cFilterPrioOffset| // Do not Filter on innerprio
0<<cFilterVidOffset| // filter on inner vid 0 (prioTagged)
cDoNotFilterTPID<<cFilterTpidOffset| // Do not filter on inner TPID field
cDoNotFilterEtherType<<cFilterEtherTypeOffset) // Do not filter of EtherType
// delete indication for the indicated Filter
binary.BigEndian.PutUint32(sliceEvtocdRule[cTreatOuterOffset:], 0xFFFFFFFF)
binary.BigEndian.PutUint32(sliceEvtocdRule[cTreatInnerOffset:], 0xFFFFFFFF)
meParams := me.ParamData{
EntityID: oFsm.evtocdID,
Attributes: me.AttributeValueMap{
"ReceivedFrameVlanTaggingOperationTable": sliceEvtocdRule,
},
}
meInstance := oFsm.pOmciCC.sendSetEvtocdVar(log.WithSpanFromContext(context.TODO(), ctx), ConstDefaultOmciTimeout, true,
oFsm.pAdaptFsm.commChan, meParams)
//accept also nil as (error) return value for writing to LastTx
// - this avoids misinterpretation of new received OMCI messages
oFsm.pLastTxMeInstance = meInstance
//verify response
err := oFsm.waitforOmciResponse(ctx)
if err != nil {
logger.Errorw(ctx, "Evtocd delete priotagged rule failed, aborting VlanConfig FSM!",
log.Fields{"device-id": oFsm.deviceID})
_ = oFsm.pAdaptFsm.pFsm.Event(vlanEvReset)
return
}
}
} //just for local var's
}
}
// if Config has been done for all EVTOCD entries let the FSM proceed
logger.Debugw(ctx, "EVTOCD filter remove loop finished", log.Fields{"device-id": oFsm.deviceID})
_ = oFsm.pAdaptFsm.pFsm.Event(vlanEvRemFlowDone)
}
func (oFsm *UniVlanConfigFsm) waitforOmciResponse(ctx context.Context) error {
select {
// maybe be also some outside cancel (but no context modeled for the moment ...)
// case <-ctx.Done():
// logger.Infow(ctx,"LockState-bridge-init message reception canceled", log.Fields{"for device-id": oFsm.deviceID})
case <-time.After(30 * time.Second): //AS FOR THE OTHER OMCI FSM's
logger.Warnw(ctx, "UniVlanConfigFsm multi entity timeout", log.Fields{"for device-id": oFsm.deviceID})
return fmt.Errorf("uniVlanConfigFsm multi entity timeout %s", oFsm.deviceID)
case success := <-oFsm.omciMIdsResponseReceived:
if success {
logger.Debug(ctx, "UniVlanConfigFsm multi entity response received")
return nil
}
// should not happen so far
logger.Warnw(ctx, "UniVlanConfigFsm multi entity response error", log.Fields{"for device-id": oFsm.deviceID})
return fmt.Errorf("uniVlanConfigFsm multi entity responseError %s", oFsm.deviceID)
}
}
func (oFsm *UniVlanConfigFsm) performSettingMulticastME(ctx context.Context, tpID uint8, multicastGemPortID uint16, vlanID uint32) error {
logger.Debugw(ctx, "Setting Multicast MEs", log.Fields{"device-id": oFsm.deviceID, "tpID": tpID,
"multicastGemPortID": multicastGemPortID, "vlanID": vlanID})
errCreateMOP := oFsm.performCreatingMulticastOperationProfile(ctx)
if errCreateMOP != nil {
logger.Errorw(ctx, "MulticastOperationProfile create failed, aborting AniConfig FSM!",
log.Fields{"device-id": oFsm.deviceID})
_ = oFsm.pAdaptFsm.pFsm.Event(aniEvReset)
return fmt.Errorf("creatingMulticastSubscriberConfigInfo responseError %s, error %s", oFsm.deviceID, errCreateMOP)
}
errSettingMOP := oFsm.performSettingMulticastOperationProfile(ctx, multicastGemPortID, vlanID)
if errSettingMOP != nil {
logger.Errorw(ctx, "MulticastOperationProfile setting failed, aborting AniConfig FSM!",
log.Fields{"device-id": oFsm.deviceID})
_ = oFsm.pAdaptFsm.pFsm.Event(aniEvReset)
return fmt.Errorf("creatingMulticastSubscriberConfigInfo responseError %s, error %s", oFsm.deviceID, errSettingMOP)
}
errCreateMSCI := oFsm.performCreatingMulticastSubscriberConfigInfo(ctx)
if errCreateMSCI != nil {
logger.Errorw(ctx, "MulticastOperationProfile setting failed, aborting AniConfig FSM!",
log.Fields{"device-id": oFsm.deviceID})
_ = oFsm.pAdaptFsm.pFsm.Event(aniEvReset)
return fmt.Errorf("creatingMulticastSubscriberConfigInfo responseError %s, error %s", oFsm.deviceID, errCreateMSCI)
}
meParams := me.ParamData{
EntityID: macBridgeServiceProfileEID + uint16(oFsm.pOnuUniPort.macBpNo),
Attributes: me.AttributeValueMap{
"BridgeIdPointer": macBridgeServiceProfileEID + uint16(oFsm.pOnuUniPort.macBpNo),
"PortNum": 0xf0, //fixed unique ANI side indication
"TpType": 6, //MCGemIWTP
"TpPointer": multicastGemPortID,
},
}
meInstance := oFsm.pOmciCC.sendCreateMBPConfigDataVar(context.TODO(), ConstDefaultOmciTimeout, true,
oFsm.pAdaptFsm.commChan, meParams)
//accept also nil as (error) return value for writing to LastTx
// - this avoids misinterpretation of new received OMCI messages
oFsm.pLastTxMeInstance = meInstance
err := oFsm.waitforOmciResponse(ctx)
if err != nil {
logger.Errorw(ctx, "CreateMBPConfigData failed, aborting AniConfig FSM!",
log.Fields{"device-id": oFsm.deviceID, "MBPConfigDataID": macBridgeServiceProfileEID})
_ = oFsm.pAdaptFsm.pFsm.Event(aniEvReset)
return fmt.Errorf("creatingMulticastSubscriberConfigInfo responseError %s, error %s", oFsm.deviceID, err)
}
// ==> Start creating VTFD for mcast vlan
// This attribute uniquely identifies each instance of this managed entity. Through an identical ID,
// this managed entity is implicitly linked to an instance of the MAC bridge port configuration data ME.
mcastVtfdID := macBridgeServiceProfileEID + uint16(oFsm.pOnuUniPort.macBpNo)
logger.Debugw(ctx, "UniVlanConfigFsm set VTFD for mcast", log.Fields{
"EntitytId": strconv.FormatInt(int64(mcastVtfdID), 16), "mcastVlanID": vlanID,
"in state": oFsm.pAdaptFsm.pFsm.Current(), "device-id": oFsm.deviceID})
vtfdFilterList := make([]uint16, cVtfdTableSize) //needed for parameter serialization
// FIXME: VOL-3685: Issues with resetting a table entry in EVTOCD ME
// VTFD has to be created afresh with a new entity ID that has the same entity ID as the MBPCD ME for every
// new vlan associated with a different TP.
vtfdFilterList[0] = uint16(vlanID)
meParams = me.ParamData{
EntityID: mcastVtfdID,
Attributes: me.AttributeValueMap{
"VlanFilterList": vtfdFilterList,
"ForwardOperation": uint8(0x10), //VID investigation
"NumberOfEntries": oFsm.numVlanFilterEntries,
},
}
meInstance = oFsm.pOmciCC.sendCreateVtfdVar(context.TODO(), ConstDefaultOmciTimeout, true,
oFsm.pAdaptFsm.commChan, meParams)
oFsm.pLastTxMeInstance = meInstance
err = oFsm.waitforOmciResponse(ctx)
if err != nil {
logger.Errorw(ctx, "CreateMcastVlanFilterData failed, aborting AniConfig FSM!",
log.Fields{"device-id": oFsm.deviceID, "mcastVtfdID": mcastVtfdID})
_ = oFsm.pAdaptFsm.pFsm.Event(aniEvReset)
return fmt.Errorf("createMcastVlanFilterData responseError %s, error %s", oFsm.deviceID, err)
}
return nil
}
func (oFsm *UniVlanConfigFsm) performCreatingMulticastSubscriberConfigInfo(ctx context.Context) error {
instID, err := oFsm.pDeviceHandler.getUniPortMEEntityID(oFsm.pOnuUniPort.portNo)
if err != nil {
logger.Errorw(ctx, "error fetching uni port me instance",
log.Fields{"device-id": oFsm.deviceID, "portNo": oFsm.pOnuUniPort.portNo})
return err
}
meParams := me.ParamData{
EntityID: instID,
Attributes: me.AttributeValueMap{
"MeType": 0,
//Direct reference to the Operation profile
//TODO ANI side used on UNI side, not the clearest option.
"MulticastOperationsProfilePointer": macBridgePortAniEID + uint16(oFsm.pOnuUniPort.macBpNo),
},
}
meInstance := oFsm.pOmciCC.sendCreateMulticastSubConfigInfoVar(context.TODO(), ConstDefaultOmciTimeout, true,
oFsm.pAdaptFsm.commChan, meParams)
//accept also nil as (error) return value for writing to LastTx
// - this avoids misinterpretation of new received OMCI messages
oFsm.pLastTxMeInstance = meInstance
//verify response
err = oFsm.waitforOmciResponse(ctx)
if err != nil {
logger.Errorw(ctx, "CreateMulticastSubConfigInfo create failed, aborting AniConfig FSM!",
log.Fields{"device-id": oFsm.deviceID, "MulticastSubConfigInfo": instID})
return fmt.Errorf("creatingMulticastSubscriberConfigInfo responseError %s", oFsm.deviceID)
}
return nil
}
func (oFsm *UniVlanConfigFsm) performCreatingMulticastOperationProfile(ctx context.Context) error {
instID := macBridgePortAniEID + uint16(oFsm.pOnuUniPort.macBpNo)
meParams := me.ParamData{
EntityID: instID,
Attributes: me.AttributeValueMap{
"IgmpVersion": 2,
"IgmpFunction": 0,
//0 means false
"ImmediateLeave": 0,
"Robustness": 2,
"QuerierIp": 0,
"QueryInterval": 125,
"QuerierMaxResponseTime": 100,
"LastMemberResponseTime": 10,
//0 means false
"UnauthorizedJoinBehaviour": 0,
},
}
meInstance := oFsm.pOmciCC.sendCreateMulticastOperationProfileVar(context.TODO(), ConstDefaultOmciTimeout, true,
oFsm.pAdaptFsm.commChan, meParams)
//accept also nil as (error) return value for writing to LastTx
// - this avoids misinterpretation of new received OMCI messages
oFsm.pLastTxMeInstance = meInstance
//verify response
err := oFsm.waitforOmciResponse(ctx)
if err != nil {
logger.Errorw(ctx, "CreateMulticastOperationProfile create failed, aborting AniConfig FSM!",
log.Fields{"device-id": oFsm.deviceID, "MulticastOperationProfileID": instID})
return fmt.Errorf("createMulticastOperationProfile responseError %s", oFsm.deviceID)
}
return nil
}
func (oFsm *UniVlanConfigFsm) performSettingMulticastOperationProfile(ctx context.Context, multicastGemPortID uint16, vlanID uint32) error {
instID := macBridgePortAniEID + uint16(oFsm.pOnuUniPort.macBpNo)
//TODO check that this is correct
// Table control
//setCtrl = 1
//rowPartId = 0
//test = 0
//rowKey = 0
tableCtrlStr := "0100000000000000"
tableCtrl := AsByteSlice(tableCtrlStr)
//TODO Building it as a Table, even though the attribute is `StringAttributeType`
// see line 56 of multicastoperationsprofileframe.go, it's an error in the conversion.
// FIXED 30/12/2020 Fixed for now with a local copy of multicastoperationsprofileframe.go in vendor/omci-lib-go
// provided by Chip, needs upstreaming and version change.
dynamicAccessCL := make([]uint8, 24)
copy(dynamicAccessCL, tableCtrl)
//Multicast GemPortId
binary.BigEndian.PutUint16(dynamicAccessCL[2:], multicastGemPortID)
// python version waits for installation of flows, see line 723 onward of
// brcm_openomci_onu_handler.py
binary.BigEndian.PutUint16(dynamicAccessCL[4:], uint16(vlanID))
//Source IP all to 0
binary.BigEndian.PutUint32(dynamicAccessCL[6:], IPToInt32(net.IPv4(0, 0, 0, 0)))
//TODO start and end are hardcoded, get from TP
// Destination IP address start of range
binary.BigEndian.PutUint32(dynamicAccessCL[10:], IPToInt32(net.IPv4(225, 0, 0, 0)))
// Destination IP address end of range
binary.BigEndian.PutUint32(dynamicAccessCL[14:], IPToInt32(net.IPv4(239, 255, 255, 255)))
//imputed group bandwidth
binary.BigEndian.PutUint16(dynamicAccessCL[18:], 0)
meParams := me.ParamData{
EntityID: instID,
Attributes: me.AttributeValueMap{
"DynamicAccessControlListTable": dynamicAccessCL,
},
}
meInstance := oFsm.pOmciCC.sendSetMulticastOperationProfileVar(context.TODO(), ConstDefaultOmciTimeout, true,
oFsm.pAdaptFsm.commChan, meParams)
//accept also nil as (error) return value for writing to LastTx
// - this avoids misinterpretation of new received OMCI messages
oFsm.pLastTxMeInstance = meInstance
//verify response
err := oFsm.waitforOmciResponse(ctx)
if err != nil {
logger.Errorw(ctx, "CreateMulticastOperationProfile create failed, aborting AniConfig FSM!",
log.Fields{"device-id": oFsm.deviceID, "MulticastOperationProfileID": instID})
return fmt.Errorf("createMulticastOperationProfile responseError %s", oFsm.deviceID)
}
return nil
}