Holger Hildebrandt | fa07499 | 2020-03-27 15:42:06 +0000 | [diff] [blame] | 1 | // Go support for Protocol Buffers - Google's data interchange format |
| 2 | // |
| 3 | // Copyright 2010 The Go Authors. All rights reserved. |
| 4 | // https://github.com/golang/protobuf |
| 5 | // |
| 6 | // Redistribution and use in source and binary forms, with or without |
| 7 | // modification, are permitted provided that the following conditions are |
| 8 | // met: |
| 9 | // |
| 10 | // * Redistributions of source code must retain the above copyright |
| 11 | // notice, this list of conditions and the following disclaimer. |
| 12 | // * Redistributions in binary form must reproduce the above |
| 13 | // copyright notice, this list of conditions and the following disclaimer |
| 14 | // in the documentation and/or other materials provided with the |
| 15 | // distribution. |
| 16 | // * Neither the name of Google Inc. nor the names of its |
| 17 | // contributors may be used to endorse or promote products derived from |
| 18 | // this software without specific prior written permission. |
| 19 | // |
| 20 | // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS |
| 21 | // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT |
| 22 | // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR |
| 23 | // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT |
| 24 | // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, |
| 25 | // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT |
| 26 | // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, |
| 27 | // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY |
| 28 | // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT |
| 29 | // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE |
| 30 | // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
| 31 | |
| 32 | package proto |
| 33 | |
| 34 | /* |
| 35 | * Routines for encoding data into the wire format for protocol buffers. |
| 36 | */ |
| 37 | |
| 38 | import ( |
| 39 | "fmt" |
| 40 | "log" |
| 41 | "reflect" |
| 42 | "sort" |
| 43 | "strconv" |
| 44 | "strings" |
| 45 | "sync" |
| 46 | ) |
| 47 | |
| 48 | const debug bool = false |
| 49 | |
| 50 | // Constants that identify the encoding of a value on the wire. |
| 51 | const ( |
| 52 | WireVarint = 0 |
| 53 | WireFixed64 = 1 |
| 54 | WireBytes = 2 |
| 55 | WireStartGroup = 3 |
| 56 | WireEndGroup = 4 |
| 57 | WireFixed32 = 5 |
| 58 | ) |
| 59 | |
| 60 | // tagMap is an optimization over map[int]int for typical protocol buffer |
| 61 | // use-cases. Encoded protocol buffers are often in tag order with small tag |
| 62 | // numbers. |
| 63 | type tagMap struct { |
| 64 | fastTags []int |
| 65 | slowTags map[int]int |
| 66 | } |
| 67 | |
| 68 | // tagMapFastLimit is the upper bound on the tag number that will be stored in |
| 69 | // the tagMap slice rather than its map. |
| 70 | const tagMapFastLimit = 1024 |
| 71 | |
| 72 | func (p *tagMap) get(t int) (int, bool) { |
| 73 | if t > 0 && t < tagMapFastLimit { |
| 74 | if t >= len(p.fastTags) { |
| 75 | return 0, false |
| 76 | } |
| 77 | fi := p.fastTags[t] |
| 78 | return fi, fi >= 0 |
| 79 | } |
| 80 | fi, ok := p.slowTags[t] |
| 81 | return fi, ok |
| 82 | } |
| 83 | |
| 84 | func (p *tagMap) put(t int, fi int) { |
| 85 | if t > 0 && t < tagMapFastLimit { |
| 86 | for len(p.fastTags) < t+1 { |
| 87 | p.fastTags = append(p.fastTags, -1) |
| 88 | } |
| 89 | p.fastTags[t] = fi |
| 90 | return |
| 91 | } |
| 92 | if p.slowTags == nil { |
| 93 | p.slowTags = make(map[int]int) |
| 94 | } |
| 95 | p.slowTags[t] = fi |
| 96 | } |
| 97 | |
| 98 | // StructProperties represents properties for all the fields of a struct. |
| 99 | // decoderTags and decoderOrigNames should only be used by the decoder. |
| 100 | type StructProperties struct { |
| 101 | Prop []*Properties // properties for each field |
| 102 | reqCount int // required count |
| 103 | decoderTags tagMap // map from proto tag to struct field number |
| 104 | decoderOrigNames map[string]int // map from original name to struct field number |
| 105 | order []int // list of struct field numbers in tag order |
| 106 | |
| 107 | // OneofTypes contains information about the oneof fields in this message. |
| 108 | // It is keyed by the original name of a field. |
| 109 | OneofTypes map[string]*OneofProperties |
| 110 | } |
| 111 | |
| 112 | // OneofProperties represents information about a specific field in a oneof. |
| 113 | type OneofProperties struct { |
| 114 | Type reflect.Type // pointer to generated struct type for this oneof field |
| 115 | Field int // struct field number of the containing oneof in the message |
| 116 | Prop *Properties |
| 117 | } |
| 118 | |
| 119 | // Implement the sorting interface so we can sort the fields in tag order, as recommended by the spec. |
| 120 | // See encode.go, (*Buffer).enc_struct. |
| 121 | |
| 122 | func (sp *StructProperties) Len() int { return len(sp.order) } |
| 123 | func (sp *StructProperties) Less(i, j int) bool { |
| 124 | return sp.Prop[sp.order[i]].Tag < sp.Prop[sp.order[j]].Tag |
| 125 | } |
| 126 | func (sp *StructProperties) Swap(i, j int) { sp.order[i], sp.order[j] = sp.order[j], sp.order[i] } |
| 127 | |
| 128 | // Properties represents the protocol-specific behavior of a single struct field. |
| 129 | type Properties struct { |
| 130 | Name string // name of the field, for error messages |
| 131 | OrigName string // original name before protocol compiler (always set) |
| 132 | JSONName string // name to use for JSON; determined by protoc |
| 133 | Wire string |
| 134 | WireType int |
| 135 | Tag int |
| 136 | Required bool |
| 137 | Optional bool |
| 138 | Repeated bool |
| 139 | Packed bool // relevant for repeated primitives only |
| 140 | Enum string // set for enum types only |
| 141 | proto3 bool // whether this is known to be a proto3 field |
| 142 | oneof bool // whether this is a oneof field |
| 143 | |
| 144 | Default string // default value |
| 145 | HasDefault bool // whether an explicit default was provided |
| 146 | |
| 147 | stype reflect.Type // set for struct types only |
| 148 | sprop *StructProperties // set for struct types only |
| 149 | |
| 150 | mtype reflect.Type // set for map types only |
| 151 | MapKeyProp *Properties // set for map types only |
| 152 | MapValProp *Properties // set for map types only |
| 153 | } |
| 154 | |
| 155 | // String formats the properties in the protobuf struct field tag style. |
| 156 | func (p *Properties) String() string { |
| 157 | s := p.Wire |
| 158 | s += "," |
| 159 | s += strconv.Itoa(p.Tag) |
| 160 | if p.Required { |
| 161 | s += ",req" |
| 162 | } |
| 163 | if p.Optional { |
| 164 | s += ",opt" |
| 165 | } |
| 166 | if p.Repeated { |
| 167 | s += ",rep" |
| 168 | } |
| 169 | if p.Packed { |
| 170 | s += ",packed" |
| 171 | } |
| 172 | s += ",name=" + p.OrigName |
| 173 | if p.JSONName != p.OrigName { |
| 174 | s += ",json=" + p.JSONName |
| 175 | } |
| 176 | if p.proto3 { |
| 177 | s += ",proto3" |
| 178 | } |
| 179 | if p.oneof { |
| 180 | s += ",oneof" |
| 181 | } |
| 182 | if len(p.Enum) > 0 { |
| 183 | s += ",enum=" + p.Enum |
| 184 | } |
| 185 | if p.HasDefault { |
| 186 | s += ",def=" + p.Default |
| 187 | } |
| 188 | return s |
| 189 | } |
| 190 | |
| 191 | // Parse populates p by parsing a string in the protobuf struct field tag style. |
| 192 | func (p *Properties) Parse(s string) { |
| 193 | // "bytes,49,opt,name=foo,def=hello!" |
| 194 | fields := strings.Split(s, ",") // breaks def=, but handled below. |
| 195 | if len(fields) < 2 { |
| 196 | log.Printf("proto: tag has too few fields: %q", s) |
| 197 | return |
| 198 | } |
| 199 | |
| 200 | p.Wire = fields[0] |
| 201 | switch p.Wire { |
| 202 | case "varint": |
| 203 | p.WireType = WireVarint |
| 204 | case "fixed32": |
| 205 | p.WireType = WireFixed32 |
| 206 | case "fixed64": |
| 207 | p.WireType = WireFixed64 |
| 208 | case "zigzag32": |
| 209 | p.WireType = WireVarint |
| 210 | case "zigzag64": |
| 211 | p.WireType = WireVarint |
| 212 | case "bytes", "group": |
| 213 | p.WireType = WireBytes |
| 214 | // no numeric converter for non-numeric types |
| 215 | default: |
| 216 | log.Printf("proto: tag has unknown wire type: %q", s) |
| 217 | return |
| 218 | } |
| 219 | |
| 220 | var err error |
| 221 | p.Tag, err = strconv.Atoi(fields[1]) |
| 222 | if err != nil { |
| 223 | return |
| 224 | } |
| 225 | |
| 226 | outer: |
| 227 | for i := 2; i < len(fields); i++ { |
| 228 | f := fields[i] |
| 229 | switch { |
| 230 | case f == "req": |
| 231 | p.Required = true |
| 232 | case f == "opt": |
| 233 | p.Optional = true |
| 234 | case f == "rep": |
| 235 | p.Repeated = true |
| 236 | case f == "packed": |
| 237 | p.Packed = true |
| 238 | case strings.HasPrefix(f, "name="): |
| 239 | p.OrigName = f[5:] |
| 240 | case strings.HasPrefix(f, "json="): |
| 241 | p.JSONName = f[5:] |
| 242 | case strings.HasPrefix(f, "enum="): |
| 243 | p.Enum = f[5:] |
| 244 | case f == "proto3": |
| 245 | p.proto3 = true |
| 246 | case f == "oneof": |
| 247 | p.oneof = true |
| 248 | case strings.HasPrefix(f, "def="): |
| 249 | p.HasDefault = true |
| 250 | p.Default = f[4:] // rest of string |
| 251 | if i+1 < len(fields) { |
| 252 | // Commas aren't escaped, and def is always last. |
| 253 | p.Default += "," + strings.Join(fields[i+1:], ",") |
| 254 | break outer |
| 255 | } |
| 256 | } |
| 257 | } |
| 258 | } |
| 259 | |
| 260 | var protoMessageType = reflect.TypeOf((*Message)(nil)).Elem() |
| 261 | |
| 262 | // setFieldProps initializes the field properties for submessages and maps. |
| 263 | func (p *Properties) setFieldProps(typ reflect.Type, f *reflect.StructField, lockGetProp bool) { |
| 264 | switch t1 := typ; t1.Kind() { |
| 265 | case reflect.Ptr: |
| 266 | if t1.Elem().Kind() == reflect.Struct { |
| 267 | p.stype = t1.Elem() |
| 268 | } |
| 269 | |
| 270 | case reflect.Slice: |
| 271 | if t2 := t1.Elem(); t2.Kind() == reflect.Ptr && t2.Elem().Kind() == reflect.Struct { |
| 272 | p.stype = t2.Elem() |
| 273 | } |
| 274 | |
| 275 | case reflect.Map: |
| 276 | p.mtype = t1 |
| 277 | p.MapKeyProp = &Properties{} |
| 278 | p.MapKeyProp.init(reflect.PtrTo(p.mtype.Key()), "Key", f.Tag.Get("protobuf_key"), nil, lockGetProp) |
| 279 | p.MapValProp = &Properties{} |
| 280 | vtype := p.mtype.Elem() |
| 281 | if vtype.Kind() != reflect.Ptr && vtype.Kind() != reflect.Slice { |
| 282 | // The value type is not a message (*T) or bytes ([]byte), |
| 283 | // so we need encoders for the pointer to this type. |
| 284 | vtype = reflect.PtrTo(vtype) |
| 285 | } |
| 286 | p.MapValProp.init(vtype, "Value", f.Tag.Get("protobuf_val"), nil, lockGetProp) |
| 287 | } |
| 288 | |
| 289 | if p.stype != nil { |
| 290 | if lockGetProp { |
| 291 | p.sprop = GetProperties(p.stype) |
| 292 | } else { |
| 293 | p.sprop = getPropertiesLocked(p.stype) |
| 294 | } |
| 295 | } |
| 296 | } |
| 297 | |
| 298 | var ( |
| 299 | marshalerType = reflect.TypeOf((*Marshaler)(nil)).Elem() |
| 300 | ) |
| 301 | |
| 302 | // Init populates the properties from a protocol buffer struct tag. |
| 303 | func (p *Properties) Init(typ reflect.Type, name, tag string, f *reflect.StructField) { |
| 304 | p.init(typ, name, tag, f, true) |
| 305 | } |
| 306 | |
| 307 | func (p *Properties) init(typ reflect.Type, name, tag string, f *reflect.StructField, lockGetProp bool) { |
| 308 | // "bytes,49,opt,def=hello!" |
| 309 | p.Name = name |
| 310 | p.OrigName = name |
| 311 | if tag == "" { |
| 312 | return |
| 313 | } |
| 314 | p.Parse(tag) |
| 315 | p.setFieldProps(typ, f, lockGetProp) |
| 316 | } |
| 317 | |
| 318 | var ( |
| 319 | propertiesMu sync.RWMutex |
| 320 | propertiesMap = make(map[reflect.Type]*StructProperties) |
| 321 | ) |
| 322 | |
| 323 | // GetProperties returns the list of properties for the type represented by t. |
| 324 | // t must represent a generated struct type of a protocol message. |
| 325 | func GetProperties(t reflect.Type) *StructProperties { |
| 326 | if t.Kind() != reflect.Struct { |
| 327 | panic("proto: type must have kind struct") |
| 328 | } |
| 329 | |
| 330 | // Most calls to GetProperties in a long-running program will be |
| 331 | // retrieving details for types we have seen before. |
| 332 | propertiesMu.RLock() |
| 333 | sprop, ok := propertiesMap[t] |
| 334 | propertiesMu.RUnlock() |
| 335 | if ok { |
| 336 | return sprop |
| 337 | } |
| 338 | |
| 339 | propertiesMu.Lock() |
| 340 | sprop = getPropertiesLocked(t) |
| 341 | propertiesMu.Unlock() |
| 342 | return sprop |
| 343 | } |
| 344 | |
| 345 | type ( |
| 346 | oneofFuncsIface interface { |
| 347 | XXX_OneofFuncs() (func(Message, *Buffer) error, func(Message, int, int, *Buffer) (bool, error), func(Message) int, []interface{}) |
| 348 | } |
| 349 | oneofWrappersIface interface { |
| 350 | XXX_OneofWrappers() []interface{} |
| 351 | } |
| 352 | ) |
| 353 | |
| 354 | // getPropertiesLocked requires that propertiesMu is held. |
| 355 | func getPropertiesLocked(t reflect.Type) *StructProperties { |
| 356 | if prop, ok := propertiesMap[t]; ok { |
| 357 | return prop |
| 358 | } |
| 359 | |
| 360 | prop := new(StructProperties) |
| 361 | // in case of recursive protos, fill this in now. |
| 362 | propertiesMap[t] = prop |
| 363 | |
| 364 | // build properties |
| 365 | prop.Prop = make([]*Properties, t.NumField()) |
| 366 | prop.order = make([]int, t.NumField()) |
| 367 | |
| 368 | for i := 0; i < t.NumField(); i++ { |
| 369 | f := t.Field(i) |
| 370 | p := new(Properties) |
| 371 | name := f.Name |
| 372 | p.init(f.Type, name, f.Tag.Get("protobuf"), &f, false) |
| 373 | |
| 374 | oneof := f.Tag.Get("protobuf_oneof") // special case |
| 375 | if oneof != "" { |
| 376 | // Oneof fields don't use the traditional protobuf tag. |
| 377 | p.OrigName = oneof |
| 378 | } |
| 379 | prop.Prop[i] = p |
| 380 | prop.order[i] = i |
| 381 | if debug { |
| 382 | print(i, " ", f.Name, " ", t.String(), " ") |
| 383 | if p.Tag > 0 { |
| 384 | print(p.String()) |
| 385 | } |
| 386 | print("\n") |
| 387 | } |
| 388 | } |
| 389 | |
| 390 | // Re-order prop.order. |
| 391 | sort.Sort(prop) |
| 392 | |
| 393 | var oots []interface{} |
| 394 | switch m := reflect.Zero(reflect.PtrTo(t)).Interface().(type) { |
| 395 | case oneofFuncsIface: |
| 396 | _, _, _, oots = m.XXX_OneofFuncs() |
| 397 | case oneofWrappersIface: |
| 398 | oots = m.XXX_OneofWrappers() |
| 399 | } |
| 400 | if len(oots) > 0 { |
| 401 | // Interpret oneof metadata. |
| 402 | prop.OneofTypes = make(map[string]*OneofProperties) |
| 403 | for _, oot := range oots { |
| 404 | oop := &OneofProperties{ |
| 405 | Type: reflect.ValueOf(oot).Type(), // *T |
| 406 | Prop: new(Properties), |
| 407 | } |
| 408 | sft := oop.Type.Elem().Field(0) |
| 409 | oop.Prop.Name = sft.Name |
| 410 | oop.Prop.Parse(sft.Tag.Get("protobuf")) |
| 411 | // There will be exactly one interface field that |
| 412 | // this new value is assignable to. |
| 413 | for i := 0; i < t.NumField(); i++ { |
| 414 | f := t.Field(i) |
| 415 | if f.Type.Kind() != reflect.Interface { |
| 416 | continue |
| 417 | } |
| 418 | if !oop.Type.AssignableTo(f.Type) { |
| 419 | continue |
| 420 | } |
| 421 | oop.Field = i |
| 422 | break |
| 423 | } |
| 424 | prop.OneofTypes[oop.Prop.OrigName] = oop |
| 425 | } |
| 426 | } |
| 427 | |
| 428 | // build required counts |
| 429 | // build tags |
| 430 | reqCount := 0 |
| 431 | prop.decoderOrigNames = make(map[string]int) |
| 432 | for i, p := range prop.Prop { |
| 433 | if strings.HasPrefix(p.Name, "XXX_") { |
| 434 | // Internal fields should not appear in tags/origNames maps. |
| 435 | // They are handled specially when encoding and decoding. |
| 436 | continue |
| 437 | } |
| 438 | if p.Required { |
| 439 | reqCount++ |
| 440 | } |
| 441 | prop.decoderTags.put(p.Tag, i) |
| 442 | prop.decoderOrigNames[p.OrigName] = i |
| 443 | } |
| 444 | prop.reqCount = reqCount |
| 445 | |
| 446 | return prop |
| 447 | } |
| 448 | |
| 449 | // A global registry of enum types. |
| 450 | // The generated code will register the generated maps by calling RegisterEnum. |
| 451 | |
| 452 | var enumValueMaps = make(map[string]map[string]int32) |
| 453 | |
| 454 | // RegisterEnum is called from the generated code to install the enum descriptor |
| 455 | // maps into the global table to aid parsing text format protocol buffers. |
| 456 | func RegisterEnum(typeName string, unusedNameMap map[int32]string, valueMap map[string]int32) { |
| 457 | if _, ok := enumValueMaps[typeName]; ok { |
| 458 | panic("proto: duplicate enum registered: " + typeName) |
| 459 | } |
| 460 | enumValueMaps[typeName] = valueMap |
| 461 | } |
| 462 | |
| 463 | // EnumValueMap returns the mapping from names to integers of the |
| 464 | // enum type enumType, or a nil if not found. |
| 465 | func EnumValueMap(enumType string) map[string]int32 { |
| 466 | return enumValueMaps[enumType] |
| 467 | } |
| 468 | |
| 469 | // A registry of all linked message types. |
| 470 | // The string is a fully-qualified proto name ("pkg.Message"). |
| 471 | var ( |
| 472 | protoTypedNils = make(map[string]Message) // a map from proto names to typed nil pointers |
| 473 | protoMapTypes = make(map[string]reflect.Type) // a map from proto names to map types |
| 474 | revProtoTypes = make(map[reflect.Type]string) |
| 475 | ) |
| 476 | |
| 477 | // RegisterType is called from generated code and maps from the fully qualified |
| 478 | // proto name to the type (pointer to struct) of the protocol buffer. |
| 479 | func RegisterType(x Message, name string) { |
| 480 | if _, ok := protoTypedNils[name]; ok { |
| 481 | // TODO: Some day, make this a panic. |
| 482 | log.Printf("proto: duplicate proto type registered: %s", name) |
| 483 | return |
| 484 | } |
| 485 | t := reflect.TypeOf(x) |
| 486 | if v := reflect.ValueOf(x); v.Kind() == reflect.Ptr && v.Pointer() == 0 { |
| 487 | // Generated code always calls RegisterType with nil x. |
| 488 | // This check is just for extra safety. |
| 489 | protoTypedNils[name] = x |
| 490 | } else { |
| 491 | protoTypedNils[name] = reflect.Zero(t).Interface().(Message) |
| 492 | } |
| 493 | revProtoTypes[t] = name |
| 494 | } |
| 495 | |
| 496 | // RegisterMapType is called from generated code and maps from the fully qualified |
| 497 | // proto name to the native map type of the proto map definition. |
| 498 | func RegisterMapType(x interface{}, name string) { |
| 499 | if reflect.TypeOf(x).Kind() != reflect.Map { |
| 500 | panic(fmt.Sprintf("RegisterMapType(%T, %q); want map", x, name)) |
| 501 | } |
| 502 | if _, ok := protoMapTypes[name]; ok { |
| 503 | log.Printf("proto: duplicate proto type registered: %s", name) |
| 504 | return |
| 505 | } |
| 506 | t := reflect.TypeOf(x) |
| 507 | protoMapTypes[name] = t |
| 508 | revProtoTypes[t] = name |
| 509 | } |
| 510 | |
| 511 | // MessageName returns the fully-qualified proto name for the given message type. |
| 512 | func MessageName(x Message) string { |
| 513 | type xname interface { |
| 514 | XXX_MessageName() string |
| 515 | } |
| 516 | if m, ok := x.(xname); ok { |
| 517 | return m.XXX_MessageName() |
| 518 | } |
| 519 | return revProtoTypes[reflect.TypeOf(x)] |
| 520 | } |
| 521 | |
| 522 | // MessageType returns the message type (pointer to struct) for a named message. |
| 523 | // The type is not guaranteed to implement proto.Message if the name refers to a |
| 524 | // map entry. |
| 525 | func MessageType(name string) reflect.Type { |
| 526 | if t, ok := protoTypedNils[name]; ok { |
| 527 | return reflect.TypeOf(t) |
| 528 | } |
| 529 | return protoMapTypes[name] |
| 530 | } |
| 531 | |
| 532 | // A registry of all linked proto files. |
| 533 | var ( |
| 534 | protoFiles = make(map[string][]byte) // file name => fileDescriptor |
| 535 | ) |
| 536 | |
| 537 | // RegisterFile is called from generated code and maps from the |
| 538 | // full file name of a .proto file to its compressed FileDescriptorProto. |
| 539 | func RegisterFile(filename string, fileDescriptor []byte) { |
| 540 | protoFiles[filename] = fileDescriptor |
| 541 | } |
| 542 | |
| 543 | // FileDescriptor returns the compressed FileDescriptorProto for a .proto file. |
| 544 | func FileDescriptor(filename string) []byte { return protoFiles[filename] } |