Holger Hildebrandt | fa07499 | 2020-03-27 15:42:06 +0000 | [diff] [blame] | 1 | /* |
| 2 | * Copyright (c) 2016-present, Yann Collet, Facebook, Inc. |
| 3 | * All rights reserved. |
| 4 | * |
| 5 | * This source code is licensed under both the BSD-style license (found in the |
| 6 | * LICENSE file in the root directory of this source tree) and the GPLv2 (found |
| 7 | * in the COPYING file in the root directory of this source tree). |
| 8 | * You may select, at your option, one of the above-listed licenses. |
| 9 | */ |
| 10 | |
| 11 | |
| 12 | /* ====== Compiler specifics ====== */ |
| 13 | #if defined(_MSC_VER) |
| 14 | # pragma warning(disable : 4204) /* disable: C4204: non-constant aggregate initializer */ |
| 15 | #endif |
| 16 | |
| 17 | |
| 18 | /* ====== Constants ====== */ |
| 19 | #define ZSTDMT_OVERLAPLOG_DEFAULT 0 |
| 20 | |
| 21 | |
| 22 | /* ====== Dependencies ====== */ |
| 23 | #include <string.h> /* memcpy, memset */ |
| 24 | #include <limits.h> /* INT_MAX, UINT_MAX */ |
| 25 | #include "mem.h" /* MEM_STATIC */ |
| 26 | #include "pool.h" /* threadpool */ |
| 27 | #include "threading.h" /* mutex */ |
| 28 | #include "zstd_compress_internal.h" /* MIN, ERROR, ZSTD_*, ZSTD_highbit32 */ |
| 29 | #include "zstd_ldm.h" |
| 30 | #include "zstdmt_compress.h" |
| 31 | |
| 32 | /* Guards code to support resizing the SeqPool. |
| 33 | * We will want to resize the SeqPool to save memory in the future. |
| 34 | * Until then, comment the code out since it is unused. |
| 35 | */ |
| 36 | #define ZSTD_RESIZE_SEQPOOL 0 |
| 37 | |
| 38 | /* ====== Debug ====== */ |
| 39 | #if defined(DEBUGLEVEL) && (DEBUGLEVEL>=2) \ |
| 40 | && !defined(_MSC_VER) \ |
| 41 | && !defined(__MINGW32__) |
| 42 | |
| 43 | # include <stdio.h> |
| 44 | # include <unistd.h> |
| 45 | # include <sys/times.h> |
| 46 | |
| 47 | # define DEBUG_PRINTHEX(l,p,n) { \ |
| 48 | unsigned debug_u; \ |
| 49 | for (debug_u=0; debug_u<(n); debug_u++) \ |
| 50 | RAWLOG(l, "%02X ", ((const unsigned char*)(p))[debug_u]); \ |
| 51 | RAWLOG(l, " \n"); \ |
| 52 | } |
| 53 | |
| 54 | static unsigned long long GetCurrentClockTimeMicroseconds(void) |
| 55 | { |
| 56 | static clock_t _ticksPerSecond = 0; |
| 57 | if (_ticksPerSecond <= 0) _ticksPerSecond = sysconf(_SC_CLK_TCK); |
| 58 | |
| 59 | { struct tms junk; clock_t newTicks = (clock_t) times(&junk); |
| 60 | return ((((unsigned long long)newTicks)*(1000000))/_ticksPerSecond); |
| 61 | } } |
| 62 | |
| 63 | #define MUTEX_WAIT_TIME_DLEVEL 6 |
| 64 | #define ZSTD_PTHREAD_MUTEX_LOCK(mutex) { \ |
| 65 | if (DEBUGLEVEL >= MUTEX_WAIT_TIME_DLEVEL) { \ |
| 66 | unsigned long long const beforeTime = GetCurrentClockTimeMicroseconds(); \ |
| 67 | ZSTD_pthread_mutex_lock(mutex); \ |
| 68 | { unsigned long long const afterTime = GetCurrentClockTimeMicroseconds(); \ |
| 69 | unsigned long long const elapsedTime = (afterTime-beforeTime); \ |
| 70 | if (elapsedTime > 1000) { /* or whatever threshold you like; I'm using 1 millisecond here */ \ |
| 71 | DEBUGLOG(MUTEX_WAIT_TIME_DLEVEL, "Thread took %llu microseconds to acquire mutex %s \n", \ |
| 72 | elapsedTime, #mutex); \ |
| 73 | } } \ |
| 74 | } else { \ |
| 75 | ZSTD_pthread_mutex_lock(mutex); \ |
| 76 | } \ |
| 77 | } |
| 78 | |
| 79 | #else |
| 80 | |
| 81 | # define ZSTD_PTHREAD_MUTEX_LOCK(m) ZSTD_pthread_mutex_lock(m) |
| 82 | # define DEBUG_PRINTHEX(l,p,n) {} |
| 83 | |
| 84 | #endif |
| 85 | |
| 86 | |
| 87 | /* ===== Buffer Pool ===== */ |
| 88 | /* a single Buffer Pool can be invoked from multiple threads in parallel */ |
| 89 | |
| 90 | typedef struct buffer_s { |
| 91 | void* start; |
| 92 | size_t capacity; |
| 93 | } buffer_t; |
| 94 | |
| 95 | static const buffer_t g_nullBuffer = { NULL, 0 }; |
| 96 | |
| 97 | typedef struct ZSTDMT_bufferPool_s { |
| 98 | ZSTD_pthread_mutex_t poolMutex; |
| 99 | size_t bufferSize; |
| 100 | unsigned totalBuffers; |
| 101 | unsigned nbBuffers; |
| 102 | ZSTD_customMem cMem; |
| 103 | buffer_t bTable[1]; /* variable size */ |
| 104 | } ZSTDMT_bufferPool; |
| 105 | |
| 106 | static ZSTDMT_bufferPool* ZSTDMT_createBufferPool(unsigned nbWorkers, ZSTD_customMem cMem) |
| 107 | { |
| 108 | unsigned const maxNbBuffers = 2*nbWorkers + 3; |
| 109 | ZSTDMT_bufferPool* const bufPool = (ZSTDMT_bufferPool*)ZSTD_calloc( |
| 110 | sizeof(ZSTDMT_bufferPool) + (maxNbBuffers-1) * sizeof(buffer_t), cMem); |
| 111 | if (bufPool==NULL) return NULL; |
| 112 | if (ZSTD_pthread_mutex_init(&bufPool->poolMutex, NULL)) { |
| 113 | ZSTD_free(bufPool, cMem); |
| 114 | return NULL; |
| 115 | } |
| 116 | bufPool->bufferSize = 64 KB; |
| 117 | bufPool->totalBuffers = maxNbBuffers; |
| 118 | bufPool->nbBuffers = 0; |
| 119 | bufPool->cMem = cMem; |
| 120 | return bufPool; |
| 121 | } |
| 122 | |
| 123 | static void ZSTDMT_freeBufferPool(ZSTDMT_bufferPool* bufPool) |
| 124 | { |
| 125 | unsigned u; |
| 126 | DEBUGLOG(3, "ZSTDMT_freeBufferPool (address:%08X)", (U32)(size_t)bufPool); |
| 127 | if (!bufPool) return; /* compatibility with free on NULL */ |
| 128 | for (u=0; u<bufPool->totalBuffers; u++) { |
| 129 | DEBUGLOG(4, "free buffer %2u (address:%08X)", u, (U32)(size_t)bufPool->bTable[u].start); |
| 130 | ZSTD_free(bufPool->bTable[u].start, bufPool->cMem); |
| 131 | } |
| 132 | ZSTD_pthread_mutex_destroy(&bufPool->poolMutex); |
| 133 | ZSTD_free(bufPool, bufPool->cMem); |
| 134 | } |
| 135 | |
| 136 | /* only works at initialization, not during compression */ |
| 137 | static size_t ZSTDMT_sizeof_bufferPool(ZSTDMT_bufferPool* bufPool) |
| 138 | { |
| 139 | size_t const poolSize = sizeof(*bufPool) |
| 140 | + (bufPool->totalBuffers - 1) * sizeof(buffer_t); |
| 141 | unsigned u; |
| 142 | size_t totalBufferSize = 0; |
| 143 | ZSTD_pthread_mutex_lock(&bufPool->poolMutex); |
| 144 | for (u=0; u<bufPool->totalBuffers; u++) |
| 145 | totalBufferSize += bufPool->bTable[u].capacity; |
| 146 | ZSTD_pthread_mutex_unlock(&bufPool->poolMutex); |
| 147 | |
| 148 | return poolSize + totalBufferSize; |
| 149 | } |
| 150 | |
| 151 | /* ZSTDMT_setBufferSize() : |
| 152 | * all future buffers provided by this buffer pool will have _at least_ this size |
| 153 | * note : it's better for all buffers to have same size, |
| 154 | * as they become freely interchangeable, reducing malloc/free usages and memory fragmentation */ |
| 155 | static void ZSTDMT_setBufferSize(ZSTDMT_bufferPool* const bufPool, size_t const bSize) |
| 156 | { |
| 157 | ZSTD_pthread_mutex_lock(&bufPool->poolMutex); |
| 158 | DEBUGLOG(4, "ZSTDMT_setBufferSize: bSize = %u", (U32)bSize); |
| 159 | bufPool->bufferSize = bSize; |
| 160 | ZSTD_pthread_mutex_unlock(&bufPool->poolMutex); |
| 161 | } |
| 162 | |
| 163 | |
| 164 | static ZSTDMT_bufferPool* ZSTDMT_expandBufferPool(ZSTDMT_bufferPool* srcBufPool, U32 nbWorkers) |
| 165 | { |
| 166 | unsigned const maxNbBuffers = 2*nbWorkers + 3; |
| 167 | if (srcBufPool==NULL) return NULL; |
| 168 | if (srcBufPool->totalBuffers >= maxNbBuffers) /* good enough */ |
| 169 | return srcBufPool; |
| 170 | /* need a larger buffer pool */ |
| 171 | { ZSTD_customMem const cMem = srcBufPool->cMem; |
| 172 | size_t const bSize = srcBufPool->bufferSize; /* forward parameters */ |
| 173 | ZSTDMT_bufferPool* newBufPool; |
| 174 | ZSTDMT_freeBufferPool(srcBufPool); |
| 175 | newBufPool = ZSTDMT_createBufferPool(nbWorkers, cMem); |
| 176 | if (newBufPool==NULL) return newBufPool; |
| 177 | ZSTDMT_setBufferSize(newBufPool, bSize); |
| 178 | return newBufPool; |
| 179 | } |
| 180 | } |
| 181 | |
| 182 | /** ZSTDMT_getBuffer() : |
| 183 | * assumption : bufPool must be valid |
| 184 | * @return : a buffer, with start pointer and size |
| 185 | * note: allocation may fail, in this case, start==NULL and size==0 */ |
| 186 | static buffer_t ZSTDMT_getBuffer(ZSTDMT_bufferPool* bufPool) |
| 187 | { |
| 188 | size_t const bSize = bufPool->bufferSize; |
| 189 | DEBUGLOG(5, "ZSTDMT_getBuffer: bSize = %u", (U32)bufPool->bufferSize); |
| 190 | ZSTD_pthread_mutex_lock(&bufPool->poolMutex); |
| 191 | if (bufPool->nbBuffers) { /* try to use an existing buffer */ |
| 192 | buffer_t const buf = bufPool->bTable[--(bufPool->nbBuffers)]; |
| 193 | size_t const availBufferSize = buf.capacity; |
| 194 | bufPool->bTable[bufPool->nbBuffers] = g_nullBuffer; |
| 195 | if ((availBufferSize >= bSize) & ((availBufferSize>>3) <= bSize)) { |
| 196 | /* large enough, but not too much */ |
| 197 | DEBUGLOG(5, "ZSTDMT_getBuffer: provide buffer %u of size %u", |
| 198 | bufPool->nbBuffers, (U32)buf.capacity); |
| 199 | ZSTD_pthread_mutex_unlock(&bufPool->poolMutex); |
| 200 | return buf; |
| 201 | } |
| 202 | /* size conditions not respected : scratch this buffer, create new one */ |
| 203 | DEBUGLOG(5, "ZSTDMT_getBuffer: existing buffer does not meet size conditions => freeing"); |
| 204 | ZSTD_free(buf.start, bufPool->cMem); |
| 205 | } |
| 206 | ZSTD_pthread_mutex_unlock(&bufPool->poolMutex); |
| 207 | /* create new buffer */ |
| 208 | DEBUGLOG(5, "ZSTDMT_getBuffer: create a new buffer"); |
| 209 | { buffer_t buffer; |
| 210 | void* const start = ZSTD_malloc(bSize, bufPool->cMem); |
| 211 | buffer.start = start; /* note : start can be NULL if malloc fails ! */ |
| 212 | buffer.capacity = (start==NULL) ? 0 : bSize; |
| 213 | if (start==NULL) { |
| 214 | DEBUGLOG(5, "ZSTDMT_getBuffer: buffer allocation failure !!"); |
| 215 | } else { |
| 216 | DEBUGLOG(5, "ZSTDMT_getBuffer: created buffer of size %u", (U32)bSize); |
| 217 | } |
| 218 | return buffer; |
| 219 | } |
| 220 | } |
| 221 | |
| 222 | #if ZSTD_RESIZE_SEQPOOL |
| 223 | /** ZSTDMT_resizeBuffer() : |
| 224 | * assumption : bufPool must be valid |
| 225 | * @return : a buffer that is at least the buffer pool buffer size. |
| 226 | * If a reallocation happens, the data in the input buffer is copied. |
| 227 | */ |
| 228 | static buffer_t ZSTDMT_resizeBuffer(ZSTDMT_bufferPool* bufPool, buffer_t buffer) |
| 229 | { |
| 230 | size_t const bSize = bufPool->bufferSize; |
| 231 | if (buffer.capacity < bSize) { |
| 232 | void* const start = ZSTD_malloc(bSize, bufPool->cMem); |
| 233 | buffer_t newBuffer; |
| 234 | newBuffer.start = start; |
| 235 | newBuffer.capacity = start == NULL ? 0 : bSize; |
| 236 | if (start != NULL) { |
| 237 | assert(newBuffer.capacity >= buffer.capacity); |
| 238 | memcpy(newBuffer.start, buffer.start, buffer.capacity); |
| 239 | DEBUGLOG(5, "ZSTDMT_resizeBuffer: created buffer of size %u", (U32)bSize); |
| 240 | return newBuffer; |
| 241 | } |
| 242 | DEBUGLOG(5, "ZSTDMT_resizeBuffer: buffer allocation failure !!"); |
| 243 | } |
| 244 | return buffer; |
| 245 | } |
| 246 | #endif |
| 247 | |
| 248 | /* store buffer for later re-use, up to pool capacity */ |
| 249 | static void ZSTDMT_releaseBuffer(ZSTDMT_bufferPool* bufPool, buffer_t buf) |
| 250 | { |
| 251 | DEBUGLOG(5, "ZSTDMT_releaseBuffer"); |
| 252 | if (buf.start == NULL) return; /* compatible with release on NULL */ |
| 253 | ZSTD_pthread_mutex_lock(&bufPool->poolMutex); |
| 254 | if (bufPool->nbBuffers < bufPool->totalBuffers) { |
| 255 | bufPool->bTable[bufPool->nbBuffers++] = buf; /* stored for later use */ |
| 256 | DEBUGLOG(5, "ZSTDMT_releaseBuffer: stored buffer of size %u in slot %u", |
| 257 | (U32)buf.capacity, (U32)(bufPool->nbBuffers-1)); |
| 258 | ZSTD_pthread_mutex_unlock(&bufPool->poolMutex); |
| 259 | return; |
| 260 | } |
| 261 | ZSTD_pthread_mutex_unlock(&bufPool->poolMutex); |
| 262 | /* Reached bufferPool capacity (should not happen) */ |
| 263 | DEBUGLOG(5, "ZSTDMT_releaseBuffer: pool capacity reached => freeing "); |
| 264 | ZSTD_free(buf.start, bufPool->cMem); |
| 265 | } |
| 266 | |
| 267 | |
| 268 | /* ===== Seq Pool Wrapper ====== */ |
| 269 | |
| 270 | static rawSeqStore_t kNullRawSeqStore = {NULL, 0, 0, 0}; |
| 271 | |
| 272 | typedef ZSTDMT_bufferPool ZSTDMT_seqPool; |
| 273 | |
| 274 | static size_t ZSTDMT_sizeof_seqPool(ZSTDMT_seqPool* seqPool) |
| 275 | { |
| 276 | return ZSTDMT_sizeof_bufferPool(seqPool); |
| 277 | } |
| 278 | |
| 279 | static rawSeqStore_t bufferToSeq(buffer_t buffer) |
| 280 | { |
| 281 | rawSeqStore_t seq = {NULL, 0, 0, 0}; |
| 282 | seq.seq = (rawSeq*)buffer.start; |
| 283 | seq.capacity = buffer.capacity / sizeof(rawSeq); |
| 284 | return seq; |
| 285 | } |
| 286 | |
| 287 | static buffer_t seqToBuffer(rawSeqStore_t seq) |
| 288 | { |
| 289 | buffer_t buffer; |
| 290 | buffer.start = seq.seq; |
| 291 | buffer.capacity = seq.capacity * sizeof(rawSeq); |
| 292 | return buffer; |
| 293 | } |
| 294 | |
| 295 | static rawSeqStore_t ZSTDMT_getSeq(ZSTDMT_seqPool* seqPool) |
| 296 | { |
| 297 | if (seqPool->bufferSize == 0) { |
| 298 | return kNullRawSeqStore; |
| 299 | } |
| 300 | return bufferToSeq(ZSTDMT_getBuffer(seqPool)); |
| 301 | } |
| 302 | |
| 303 | #if ZSTD_RESIZE_SEQPOOL |
| 304 | static rawSeqStore_t ZSTDMT_resizeSeq(ZSTDMT_seqPool* seqPool, rawSeqStore_t seq) |
| 305 | { |
| 306 | return bufferToSeq(ZSTDMT_resizeBuffer(seqPool, seqToBuffer(seq))); |
| 307 | } |
| 308 | #endif |
| 309 | |
| 310 | static void ZSTDMT_releaseSeq(ZSTDMT_seqPool* seqPool, rawSeqStore_t seq) |
| 311 | { |
| 312 | ZSTDMT_releaseBuffer(seqPool, seqToBuffer(seq)); |
| 313 | } |
| 314 | |
| 315 | static void ZSTDMT_setNbSeq(ZSTDMT_seqPool* const seqPool, size_t const nbSeq) |
| 316 | { |
| 317 | ZSTDMT_setBufferSize(seqPool, nbSeq * sizeof(rawSeq)); |
| 318 | } |
| 319 | |
| 320 | static ZSTDMT_seqPool* ZSTDMT_createSeqPool(unsigned nbWorkers, ZSTD_customMem cMem) |
| 321 | { |
| 322 | ZSTDMT_seqPool* const seqPool = ZSTDMT_createBufferPool(nbWorkers, cMem); |
| 323 | if (seqPool == NULL) return NULL; |
| 324 | ZSTDMT_setNbSeq(seqPool, 0); |
| 325 | return seqPool; |
| 326 | } |
| 327 | |
| 328 | static void ZSTDMT_freeSeqPool(ZSTDMT_seqPool* seqPool) |
| 329 | { |
| 330 | ZSTDMT_freeBufferPool(seqPool); |
| 331 | } |
| 332 | |
| 333 | static ZSTDMT_seqPool* ZSTDMT_expandSeqPool(ZSTDMT_seqPool* pool, U32 nbWorkers) |
| 334 | { |
| 335 | return ZSTDMT_expandBufferPool(pool, nbWorkers); |
| 336 | } |
| 337 | |
| 338 | |
| 339 | /* ===== CCtx Pool ===== */ |
| 340 | /* a single CCtx Pool can be invoked from multiple threads in parallel */ |
| 341 | |
| 342 | typedef struct { |
| 343 | ZSTD_pthread_mutex_t poolMutex; |
| 344 | int totalCCtx; |
| 345 | int availCCtx; |
| 346 | ZSTD_customMem cMem; |
| 347 | ZSTD_CCtx* cctx[1]; /* variable size */ |
| 348 | } ZSTDMT_CCtxPool; |
| 349 | |
| 350 | /* note : all CCtx borrowed from the pool should be released back to the pool _before_ freeing the pool */ |
| 351 | static void ZSTDMT_freeCCtxPool(ZSTDMT_CCtxPool* pool) |
| 352 | { |
| 353 | int cid; |
| 354 | for (cid=0; cid<pool->totalCCtx; cid++) |
| 355 | ZSTD_freeCCtx(pool->cctx[cid]); /* note : compatible with free on NULL */ |
| 356 | ZSTD_pthread_mutex_destroy(&pool->poolMutex); |
| 357 | ZSTD_free(pool, pool->cMem); |
| 358 | } |
| 359 | |
| 360 | /* ZSTDMT_createCCtxPool() : |
| 361 | * implies nbWorkers >= 1 , checked by caller ZSTDMT_createCCtx() */ |
| 362 | static ZSTDMT_CCtxPool* ZSTDMT_createCCtxPool(int nbWorkers, |
| 363 | ZSTD_customMem cMem) |
| 364 | { |
| 365 | ZSTDMT_CCtxPool* const cctxPool = (ZSTDMT_CCtxPool*) ZSTD_calloc( |
| 366 | sizeof(ZSTDMT_CCtxPool) + (nbWorkers-1)*sizeof(ZSTD_CCtx*), cMem); |
| 367 | assert(nbWorkers > 0); |
| 368 | if (!cctxPool) return NULL; |
| 369 | if (ZSTD_pthread_mutex_init(&cctxPool->poolMutex, NULL)) { |
| 370 | ZSTD_free(cctxPool, cMem); |
| 371 | return NULL; |
| 372 | } |
| 373 | cctxPool->cMem = cMem; |
| 374 | cctxPool->totalCCtx = nbWorkers; |
| 375 | cctxPool->availCCtx = 1; /* at least one cctx for single-thread mode */ |
| 376 | cctxPool->cctx[0] = ZSTD_createCCtx_advanced(cMem); |
| 377 | if (!cctxPool->cctx[0]) { ZSTDMT_freeCCtxPool(cctxPool); return NULL; } |
| 378 | DEBUGLOG(3, "cctxPool created, with %u workers", nbWorkers); |
| 379 | return cctxPool; |
| 380 | } |
| 381 | |
| 382 | static ZSTDMT_CCtxPool* ZSTDMT_expandCCtxPool(ZSTDMT_CCtxPool* srcPool, |
| 383 | int nbWorkers) |
| 384 | { |
| 385 | if (srcPool==NULL) return NULL; |
| 386 | if (nbWorkers <= srcPool->totalCCtx) return srcPool; /* good enough */ |
| 387 | /* need a larger cctx pool */ |
| 388 | { ZSTD_customMem const cMem = srcPool->cMem; |
| 389 | ZSTDMT_freeCCtxPool(srcPool); |
| 390 | return ZSTDMT_createCCtxPool(nbWorkers, cMem); |
| 391 | } |
| 392 | } |
| 393 | |
| 394 | /* only works during initialization phase, not during compression */ |
| 395 | static size_t ZSTDMT_sizeof_CCtxPool(ZSTDMT_CCtxPool* cctxPool) |
| 396 | { |
| 397 | ZSTD_pthread_mutex_lock(&cctxPool->poolMutex); |
| 398 | { unsigned const nbWorkers = cctxPool->totalCCtx; |
| 399 | size_t const poolSize = sizeof(*cctxPool) |
| 400 | + (nbWorkers-1) * sizeof(ZSTD_CCtx*); |
| 401 | unsigned u; |
| 402 | size_t totalCCtxSize = 0; |
| 403 | for (u=0; u<nbWorkers; u++) { |
| 404 | totalCCtxSize += ZSTD_sizeof_CCtx(cctxPool->cctx[u]); |
| 405 | } |
| 406 | ZSTD_pthread_mutex_unlock(&cctxPool->poolMutex); |
| 407 | assert(nbWorkers > 0); |
| 408 | return poolSize + totalCCtxSize; |
| 409 | } |
| 410 | } |
| 411 | |
| 412 | static ZSTD_CCtx* ZSTDMT_getCCtx(ZSTDMT_CCtxPool* cctxPool) |
| 413 | { |
| 414 | DEBUGLOG(5, "ZSTDMT_getCCtx"); |
| 415 | ZSTD_pthread_mutex_lock(&cctxPool->poolMutex); |
| 416 | if (cctxPool->availCCtx) { |
| 417 | cctxPool->availCCtx--; |
| 418 | { ZSTD_CCtx* const cctx = cctxPool->cctx[cctxPool->availCCtx]; |
| 419 | ZSTD_pthread_mutex_unlock(&cctxPool->poolMutex); |
| 420 | return cctx; |
| 421 | } } |
| 422 | ZSTD_pthread_mutex_unlock(&cctxPool->poolMutex); |
| 423 | DEBUGLOG(5, "create one more CCtx"); |
| 424 | return ZSTD_createCCtx_advanced(cctxPool->cMem); /* note : can be NULL, when creation fails ! */ |
| 425 | } |
| 426 | |
| 427 | static void ZSTDMT_releaseCCtx(ZSTDMT_CCtxPool* pool, ZSTD_CCtx* cctx) |
| 428 | { |
| 429 | if (cctx==NULL) return; /* compatibility with release on NULL */ |
| 430 | ZSTD_pthread_mutex_lock(&pool->poolMutex); |
| 431 | if (pool->availCCtx < pool->totalCCtx) |
| 432 | pool->cctx[pool->availCCtx++] = cctx; |
| 433 | else { |
| 434 | /* pool overflow : should not happen, since totalCCtx==nbWorkers */ |
| 435 | DEBUGLOG(4, "CCtx pool overflow : free cctx"); |
| 436 | ZSTD_freeCCtx(cctx); |
| 437 | } |
| 438 | ZSTD_pthread_mutex_unlock(&pool->poolMutex); |
| 439 | } |
| 440 | |
| 441 | /* ==== Serial State ==== */ |
| 442 | |
| 443 | typedef struct { |
| 444 | void const* start; |
| 445 | size_t size; |
| 446 | } range_t; |
| 447 | |
| 448 | typedef struct { |
| 449 | /* All variables in the struct are protected by mutex. */ |
| 450 | ZSTD_pthread_mutex_t mutex; |
| 451 | ZSTD_pthread_cond_t cond; |
| 452 | ZSTD_CCtx_params params; |
| 453 | ldmState_t ldmState; |
| 454 | XXH64_state_t xxhState; |
| 455 | unsigned nextJobID; |
| 456 | /* Protects ldmWindow. |
| 457 | * Must be acquired after the main mutex when acquiring both. |
| 458 | */ |
| 459 | ZSTD_pthread_mutex_t ldmWindowMutex; |
| 460 | ZSTD_pthread_cond_t ldmWindowCond; /* Signaled when ldmWindow is updated */ |
| 461 | ZSTD_window_t ldmWindow; /* A thread-safe copy of ldmState.window */ |
| 462 | } serialState_t; |
| 463 | |
| 464 | static int ZSTDMT_serialState_reset(serialState_t* serialState, ZSTDMT_seqPool* seqPool, ZSTD_CCtx_params params, size_t jobSize) |
| 465 | { |
| 466 | /* Adjust parameters */ |
| 467 | if (params.ldmParams.enableLdm) { |
| 468 | DEBUGLOG(4, "LDM window size = %u KB", (1U << params.cParams.windowLog) >> 10); |
| 469 | ZSTD_ldm_adjustParameters(¶ms.ldmParams, ¶ms.cParams); |
| 470 | assert(params.ldmParams.hashLog >= params.ldmParams.bucketSizeLog); |
| 471 | assert(params.ldmParams.hashRateLog < 32); |
| 472 | serialState->ldmState.hashPower = |
| 473 | ZSTD_rollingHash_primePower(params.ldmParams.minMatchLength); |
| 474 | } else { |
| 475 | memset(¶ms.ldmParams, 0, sizeof(params.ldmParams)); |
| 476 | } |
| 477 | serialState->nextJobID = 0; |
| 478 | if (params.fParams.checksumFlag) |
| 479 | XXH64_reset(&serialState->xxhState, 0); |
| 480 | if (params.ldmParams.enableLdm) { |
| 481 | ZSTD_customMem cMem = params.customMem; |
| 482 | unsigned const hashLog = params.ldmParams.hashLog; |
| 483 | size_t const hashSize = ((size_t)1 << hashLog) * sizeof(ldmEntry_t); |
| 484 | unsigned const bucketLog = |
| 485 | params.ldmParams.hashLog - params.ldmParams.bucketSizeLog; |
| 486 | size_t const bucketSize = (size_t)1 << bucketLog; |
| 487 | unsigned const prevBucketLog = |
| 488 | serialState->params.ldmParams.hashLog - |
| 489 | serialState->params.ldmParams.bucketSizeLog; |
| 490 | /* Size the seq pool tables */ |
| 491 | ZSTDMT_setNbSeq(seqPool, ZSTD_ldm_getMaxNbSeq(params.ldmParams, jobSize)); |
| 492 | /* Reset the window */ |
| 493 | ZSTD_window_clear(&serialState->ldmState.window); |
| 494 | serialState->ldmWindow = serialState->ldmState.window; |
| 495 | /* Resize tables and output space if necessary. */ |
| 496 | if (serialState->ldmState.hashTable == NULL || serialState->params.ldmParams.hashLog < hashLog) { |
| 497 | ZSTD_free(serialState->ldmState.hashTable, cMem); |
| 498 | serialState->ldmState.hashTable = (ldmEntry_t*)ZSTD_malloc(hashSize, cMem); |
| 499 | } |
| 500 | if (serialState->ldmState.bucketOffsets == NULL || prevBucketLog < bucketLog) { |
| 501 | ZSTD_free(serialState->ldmState.bucketOffsets, cMem); |
| 502 | serialState->ldmState.bucketOffsets = (BYTE*)ZSTD_malloc(bucketSize, cMem); |
| 503 | } |
| 504 | if (!serialState->ldmState.hashTable || !serialState->ldmState.bucketOffsets) |
| 505 | return 1; |
| 506 | /* Zero the tables */ |
| 507 | memset(serialState->ldmState.hashTable, 0, hashSize); |
| 508 | memset(serialState->ldmState.bucketOffsets, 0, bucketSize); |
| 509 | } |
| 510 | serialState->params = params; |
| 511 | serialState->params.jobSize = (U32)jobSize; |
| 512 | return 0; |
| 513 | } |
| 514 | |
| 515 | static int ZSTDMT_serialState_init(serialState_t* serialState) |
| 516 | { |
| 517 | int initError = 0; |
| 518 | memset(serialState, 0, sizeof(*serialState)); |
| 519 | initError |= ZSTD_pthread_mutex_init(&serialState->mutex, NULL); |
| 520 | initError |= ZSTD_pthread_cond_init(&serialState->cond, NULL); |
| 521 | initError |= ZSTD_pthread_mutex_init(&serialState->ldmWindowMutex, NULL); |
| 522 | initError |= ZSTD_pthread_cond_init(&serialState->ldmWindowCond, NULL); |
| 523 | return initError; |
| 524 | } |
| 525 | |
| 526 | static void ZSTDMT_serialState_free(serialState_t* serialState) |
| 527 | { |
| 528 | ZSTD_customMem cMem = serialState->params.customMem; |
| 529 | ZSTD_pthread_mutex_destroy(&serialState->mutex); |
| 530 | ZSTD_pthread_cond_destroy(&serialState->cond); |
| 531 | ZSTD_pthread_mutex_destroy(&serialState->ldmWindowMutex); |
| 532 | ZSTD_pthread_cond_destroy(&serialState->ldmWindowCond); |
| 533 | ZSTD_free(serialState->ldmState.hashTable, cMem); |
| 534 | ZSTD_free(serialState->ldmState.bucketOffsets, cMem); |
| 535 | } |
| 536 | |
| 537 | static void ZSTDMT_serialState_update(serialState_t* serialState, |
| 538 | ZSTD_CCtx* jobCCtx, rawSeqStore_t seqStore, |
| 539 | range_t src, unsigned jobID) |
| 540 | { |
| 541 | /* Wait for our turn */ |
| 542 | ZSTD_PTHREAD_MUTEX_LOCK(&serialState->mutex); |
| 543 | while (serialState->nextJobID < jobID) { |
| 544 | DEBUGLOG(5, "wait for serialState->cond"); |
| 545 | ZSTD_pthread_cond_wait(&serialState->cond, &serialState->mutex); |
| 546 | } |
| 547 | /* A future job may error and skip our job */ |
| 548 | if (serialState->nextJobID == jobID) { |
| 549 | /* It is now our turn, do any processing necessary */ |
| 550 | if (serialState->params.ldmParams.enableLdm) { |
| 551 | size_t error; |
| 552 | assert(seqStore.seq != NULL && seqStore.pos == 0 && |
| 553 | seqStore.size == 0 && seqStore.capacity > 0); |
| 554 | assert(src.size <= serialState->params.jobSize); |
| 555 | ZSTD_window_update(&serialState->ldmState.window, src.start, src.size); |
| 556 | error = ZSTD_ldm_generateSequences( |
| 557 | &serialState->ldmState, &seqStore, |
| 558 | &serialState->params.ldmParams, src.start, src.size); |
| 559 | /* We provide a large enough buffer to never fail. */ |
| 560 | assert(!ZSTD_isError(error)); (void)error; |
| 561 | /* Update ldmWindow to match the ldmState.window and signal the main |
| 562 | * thread if it is waiting for a buffer. |
| 563 | */ |
| 564 | ZSTD_PTHREAD_MUTEX_LOCK(&serialState->ldmWindowMutex); |
| 565 | serialState->ldmWindow = serialState->ldmState.window; |
| 566 | ZSTD_pthread_cond_signal(&serialState->ldmWindowCond); |
| 567 | ZSTD_pthread_mutex_unlock(&serialState->ldmWindowMutex); |
| 568 | } |
| 569 | if (serialState->params.fParams.checksumFlag && src.size > 0) |
| 570 | XXH64_update(&serialState->xxhState, src.start, src.size); |
| 571 | } |
| 572 | /* Now it is the next jobs turn */ |
| 573 | serialState->nextJobID++; |
| 574 | ZSTD_pthread_cond_broadcast(&serialState->cond); |
| 575 | ZSTD_pthread_mutex_unlock(&serialState->mutex); |
| 576 | |
| 577 | if (seqStore.size > 0) { |
| 578 | size_t const err = ZSTD_referenceExternalSequences( |
| 579 | jobCCtx, seqStore.seq, seqStore.size); |
| 580 | assert(serialState->params.ldmParams.enableLdm); |
| 581 | assert(!ZSTD_isError(err)); |
| 582 | (void)err; |
| 583 | } |
| 584 | } |
| 585 | |
| 586 | static void ZSTDMT_serialState_ensureFinished(serialState_t* serialState, |
| 587 | unsigned jobID, size_t cSize) |
| 588 | { |
| 589 | ZSTD_PTHREAD_MUTEX_LOCK(&serialState->mutex); |
| 590 | if (serialState->nextJobID <= jobID) { |
| 591 | assert(ZSTD_isError(cSize)); (void)cSize; |
| 592 | DEBUGLOG(5, "Skipping past job %u because of error", jobID); |
| 593 | serialState->nextJobID = jobID + 1; |
| 594 | ZSTD_pthread_cond_broadcast(&serialState->cond); |
| 595 | |
| 596 | ZSTD_PTHREAD_MUTEX_LOCK(&serialState->ldmWindowMutex); |
| 597 | ZSTD_window_clear(&serialState->ldmWindow); |
| 598 | ZSTD_pthread_cond_signal(&serialState->ldmWindowCond); |
| 599 | ZSTD_pthread_mutex_unlock(&serialState->ldmWindowMutex); |
| 600 | } |
| 601 | ZSTD_pthread_mutex_unlock(&serialState->mutex); |
| 602 | |
| 603 | } |
| 604 | |
| 605 | |
| 606 | /* ------------------------------------------ */ |
| 607 | /* ===== Worker thread ===== */ |
| 608 | /* ------------------------------------------ */ |
| 609 | |
| 610 | static const range_t kNullRange = { NULL, 0 }; |
| 611 | |
| 612 | typedef struct { |
| 613 | size_t consumed; /* SHARED - set0 by mtctx, then modified by worker AND read by mtctx */ |
| 614 | size_t cSize; /* SHARED - set0 by mtctx, then modified by worker AND read by mtctx, then set0 by mtctx */ |
| 615 | ZSTD_pthread_mutex_t job_mutex; /* Thread-safe - used by mtctx and worker */ |
| 616 | ZSTD_pthread_cond_t job_cond; /* Thread-safe - used by mtctx and worker */ |
| 617 | ZSTDMT_CCtxPool* cctxPool; /* Thread-safe - used by mtctx and (all) workers */ |
| 618 | ZSTDMT_bufferPool* bufPool; /* Thread-safe - used by mtctx and (all) workers */ |
| 619 | ZSTDMT_seqPool* seqPool; /* Thread-safe - used by mtctx and (all) workers */ |
| 620 | serialState_t* serial; /* Thread-safe - used by mtctx and (all) workers */ |
| 621 | buffer_t dstBuff; /* set by worker (or mtctx), then read by worker & mtctx, then modified by mtctx => no barrier */ |
| 622 | range_t prefix; /* set by mtctx, then read by worker & mtctx => no barrier */ |
| 623 | range_t src; /* set by mtctx, then read by worker & mtctx => no barrier */ |
| 624 | unsigned jobID; /* set by mtctx, then read by worker => no barrier */ |
| 625 | unsigned firstJob; /* set by mtctx, then read by worker => no barrier */ |
| 626 | unsigned lastJob; /* set by mtctx, then read by worker => no barrier */ |
| 627 | ZSTD_CCtx_params params; /* set by mtctx, then read by worker => no barrier */ |
| 628 | const ZSTD_CDict* cdict; /* set by mtctx, then read by worker => no barrier */ |
| 629 | unsigned long long fullFrameSize; /* set by mtctx, then read by worker => no barrier */ |
| 630 | size_t dstFlushed; /* used only by mtctx */ |
| 631 | unsigned frameChecksumNeeded; /* used only by mtctx */ |
| 632 | } ZSTDMT_jobDescription; |
| 633 | |
| 634 | #define JOB_ERROR(e) { \ |
| 635 | ZSTD_PTHREAD_MUTEX_LOCK(&job->job_mutex); \ |
| 636 | job->cSize = e; \ |
| 637 | ZSTD_pthread_mutex_unlock(&job->job_mutex); \ |
| 638 | goto _endJob; \ |
| 639 | } |
| 640 | |
| 641 | /* ZSTDMT_compressionJob() is a POOL_function type */ |
| 642 | static void ZSTDMT_compressionJob(void* jobDescription) |
| 643 | { |
| 644 | ZSTDMT_jobDescription* const job = (ZSTDMT_jobDescription*)jobDescription; |
| 645 | ZSTD_CCtx_params jobParams = job->params; /* do not modify job->params ! copy it, modify the copy */ |
| 646 | ZSTD_CCtx* const cctx = ZSTDMT_getCCtx(job->cctxPool); |
| 647 | rawSeqStore_t rawSeqStore = ZSTDMT_getSeq(job->seqPool); |
| 648 | buffer_t dstBuff = job->dstBuff; |
| 649 | size_t lastCBlockSize = 0; |
| 650 | |
| 651 | /* resources */ |
| 652 | if (cctx==NULL) JOB_ERROR(ERROR(memory_allocation)); |
| 653 | if (dstBuff.start == NULL) { /* streaming job : doesn't provide a dstBuffer */ |
| 654 | dstBuff = ZSTDMT_getBuffer(job->bufPool); |
| 655 | if (dstBuff.start==NULL) JOB_ERROR(ERROR(memory_allocation)); |
| 656 | job->dstBuff = dstBuff; /* this value can be read in ZSTDMT_flush, when it copies the whole job */ |
| 657 | } |
| 658 | if (jobParams.ldmParams.enableLdm && rawSeqStore.seq == NULL) |
| 659 | JOB_ERROR(ERROR(memory_allocation)); |
| 660 | |
| 661 | /* Don't compute the checksum for chunks, since we compute it externally, |
| 662 | * but write it in the header. |
| 663 | */ |
| 664 | if (job->jobID != 0) jobParams.fParams.checksumFlag = 0; |
| 665 | /* Don't run LDM for the chunks, since we handle it externally */ |
| 666 | jobParams.ldmParams.enableLdm = 0; |
| 667 | |
| 668 | |
| 669 | /* init */ |
| 670 | if (job->cdict) { |
| 671 | size_t const initError = ZSTD_compressBegin_advanced_internal(cctx, NULL, 0, ZSTD_dct_auto, ZSTD_dtlm_fast, job->cdict, jobParams, job->fullFrameSize); |
| 672 | assert(job->firstJob); /* only allowed for first job */ |
| 673 | if (ZSTD_isError(initError)) JOB_ERROR(initError); |
| 674 | } else { /* srcStart points at reloaded section */ |
| 675 | U64 const pledgedSrcSize = job->firstJob ? job->fullFrameSize : job->src.size; |
| 676 | { size_t const forceWindowError = ZSTD_CCtxParams_setParameter(&jobParams, ZSTD_c_forceMaxWindow, !job->firstJob); |
| 677 | if (ZSTD_isError(forceWindowError)) JOB_ERROR(forceWindowError); |
| 678 | } |
| 679 | { size_t const initError = ZSTD_compressBegin_advanced_internal(cctx, |
| 680 | job->prefix.start, job->prefix.size, ZSTD_dct_rawContent, /* load dictionary in "content-only" mode (no header analysis) */ |
| 681 | ZSTD_dtlm_fast, |
| 682 | NULL, /*cdict*/ |
| 683 | jobParams, pledgedSrcSize); |
| 684 | if (ZSTD_isError(initError)) JOB_ERROR(initError); |
| 685 | } } |
| 686 | |
| 687 | /* Perform serial step as early as possible, but after CCtx initialization */ |
| 688 | ZSTDMT_serialState_update(job->serial, cctx, rawSeqStore, job->src, job->jobID); |
| 689 | |
| 690 | if (!job->firstJob) { /* flush and overwrite frame header when it's not first job */ |
| 691 | size_t const hSize = ZSTD_compressContinue(cctx, dstBuff.start, dstBuff.capacity, job->src.start, 0); |
| 692 | if (ZSTD_isError(hSize)) JOB_ERROR(hSize); |
| 693 | DEBUGLOG(5, "ZSTDMT_compressionJob: flush and overwrite %u bytes of frame header (not first job)", (U32)hSize); |
| 694 | ZSTD_invalidateRepCodes(cctx); |
| 695 | } |
| 696 | |
| 697 | /* compress */ |
| 698 | { size_t const chunkSize = 4*ZSTD_BLOCKSIZE_MAX; |
| 699 | int const nbChunks = (int)((job->src.size + (chunkSize-1)) / chunkSize); |
| 700 | const BYTE* ip = (const BYTE*) job->src.start; |
| 701 | BYTE* const ostart = (BYTE*)dstBuff.start; |
| 702 | BYTE* op = ostart; |
| 703 | BYTE* oend = op + dstBuff.capacity; |
| 704 | int chunkNb; |
| 705 | if (sizeof(size_t) > sizeof(int)) assert(job->src.size < ((size_t)INT_MAX) * chunkSize); /* check overflow */ |
| 706 | DEBUGLOG(5, "ZSTDMT_compressionJob: compress %u bytes in %i blocks", (U32)job->src.size, nbChunks); |
| 707 | assert(job->cSize == 0); |
| 708 | for (chunkNb = 1; chunkNb < nbChunks; chunkNb++) { |
| 709 | size_t const cSize = ZSTD_compressContinue(cctx, op, oend-op, ip, chunkSize); |
| 710 | if (ZSTD_isError(cSize)) JOB_ERROR(cSize); |
| 711 | ip += chunkSize; |
| 712 | op += cSize; assert(op < oend); |
| 713 | /* stats */ |
| 714 | ZSTD_PTHREAD_MUTEX_LOCK(&job->job_mutex); |
| 715 | job->cSize += cSize; |
| 716 | job->consumed = chunkSize * chunkNb; |
| 717 | DEBUGLOG(5, "ZSTDMT_compressionJob: compress new block : cSize==%u bytes (total: %u)", |
| 718 | (U32)cSize, (U32)job->cSize); |
| 719 | ZSTD_pthread_cond_signal(&job->job_cond); /* warns some more data is ready to be flushed */ |
| 720 | ZSTD_pthread_mutex_unlock(&job->job_mutex); |
| 721 | } |
| 722 | /* last block */ |
| 723 | assert(chunkSize > 0); |
| 724 | assert((chunkSize & (chunkSize - 1)) == 0); /* chunkSize must be power of 2 for mask==(chunkSize-1) to work */ |
| 725 | if ((nbChunks > 0) | job->lastJob /*must output a "last block" flag*/ ) { |
| 726 | size_t const lastBlockSize1 = job->src.size & (chunkSize-1); |
| 727 | size_t const lastBlockSize = ((lastBlockSize1==0) & (job->src.size>=chunkSize)) ? chunkSize : lastBlockSize1; |
| 728 | size_t const cSize = (job->lastJob) ? |
| 729 | ZSTD_compressEnd (cctx, op, oend-op, ip, lastBlockSize) : |
| 730 | ZSTD_compressContinue(cctx, op, oend-op, ip, lastBlockSize); |
| 731 | if (ZSTD_isError(cSize)) JOB_ERROR(cSize); |
| 732 | lastCBlockSize = cSize; |
| 733 | } } |
| 734 | |
| 735 | _endJob: |
| 736 | ZSTDMT_serialState_ensureFinished(job->serial, job->jobID, job->cSize); |
| 737 | if (job->prefix.size > 0) |
| 738 | DEBUGLOG(5, "Finished with prefix: %zx", (size_t)job->prefix.start); |
| 739 | DEBUGLOG(5, "Finished with source: %zx", (size_t)job->src.start); |
| 740 | /* release resources */ |
| 741 | ZSTDMT_releaseSeq(job->seqPool, rawSeqStore); |
| 742 | ZSTDMT_releaseCCtx(job->cctxPool, cctx); |
| 743 | /* report */ |
| 744 | ZSTD_PTHREAD_MUTEX_LOCK(&job->job_mutex); |
| 745 | if (ZSTD_isError(job->cSize)) assert(lastCBlockSize == 0); |
| 746 | job->cSize += lastCBlockSize; |
| 747 | job->consumed = job->src.size; /* when job->consumed == job->src.size , compression job is presumed completed */ |
| 748 | ZSTD_pthread_cond_signal(&job->job_cond); |
| 749 | ZSTD_pthread_mutex_unlock(&job->job_mutex); |
| 750 | } |
| 751 | |
| 752 | |
| 753 | /* ------------------------------------------ */ |
| 754 | /* ===== Multi-threaded compression ===== */ |
| 755 | /* ------------------------------------------ */ |
| 756 | |
| 757 | typedef struct { |
| 758 | range_t prefix; /* read-only non-owned prefix buffer */ |
| 759 | buffer_t buffer; |
| 760 | size_t filled; |
| 761 | } inBuff_t; |
| 762 | |
| 763 | typedef struct { |
| 764 | BYTE* buffer; /* The round input buffer. All jobs get references |
| 765 | * to pieces of the buffer. ZSTDMT_tryGetInputRange() |
| 766 | * handles handing out job input buffers, and makes |
| 767 | * sure it doesn't overlap with any pieces still in use. |
| 768 | */ |
| 769 | size_t capacity; /* The capacity of buffer. */ |
| 770 | size_t pos; /* The position of the current inBuff in the round |
| 771 | * buffer. Updated past the end if the inBuff once |
| 772 | * the inBuff is sent to the worker thread. |
| 773 | * pos <= capacity. |
| 774 | */ |
| 775 | } roundBuff_t; |
| 776 | |
| 777 | static const roundBuff_t kNullRoundBuff = {NULL, 0, 0}; |
| 778 | |
| 779 | #define RSYNC_LENGTH 32 |
| 780 | |
| 781 | typedef struct { |
| 782 | U64 hash; |
| 783 | U64 hitMask; |
| 784 | U64 primePower; |
| 785 | } rsyncState_t; |
| 786 | |
| 787 | struct ZSTDMT_CCtx_s { |
| 788 | POOL_ctx* factory; |
| 789 | ZSTDMT_jobDescription* jobs; |
| 790 | ZSTDMT_bufferPool* bufPool; |
| 791 | ZSTDMT_CCtxPool* cctxPool; |
| 792 | ZSTDMT_seqPool* seqPool; |
| 793 | ZSTD_CCtx_params params; |
| 794 | size_t targetSectionSize; |
| 795 | size_t targetPrefixSize; |
| 796 | int jobReady; /* 1 => one job is already prepared, but pool has shortage of workers. Don't create a new job. */ |
| 797 | inBuff_t inBuff; |
| 798 | roundBuff_t roundBuff; |
| 799 | serialState_t serial; |
| 800 | rsyncState_t rsync; |
| 801 | unsigned singleBlockingThread; |
| 802 | unsigned jobIDMask; |
| 803 | unsigned doneJobID; |
| 804 | unsigned nextJobID; |
| 805 | unsigned frameEnded; |
| 806 | unsigned allJobsCompleted; |
| 807 | unsigned long long frameContentSize; |
| 808 | unsigned long long consumed; |
| 809 | unsigned long long produced; |
| 810 | ZSTD_customMem cMem; |
| 811 | ZSTD_CDict* cdictLocal; |
| 812 | const ZSTD_CDict* cdict; |
| 813 | }; |
| 814 | |
| 815 | static void ZSTDMT_freeJobsTable(ZSTDMT_jobDescription* jobTable, U32 nbJobs, ZSTD_customMem cMem) |
| 816 | { |
| 817 | U32 jobNb; |
| 818 | if (jobTable == NULL) return; |
| 819 | for (jobNb=0; jobNb<nbJobs; jobNb++) { |
| 820 | ZSTD_pthread_mutex_destroy(&jobTable[jobNb].job_mutex); |
| 821 | ZSTD_pthread_cond_destroy(&jobTable[jobNb].job_cond); |
| 822 | } |
| 823 | ZSTD_free(jobTable, cMem); |
| 824 | } |
| 825 | |
| 826 | /* ZSTDMT_allocJobsTable() |
| 827 | * allocate and init a job table. |
| 828 | * update *nbJobsPtr to next power of 2 value, as size of table */ |
| 829 | static ZSTDMT_jobDescription* ZSTDMT_createJobsTable(U32* nbJobsPtr, ZSTD_customMem cMem) |
| 830 | { |
| 831 | U32 const nbJobsLog2 = ZSTD_highbit32(*nbJobsPtr) + 1; |
| 832 | U32 const nbJobs = 1 << nbJobsLog2; |
| 833 | U32 jobNb; |
| 834 | ZSTDMT_jobDescription* const jobTable = (ZSTDMT_jobDescription*) |
| 835 | ZSTD_calloc(nbJobs * sizeof(ZSTDMT_jobDescription), cMem); |
| 836 | int initError = 0; |
| 837 | if (jobTable==NULL) return NULL; |
| 838 | *nbJobsPtr = nbJobs; |
| 839 | for (jobNb=0; jobNb<nbJobs; jobNb++) { |
| 840 | initError |= ZSTD_pthread_mutex_init(&jobTable[jobNb].job_mutex, NULL); |
| 841 | initError |= ZSTD_pthread_cond_init(&jobTable[jobNb].job_cond, NULL); |
| 842 | } |
| 843 | if (initError != 0) { |
| 844 | ZSTDMT_freeJobsTable(jobTable, nbJobs, cMem); |
| 845 | return NULL; |
| 846 | } |
| 847 | return jobTable; |
| 848 | } |
| 849 | |
| 850 | static size_t ZSTDMT_expandJobsTable (ZSTDMT_CCtx* mtctx, U32 nbWorkers) { |
| 851 | U32 nbJobs = nbWorkers + 2; |
| 852 | if (nbJobs > mtctx->jobIDMask+1) { /* need more job capacity */ |
| 853 | ZSTDMT_freeJobsTable(mtctx->jobs, mtctx->jobIDMask+1, mtctx->cMem); |
| 854 | mtctx->jobIDMask = 0; |
| 855 | mtctx->jobs = ZSTDMT_createJobsTable(&nbJobs, mtctx->cMem); |
| 856 | if (mtctx->jobs==NULL) return ERROR(memory_allocation); |
| 857 | assert((nbJobs != 0) && ((nbJobs & (nbJobs - 1)) == 0)); /* ensure nbJobs is a power of 2 */ |
| 858 | mtctx->jobIDMask = nbJobs - 1; |
| 859 | } |
| 860 | return 0; |
| 861 | } |
| 862 | |
| 863 | |
| 864 | /* ZSTDMT_CCtxParam_setNbWorkers(): |
| 865 | * Internal use only */ |
| 866 | size_t ZSTDMT_CCtxParam_setNbWorkers(ZSTD_CCtx_params* params, unsigned nbWorkers) |
| 867 | { |
| 868 | return ZSTD_CCtxParams_setParameter(params, ZSTD_c_nbWorkers, (int)nbWorkers); |
| 869 | } |
| 870 | |
| 871 | MEM_STATIC ZSTDMT_CCtx* ZSTDMT_createCCtx_advanced_internal(unsigned nbWorkers, ZSTD_customMem cMem) |
| 872 | { |
| 873 | ZSTDMT_CCtx* mtctx; |
| 874 | U32 nbJobs = nbWorkers + 2; |
| 875 | int initError; |
| 876 | DEBUGLOG(3, "ZSTDMT_createCCtx_advanced (nbWorkers = %u)", nbWorkers); |
| 877 | |
| 878 | if (nbWorkers < 1) return NULL; |
| 879 | nbWorkers = MIN(nbWorkers , ZSTDMT_NBWORKERS_MAX); |
| 880 | if ((cMem.customAlloc!=NULL) ^ (cMem.customFree!=NULL)) |
| 881 | /* invalid custom allocator */ |
| 882 | return NULL; |
| 883 | |
| 884 | mtctx = (ZSTDMT_CCtx*) ZSTD_calloc(sizeof(ZSTDMT_CCtx), cMem); |
| 885 | if (!mtctx) return NULL; |
| 886 | ZSTDMT_CCtxParam_setNbWorkers(&mtctx->params, nbWorkers); |
| 887 | mtctx->cMem = cMem; |
| 888 | mtctx->allJobsCompleted = 1; |
| 889 | mtctx->factory = POOL_create_advanced(nbWorkers, 0, cMem); |
| 890 | mtctx->jobs = ZSTDMT_createJobsTable(&nbJobs, cMem); |
| 891 | assert(nbJobs > 0); assert((nbJobs & (nbJobs - 1)) == 0); /* ensure nbJobs is a power of 2 */ |
| 892 | mtctx->jobIDMask = nbJobs - 1; |
| 893 | mtctx->bufPool = ZSTDMT_createBufferPool(nbWorkers, cMem); |
| 894 | mtctx->cctxPool = ZSTDMT_createCCtxPool(nbWorkers, cMem); |
| 895 | mtctx->seqPool = ZSTDMT_createSeqPool(nbWorkers, cMem); |
| 896 | initError = ZSTDMT_serialState_init(&mtctx->serial); |
| 897 | mtctx->roundBuff = kNullRoundBuff; |
| 898 | if (!mtctx->factory | !mtctx->jobs | !mtctx->bufPool | !mtctx->cctxPool | !mtctx->seqPool | initError) { |
| 899 | ZSTDMT_freeCCtx(mtctx); |
| 900 | return NULL; |
| 901 | } |
| 902 | DEBUGLOG(3, "mt_cctx created, for %u threads", nbWorkers); |
| 903 | return mtctx; |
| 904 | } |
| 905 | |
| 906 | ZSTDMT_CCtx* ZSTDMT_createCCtx_advanced(unsigned nbWorkers, ZSTD_customMem cMem) |
| 907 | { |
| 908 | #ifdef ZSTD_MULTITHREAD |
| 909 | return ZSTDMT_createCCtx_advanced_internal(nbWorkers, cMem); |
| 910 | #else |
| 911 | (void)nbWorkers; |
| 912 | (void)cMem; |
| 913 | return NULL; |
| 914 | #endif |
| 915 | } |
| 916 | |
| 917 | ZSTDMT_CCtx* ZSTDMT_createCCtx(unsigned nbWorkers) |
| 918 | { |
| 919 | return ZSTDMT_createCCtx_advanced(nbWorkers, ZSTD_defaultCMem); |
| 920 | } |
| 921 | |
| 922 | |
| 923 | /* ZSTDMT_releaseAllJobResources() : |
| 924 | * note : ensure all workers are killed first ! */ |
| 925 | static void ZSTDMT_releaseAllJobResources(ZSTDMT_CCtx* mtctx) |
| 926 | { |
| 927 | unsigned jobID; |
| 928 | DEBUGLOG(3, "ZSTDMT_releaseAllJobResources"); |
| 929 | for (jobID=0; jobID <= mtctx->jobIDMask; jobID++) { |
| 930 | DEBUGLOG(4, "job%02u: release dst address %08X", jobID, (U32)(size_t)mtctx->jobs[jobID].dstBuff.start); |
| 931 | ZSTDMT_releaseBuffer(mtctx->bufPool, mtctx->jobs[jobID].dstBuff); |
| 932 | mtctx->jobs[jobID].dstBuff = g_nullBuffer; |
| 933 | mtctx->jobs[jobID].cSize = 0; |
| 934 | } |
| 935 | memset(mtctx->jobs, 0, (mtctx->jobIDMask+1)*sizeof(ZSTDMT_jobDescription)); |
| 936 | mtctx->inBuff.buffer = g_nullBuffer; |
| 937 | mtctx->inBuff.filled = 0; |
| 938 | mtctx->allJobsCompleted = 1; |
| 939 | } |
| 940 | |
| 941 | static void ZSTDMT_waitForAllJobsCompleted(ZSTDMT_CCtx* mtctx) |
| 942 | { |
| 943 | DEBUGLOG(4, "ZSTDMT_waitForAllJobsCompleted"); |
| 944 | while (mtctx->doneJobID < mtctx->nextJobID) { |
| 945 | unsigned const jobID = mtctx->doneJobID & mtctx->jobIDMask; |
| 946 | ZSTD_PTHREAD_MUTEX_LOCK(&mtctx->jobs[jobID].job_mutex); |
| 947 | while (mtctx->jobs[jobID].consumed < mtctx->jobs[jobID].src.size) { |
| 948 | DEBUGLOG(4, "waiting for jobCompleted signal from job %u", mtctx->doneJobID); /* we want to block when waiting for data to flush */ |
| 949 | ZSTD_pthread_cond_wait(&mtctx->jobs[jobID].job_cond, &mtctx->jobs[jobID].job_mutex); |
| 950 | } |
| 951 | ZSTD_pthread_mutex_unlock(&mtctx->jobs[jobID].job_mutex); |
| 952 | mtctx->doneJobID++; |
| 953 | } |
| 954 | } |
| 955 | |
| 956 | size_t ZSTDMT_freeCCtx(ZSTDMT_CCtx* mtctx) |
| 957 | { |
| 958 | if (mtctx==NULL) return 0; /* compatible with free on NULL */ |
| 959 | POOL_free(mtctx->factory); /* stop and free worker threads */ |
| 960 | ZSTDMT_releaseAllJobResources(mtctx); /* release job resources into pools first */ |
| 961 | ZSTDMT_freeJobsTable(mtctx->jobs, mtctx->jobIDMask+1, mtctx->cMem); |
| 962 | ZSTDMT_freeBufferPool(mtctx->bufPool); |
| 963 | ZSTDMT_freeCCtxPool(mtctx->cctxPool); |
| 964 | ZSTDMT_freeSeqPool(mtctx->seqPool); |
| 965 | ZSTDMT_serialState_free(&mtctx->serial); |
| 966 | ZSTD_freeCDict(mtctx->cdictLocal); |
| 967 | if (mtctx->roundBuff.buffer) |
| 968 | ZSTD_free(mtctx->roundBuff.buffer, mtctx->cMem); |
| 969 | ZSTD_free(mtctx, mtctx->cMem); |
| 970 | return 0; |
| 971 | } |
| 972 | |
| 973 | size_t ZSTDMT_sizeof_CCtx(ZSTDMT_CCtx* mtctx) |
| 974 | { |
| 975 | if (mtctx == NULL) return 0; /* supports sizeof NULL */ |
| 976 | return sizeof(*mtctx) |
| 977 | + POOL_sizeof(mtctx->factory) |
| 978 | + ZSTDMT_sizeof_bufferPool(mtctx->bufPool) |
| 979 | + (mtctx->jobIDMask+1) * sizeof(ZSTDMT_jobDescription) |
| 980 | + ZSTDMT_sizeof_CCtxPool(mtctx->cctxPool) |
| 981 | + ZSTDMT_sizeof_seqPool(mtctx->seqPool) |
| 982 | + ZSTD_sizeof_CDict(mtctx->cdictLocal) |
| 983 | + mtctx->roundBuff.capacity; |
| 984 | } |
| 985 | |
| 986 | /* Internal only */ |
| 987 | size_t |
| 988 | ZSTDMT_CCtxParam_setMTCtxParameter(ZSTD_CCtx_params* params, |
| 989 | ZSTDMT_parameter parameter, |
| 990 | int value) |
| 991 | { |
| 992 | DEBUGLOG(4, "ZSTDMT_CCtxParam_setMTCtxParameter"); |
| 993 | switch(parameter) |
| 994 | { |
| 995 | case ZSTDMT_p_jobSize : |
| 996 | DEBUGLOG(4, "ZSTDMT_CCtxParam_setMTCtxParameter : set jobSize to %i", value); |
| 997 | return ZSTD_CCtxParams_setParameter(params, ZSTD_c_jobSize, value); |
| 998 | case ZSTDMT_p_overlapLog : |
| 999 | DEBUGLOG(4, "ZSTDMT_p_overlapLog : %i", value); |
| 1000 | return ZSTD_CCtxParams_setParameter(params, ZSTD_c_overlapLog, value); |
| 1001 | case ZSTDMT_p_rsyncable : |
| 1002 | DEBUGLOG(4, "ZSTD_p_rsyncable : %i", value); |
| 1003 | return ZSTD_CCtxParams_setParameter(params, ZSTD_c_rsyncable, value); |
| 1004 | default : |
| 1005 | return ERROR(parameter_unsupported); |
| 1006 | } |
| 1007 | } |
| 1008 | |
| 1009 | size_t ZSTDMT_setMTCtxParameter(ZSTDMT_CCtx* mtctx, ZSTDMT_parameter parameter, int value) |
| 1010 | { |
| 1011 | DEBUGLOG(4, "ZSTDMT_setMTCtxParameter"); |
| 1012 | return ZSTDMT_CCtxParam_setMTCtxParameter(&mtctx->params, parameter, value); |
| 1013 | } |
| 1014 | |
| 1015 | size_t ZSTDMT_getMTCtxParameter(ZSTDMT_CCtx* mtctx, ZSTDMT_parameter parameter, int* value) |
| 1016 | { |
| 1017 | switch (parameter) { |
| 1018 | case ZSTDMT_p_jobSize: |
| 1019 | return ZSTD_CCtxParams_getParameter(&mtctx->params, ZSTD_c_jobSize, value); |
| 1020 | case ZSTDMT_p_overlapLog: |
| 1021 | return ZSTD_CCtxParams_getParameter(&mtctx->params, ZSTD_c_overlapLog, value); |
| 1022 | case ZSTDMT_p_rsyncable: |
| 1023 | return ZSTD_CCtxParams_getParameter(&mtctx->params, ZSTD_c_rsyncable, value); |
| 1024 | default: |
| 1025 | return ERROR(parameter_unsupported); |
| 1026 | } |
| 1027 | } |
| 1028 | |
| 1029 | /* Sets parameters relevant to the compression job, |
| 1030 | * initializing others to default values. */ |
| 1031 | static ZSTD_CCtx_params ZSTDMT_initJobCCtxParams(ZSTD_CCtx_params const params) |
| 1032 | { |
| 1033 | ZSTD_CCtx_params jobParams = params; |
| 1034 | /* Clear parameters related to multithreading */ |
| 1035 | jobParams.forceWindow = 0; |
| 1036 | jobParams.nbWorkers = 0; |
| 1037 | jobParams.jobSize = 0; |
| 1038 | jobParams.overlapLog = 0; |
| 1039 | jobParams.rsyncable = 0; |
| 1040 | memset(&jobParams.ldmParams, 0, sizeof(ldmParams_t)); |
| 1041 | memset(&jobParams.customMem, 0, sizeof(ZSTD_customMem)); |
| 1042 | return jobParams; |
| 1043 | } |
| 1044 | |
| 1045 | |
| 1046 | /* ZSTDMT_resize() : |
| 1047 | * @return : error code if fails, 0 on success */ |
| 1048 | static size_t ZSTDMT_resize(ZSTDMT_CCtx* mtctx, unsigned nbWorkers) |
| 1049 | { |
| 1050 | if (POOL_resize(mtctx->factory, nbWorkers)) return ERROR(memory_allocation); |
| 1051 | FORWARD_IF_ERROR( ZSTDMT_expandJobsTable(mtctx, nbWorkers) ); |
| 1052 | mtctx->bufPool = ZSTDMT_expandBufferPool(mtctx->bufPool, nbWorkers); |
| 1053 | if (mtctx->bufPool == NULL) return ERROR(memory_allocation); |
| 1054 | mtctx->cctxPool = ZSTDMT_expandCCtxPool(mtctx->cctxPool, nbWorkers); |
| 1055 | if (mtctx->cctxPool == NULL) return ERROR(memory_allocation); |
| 1056 | mtctx->seqPool = ZSTDMT_expandSeqPool(mtctx->seqPool, nbWorkers); |
| 1057 | if (mtctx->seqPool == NULL) return ERROR(memory_allocation); |
| 1058 | ZSTDMT_CCtxParam_setNbWorkers(&mtctx->params, nbWorkers); |
| 1059 | return 0; |
| 1060 | } |
| 1061 | |
| 1062 | |
| 1063 | /*! ZSTDMT_updateCParams_whileCompressing() : |
| 1064 | * Updates a selected set of compression parameters, remaining compatible with currently active frame. |
| 1065 | * New parameters will be applied to next compression job. */ |
| 1066 | void ZSTDMT_updateCParams_whileCompressing(ZSTDMT_CCtx* mtctx, const ZSTD_CCtx_params* cctxParams) |
| 1067 | { |
| 1068 | U32 const saved_wlog = mtctx->params.cParams.windowLog; /* Do not modify windowLog while compressing */ |
| 1069 | int const compressionLevel = cctxParams->compressionLevel; |
| 1070 | DEBUGLOG(5, "ZSTDMT_updateCParams_whileCompressing (level:%i)", |
| 1071 | compressionLevel); |
| 1072 | mtctx->params.compressionLevel = compressionLevel; |
| 1073 | { ZSTD_compressionParameters cParams = ZSTD_getCParamsFromCCtxParams(cctxParams, 0, 0); |
| 1074 | cParams.windowLog = saved_wlog; |
| 1075 | mtctx->params.cParams = cParams; |
| 1076 | } |
| 1077 | } |
| 1078 | |
| 1079 | /* ZSTDMT_getFrameProgression(): |
| 1080 | * tells how much data has been consumed (input) and produced (output) for current frame. |
| 1081 | * able to count progression inside worker threads. |
| 1082 | * Note : mutex will be acquired during statistics collection inside workers. */ |
| 1083 | ZSTD_frameProgression ZSTDMT_getFrameProgression(ZSTDMT_CCtx* mtctx) |
| 1084 | { |
| 1085 | ZSTD_frameProgression fps; |
| 1086 | DEBUGLOG(5, "ZSTDMT_getFrameProgression"); |
| 1087 | fps.ingested = mtctx->consumed + mtctx->inBuff.filled; |
| 1088 | fps.consumed = mtctx->consumed; |
| 1089 | fps.produced = fps.flushed = mtctx->produced; |
| 1090 | fps.currentJobID = mtctx->nextJobID; |
| 1091 | fps.nbActiveWorkers = 0; |
| 1092 | { unsigned jobNb; |
| 1093 | unsigned lastJobNb = mtctx->nextJobID + mtctx->jobReady; assert(mtctx->jobReady <= 1); |
| 1094 | DEBUGLOG(6, "ZSTDMT_getFrameProgression: jobs: from %u to <%u (jobReady:%u)", |
| 1095 | mtctx->doneJobID, lastJobNb, mtctx->jobReady) |
| 1096 | for (jobNb = mtctx->doneJobID ; jobNb < lastJobNb ; jobNb++) { |
| 1097 | unsigned const wJobID = jobNb & mtctx->jobIDMask; |
| 1098 | ZSTDMT_jobDescription* jobPtr = &mtctx->jobs[wJobID]; |
| 1099 | ZSTD_pthread_mutex_lock(&jobPtr->job_mutex); |
| 1100 | { size_t const cResult = jobPtr->cSize; |
| 1101 | size_t const produced = ZSTD_isError(cResult) ? 0 : cResult; |
| 1102 | size_t const flushed = ZSTD_isError(cResult) ? 0 : jobPtr->dstFlushed; |
| 1103 | assert(flushed <= produced); |
| 1104 | fps.ingested += jobPtr->src.size; |
| 1105 | fps.consumed += jobPtr->consumed; |
| 1106 | fps.produced += produced; |
| 1107 | fps.flushed += flushed; |
| 1108 | fps.nbActiveWorkers += (jobPtr->consumed < jobPtr->src.size); |
| 1109 | } |
| 1110 | ZSTD_pthread_mutex_unlock(&mtctx->jobs[wJobID].job_mutex); |
| 1111 | } |
| 1112 | } |
| 1113 | return fps; |
| 1114 | } |
| 1115 | |
| 1116 | |
| 1117 | size_t ZSTDMT_toFlushNow(ZSTDMT_CCtx* mtctx) |
| 1118 | { |
| 1119 | size_t toFlush; |
| 1120 | unsigned const jobID = mtctx->doneJobID; |
| 1121 | assert(jobID <= mtctx->nextJobID); |
| 1122 | if (jobID == mtctx->nextJobID) return 0; /* no active job => nothing to flush */ |
| 1123 | |
| 1124 | /* look into oldest non-fully-flushed job */ |
| 1125 | { unsigned const wJobID = jobID & mtctx->jobIDMask; |
| 1126 | ZSTDMT_jobDescription* const jobPtr = &mtctx->jobs[wJobID]; |
| 1127 | ZSTD_pthread_mutex_lock(&jobPtr->job_mutex); |
| 1128 | { size_t const cResult = jobPtr->cSize; |
| 1129 | size_t const produced = ZSTD_isError(cResult) ? 0 : cResult; |
| 1130 | size_t const flushed = ZSTD_isError(cResult) ? 0 : jobPtr->dstFlushed; |
| 1131 | assert(flushed <= produced); |
| 1132 | assert(jobPtr->consumed <= jobPtr->src.size); |
| 1133 | toFlush = produced - flushed; |
| 1134 | /* if toFlush==0, nothing is available to flush. |
| 1135 | * However, jobID is expected to still be active: |
| 1136 | * if jobID was already completed and fully flushed, |
| 1137 | * ZSTDMT_flushProduced() should have already moved onto next job. |
| 1138 | * Therefore, some input has not yet been consumed. */ |
| 1139 | if (toFlush==0) { |
| 1140 | assert(jobPtr->consumed < jobPtr->src.size); |
| 1141 | } |
| 1142 | } |
| 1143 | ZSTD_pthread_mutex_unlock(&mtctx->jobs[wJobID].job_mutex); |
| 1144 | } |
| 1145 | |
| 1146 | return toFlush; |
| 1147 | } |
| 1148 | |
| 1149 | |
| 1150 | /* ------------------------------------------ */ |
| 1151 | /* ===== Multi-threaded compression ===== */ |
| 1152 | /* ------------------------------------------ */ |
| 1153 | |
| 1154 | static unsigned ZSTDMT_computeTargetJobLog(ZSTD_CCtx_params const params) |
| 1155 | { |
| 1156 | unsigned jobLog; |
| 1157 | if (params.ldmParams.enableLdm) { |
| 1158 | /* In Long Range Mode, the windowLog is typically oversized. |
| 1159 | * In which case, it's preferable to determine the jobSize |
| 1160 | * based on chainLog instead. */ |
| 1161 | jobLog = MAX(21, params.cParams.chainLog + 4); |
| 1162 | } else { |
| 1163 | jobLog = MAX(20, params.cParams.windowLog + 2); |
| 1164 | } |
| 1165 | return MIN(jobLog, (unsigned)ZSTDMT_JOBLOG_MAX); |
| 1166 | } |
| 1167 | |
| 1168 | static int ZSTDMT_overlapLog_default(ZSTD_strategy strat) |
| 1169 | { |
| 1170 | switch(strat) |
| 1171 | { |
| 1172 | case ZSTD_btultra2: |
| 1173 | return 9; |
| 1174 | case ZSTD_btultra: |
| 1175 | case ZSTD_btopt: |
| 1176 | return 8; |
| 1177 | case ZSTD_btlazy2: |
| 1178 | case ZSTD_lazy2: |
| 1179 | return 7; |
| 1180 | case ZSTD_lazy: |
| 1181 | case ZSTD_greedy: |
| 1182 | case ZSTD_dfast: |
| 1183 | case ZSTD_fast: |
| 1184 | default:; |
| 1185 | } |
| 1186 | return 6; |
| 1187 | } |
| 1188 | |
| 1189 | static int ZSTDMT_overlapLog(int ovlog, ZSTD_strategy strat) |
| 1190 | { |
| 1191 | assert(0 <= ovlog && ovlog <= 9); |
| 1192 | if (ovlog == 0) return ZSTDMT_overlapLog_default(strat); |
| 1193 | return ovlog; |
| 1194 | } |
| 1195 | |
| 1196 | static size_t ZSTDMT_computeOverlapSize(ZSTD_CCtx_params const params) |
| 1197 | { |
| 1198 | int const overlapRLog = 9 - ZSTDMT_overlapLog(params.overlapLog, params.cParams.strategy); |
| 1199 | int ovLog = (overlapRLog >= 8) ? 0 : (params.cParams.windowLog - overlapRLog); |
| 1200 | assert(0 <= overlapRLog && overlapRLog <= 8); |
| 1201 | if (params.ldmParams.enableLdm) { |
| 1202 | /* In Long Range Mode, the windowLog is typically oversized. |
| 1203 | * In which case, it's preferable to determine the jobSize |
| 1204 | * based on chainLog instead. |
| 1205 | * Then, ovLog becomes a fraction of the jobSize, rather than windowSize */ |
| 1206 | ovLog = MIN(params.cParams.windowLog, ZSTDMT_computeTargetJobLog(params) - 2) |
| 1207 | - overlapRLog; |
| 1208 | } |
| 1209 | assert(0 <= ovLog && ovLog <= ZSTD_WINDOWLOG_MAX); |
| 1210 | DEBUGLOG(4, "overlapLog : %i", params.overlapLog); |
| 1211 | DEBUGLOG(4, "overlap size : %i", 1 << ovLog); |
| 1212 | return (ovLog==0) ? 0 : (size_t)1 << ovLog; |
| 1213 | } |
| 1214 | |
| 1215 | static unsigned |
| 1216 | ZSTDMT_computeNbJobs(ZSTD_CCtx_params params, size_t srcSize, unsigned nbWorkers) |
| 1217 | { |
| 1218 | assert(nbWorkers>0); |
| 1219 | { size_t const jobSizeTarget = (size_t)1 << ZSTDMT_computeTargetJobLog(params); |
| 1220 | size_t const jobMaxSize = jobSizeTarget << 2; |
| 1221 | size_t const passSizeMax = jobMaxSize * nbWorkers; |
| 1222 | unsigned const multiplier = (unsigned)(srcSize / passSizeMax) + 1; |
| 1223 | unsigned const nbJobsLarge = multiplier * nbWorkers; |
| 1224 | unsigned const nbJobsMax = (unsigned)(srcSize / jobSizeTarget) + 1; |
| 1225 | unsigned const nbJobsSmall = MIN(nbJobsMax, nbWorkers); |
| 1226 | return (multiplier>1) ? nbJobsLarge : nbJobsSmall; |
| 1227 | } } |
| 1228 | |
| 1229 | /* ZSTDMT_compress_advanced_internal() : |
| 1230 | * This is a blocking function : it will only give back control to caller after finishing its compression job. |
| 1231 | */ |
| 1232 | static size_t ZSTDMT_compress_advanced_internal( |
| 1233 | ZSTDMT_CCtx* mtctx, |
| 1234 | void* dst, size_t dstCapacity, |
| 1235 | const void* src, size_t srcSize, |
| 1236 | const ZSTD_CDict* cdict, |
| 1237 | ZSTD_CCtx_params params) |
| 1238 | { |
| 1239 | ZSTD_CCtx_params const jobParams = ZSTDMT_initJobCCtxParams(params); |
| 1240 | size_t const overlapSize = ZSTDMT_computeOverlapSize(params); |
| 1241 | unsigned const nbJobs = ZSTDMT_computeNbJobs(params, srcSize, params.nbWorkers); |
| 1242 | size_t const proposedJobSize = (srcSize + (nbJobs-1)) / nbJobs; |
| 1243 | size_t const avgJobSize = (((proposedJobSize-1) & 0x1FFFF) < 0x7FFF) ? proposedJobSize + 0xFFFF : proposedJobSize; /* avoid too small last block */ |
| 1244 | const char* const srcStart = (const char*)src; |
| 1245 | size_t remainingSrcSize = srcSize; |
| 1246 | unsigned const compressWithinDst = (dstCapacity >= ZSTD_compressBound(srcSize)) ? nbJobs : (unsigned)(dstCapacity / ZSTD_compressBound(avgJobSize)); /* presumes avgJobSize >= 256 KB, which should be the case */ |
| 1247 | size_t frameStartPos = 0, dstBufferPos = 0; |
| 1248 | assert(jobParams.nbWorkers == 0); |
| 1249 | assert(mtctx->cctxPool->totalCCtx == params.nbWorkers); |
| 1250 | |
| 1251 | params.jobSize = (U32)avgJobSize; |
| 1252 | DEBUGLOG(4, "ZSTDMT_compress_advanced_internal: nbJobs=%2u (rawSize=%u bytes; fixedSize=%u) ", |
| 1253 | nbJobs, (U32)proposedJobSize, (U32)avgJobSize); |
| 1254 | |
| 1255 | if ((nbJobs==1) | (params.nbWorkers<=1)) { /* fallback to single-thread mode : this is a blocking invocation anyway */ |
| 1256 | ZSTD_CCtx* const cctx = mtctx->cctxPool->cctx[0]; |
| 1257 | DEBUGLOG(4, "ZSTDMT_compress_advanced_internal: fallback to single-thread mode"); |
| 1258 | if (cdict) return ZSTD_compress_usingCDict_advanced(cctx, dst, dstCapacity, src, srcSize, cdict, jobParams.fParams); |
| 1259 | return ZSTD_compress_advanced_internal(cctx, dst, dstCapacity, src, srcSize, NULL, 0, jobParams); |
| 1260 | } |
| 1261 | |
| 1262 | assert(avgJobSize >= 256 KB); /* condition for ZSTD_compressBound(A) + ZSTD_compressBound(B) <= ZSTD_compressBound(A+B), required to compress directly into Dst (no additional buffer) */ |
| 1263 | ZSTDMT_setBufferSize(mtctx->bufPool, ZSTD_compressBound(avgJobSize) ); |
| 1264 | if (ZSTDMT_serialState_reset(&mtctx->serial, mtctx->seqPool, params, avgJobSize)) |
| 1265 | return ERROR(memory_allocation); |
| 1266 | |
| 1267 | FORWARD_IF_ERROR( ZSTDMT_expandJobsTable(mtctx, nbJobs) ); /* only expands if necessary */ |
| 1268 | |
| 1269 | { unsigned u; |
| 1270 | for (u=0; u<nbJobs; u++) { |
| 1271 | size_t const jobSize = MIN(remainingSrcSize, avgJobSize); |
| 1272 | size_t const dstBufferCapacity = ZSTD_compressBound(jobSize); |
| 1273 | buffer_t const dstAsBuffer = { (char*)dst + dstBufferPos, dstBufferCapacity }; |
| 1274 | buffer_t const dstBuffer = u < compressWithinDst ? dstAsBuffer : g_nullBuffer; |
| 1275 | size_t dictSize = u ? overlapSize : 0; |
| 1276 | |
| 1277 | mtctx->jobs[u].prefix.start = srcStart + frameStartPos - dictSize; |
| 1278 | mtctx->jobs[u].prefix.size = dictSize; |
| 1279 | mtctx->jobs[u].src.start = srcStart + frameStartPos; |
| 1280 | mtctx->jobs[u].src.size = jobSize; assert(jobSize > 0); /* avoid job.src.size == 0 */ |
| 1281 | mtctx->jobs[u].consumed = 0; |
| 1282 | mtctx->jobs[u].cSize = 0; |
| 1283 | mtctx->jobs[u].cdict = (u==0) ? cdict : NULL; |
| 1284 | mtctx->jobs[u].fullFrameSize = srcSize; |
| 1285 | mtctx->jobs[u].params = jobParams; |
| 1286 | /* do not calculate checksum within sections, but write it in header for first section */ |
| 1287 | mtctx->jobs[u].dstBuff = dstBuffer; |
| 1288 | mtctx->jobs[u].cctxPool = mtctx->cctxPool; |
| 1289 | mtctx->jobs[u].bufPool = mtctx->bufPool; |
| 1290 | mtctx->jobs[u].seqPool = mtctx->seqPool; |
| 1291 | mtctx->jobs[u].serial = &mtctx->serial; |
| 1292 | mtctx->jobs[u].jobID = u; |
| 1293 | mtctx->jobs[u].firstJob = (u==0); |
| 1294 | mtctx->jobs[u].lastJob = (u==nbJobs-1); |
| 1295 | |
| 1296 | DEBUGLOG(5, "ZSTDMT_compress_advanced_internal: posting job %u (%u bytes)", u, (U32)jobSize); |
| 1297 | DEBUG_PRINTHEX(6, mtctx->jobs[u].prefix.start, 12); |
| 1298 | POOL_add(mtctx->factory, ZSTDMT_compressionJob, &mtctx->jobs[u]); |
| 1299 | |
| 1300 | frameStartPos += jobSize; |
| 1301 | dstBufferPos += dstBufferCapacity; |
| 1302 | remainingSrcSize -= jobSize; |
| 1303 | } } |
| 1304 | |
| 1305 | /* collect result */ |
| 1306 | { size_t error = 0, dstPos = 0; |
| 1307 | unsigned jobID; |
| 1308 | for (jobID=0; jobID<nbJobs; jobID++) { |
| 1309 | DEBUGLOG(5, "waiting for job %u ", jobID); |
| 1310 | ZSTD_PTHREAD_MUTEX_LOCK(&mtctx->jobs[jobID].job_mutex); |
| 1311 | while (mtctx->jobs[jobID].consumed < mtctx->jobs[jobID].src.size) { |
| 1312 | DEBUGLOG(5, "waiting for jobCompleted signal from job %u", jobID); |
| 1313 | ZSTD_pthread_cond_wait(&mtctx->jobs[jobID].job_cond, &mtctx->jobs[jobID].job_mutex); |
| 1314 | } |
| 1315 | ZSTD_pthread_mutex_unlock(&mtctx->jobs[jobID].job_mutex); |
| 1316 | DEBUGLOG(5, "ready to write job %u ", jobID); |
| 1317 | |
| 1318 | { size_t const cSize = mtctx->jobs[jobID].cSize; |
| 1319 | if (ZSTD_isError(cSize)) error = cSize; |
| 1320 | if ((!error) && (dstPos + cSize > dstCapacity)) error = ERROR(dstSize_tooSmall); |
| 1321 | if (jobID) { /* note : job 0 is written directly at dst, which is correct position */ |
| 1322 | if (!error) |
| 1323 | memmove((char*)dst + dstPos, mtctx->jobs[jobID].dstBuff.start, cSize); /* may overlap when job compressed within dst */ |
| 1324 | if (jobID >= compressWithinDst) { /* job compressed into its own buffer, which must be released */ |
| 1325 | DEBUGLOG(5, "releasing buffer %u>=%u", jobID, compressWithinDst); |
| 1326 | ZSTDMT_releaseBuffer(mtctx->bufPool, mtctx->jobs[jobID].dstBuff); |
| 1327 | } } |
| 1328 | mtctx->jobs[jobID].dstBuff = g_nullBuffer; |
| 1329 | mtctx->jobs[jobID].cSize = 0; |
| 1330 | dstPos += cSize ; |
| 1331 | } |
| 1332 | } /* for (jobID=0; jobID<nbJobs; jobID++) */ |
| 1333 | |
| 1334 | DEBUGLOG(4, "checksumFlag : %u ", params.fParams.checksumFlag); |
| 1335 | if (params.fParams.checksumFlag) { |
| 1336 | U32 const checksum = (U32)XXH64_digest(&mtctx->serial.xxhState); |
| 1337 | if (dstPos + 4 > dstCapacity) { |
| 1338 | error = ERROR(dstSize_tooSmall); |
| 1339 | } else { |
| 1340 | DEBUGLOG(4, "writing checksum : %08X \n", checksum); |
| 1341 | MEM_writeLE32((char*)dst + dstPos, checksum); |
| 1342 | dstPos += 4; |
| 1343 | } } |
| 1344 | |
| 1345 | if (!error) DEBUGLOG(4, "compressed size : %u ", (U32)dstPos); |
| 1346 | return error ? error : dstPos; |
| 1347 | } |
| 1348 | } |
| 1349 | |
| 1350 | size_t ZSTDMT_compress_advanced(ZSTDMT_CCtx* mtctx, |
| 1351 | void* dst, size_t dstCapacity, |
| 1352 | const void* src, size_t srcSize, |
| 1353 | const ZSTD_CDict* cdict, |
| 1354 | ZSTD_parameters params, |
| 1355 | int overlapLog) |
| 1356 | { |
| 1357 | ZSTD_CCtx_params cctxParams = mtctx->params; |
| 1358 | cctxParams.cParams = params.cParams; |
| 1359 | cctxParams.fParams = params.fParams; |
| 1360 | assert(ZSTD_OVERLAPLOG_MIN <= overlapLog && overlapLog <= ZSTD_OVERLAPLOG_MAX); |
| 1361 | cctxParams.overlapLog = overlapLog; |
| 1362 | return ZSTDMT_compress_advanced_internal(mtctx, |
| 1363 | dst, dstCapacity, |
| 1364 | src, srcSize, |
| 1365 | cdict, cctxParams); |
| 1366 | } |
| 1367 | |
| 1368 | |
| 1369 | size_t ZSTDMT_compressCCtx(ZSTDMT_CCtx* mtctx, |
| 1370 | void* dst, size_t dstCapacity, |
| 1371 | const void* src, size_t srcSize, |
| 1372 | int compressionLevel) |
| 1373 | { |
| 1374 | ZSTD_parameters params = ZSTD_getParams(compressionLevel, srcSize, 0); |
| 1375 | int const overlapLog = ZSTDMT_overlapLog_default(params.cParams.strategy); |
| 1376 | params.fParams.contentSizeFlag = 1; |
| 1377 | return ZSTDMT_compress_advanced(mtctx, dst, dstCapacity, src, srcSize, NULL, params, overlapLog); |
| 1378 | } |
| 1379 | |
| 1380 | |
| 1381 | /* ====================================== */ |
| 1382 | /* ======= Streaming API ======= */ |
| 1383 | /* ====================================== */ |
| 1384 | |
| 1385 | size_t ZSTDMT_initCStream_internal( |
| 1386 | ZSTDMT_CCtx* mtctx, |
| 1387 | const void* dict, size_t dictSize, ZSTD_dictContentType_e dictContentType, |
| 1388 | const ZSTD_CDict* cdict, ZSTD_CCtx_params params, |
| 1389 | unsigned long long pledgedSrcSize) |
| 1390 | { |
| 1391 | DEBUGLOG(4, "ZSTDMT_initCStream_internal (pledgedSrcSize=%u, nbWorkers=%u, cctxPool=%u)", |
| 1392 | (U32)pledgedSrcSize, params.nbWorkers, mtctx->cctxPool->totalCCtx); |
| 1393 | |
| 1394 | /* params supposed partially fully validated at this point */ |
| 1395 | assert(!ZSTD_isError(ZSTD_checkCParams(params.cParams))); |
| 1396 | assert(!((dict) && (cdict))); /* either dict or cdict, not both */ |
| 1397 | |
| 1398 | /* init */ |
| 1399 | if (params.nbWorkers != mtctx->params.nbWorkers) |
| 1400 | FORWARD_IF_ERROR( ZSTDMT_resize(mtctx, params.nbWorkers) ); |
| 1401 | |
| 1402 | if (params.jobSize != 0 && params.jobSize < ZSTDMT_JOBSIZE_MIN) params.jobSize = ZSTDMT_JOBSIZE_MIN; |
| 1403 | if (params.jobSize > (size_t)ZSTDMT_JOBSIZE_MAX) params.jobSize = (size_t)ZSTDMT_JOBSIZE_MAX; |
| 1404 | |
| 1405 | mtctx->singleBlockingThread = (pledgedSrcSize <= ZSTDMT_JOBSIZE_MIN); /* do not trigger multi-threading when srcSize is too small */ |
| 1406 | if (mtctx->singleBlockingThread) { |
| 1407 | ZSTD_CCtx_params const singleThreadParams = ZSTDMT_initJobCCtxParams(params); |
| 1408 | DEBUGLOG(5, "ZSTDMT_initCStream_internal: switch to single blocking thread mode"); |
| 1409 | assert(singleThreadParams.nbWorkers == 0); |
| 1410 | return ZSTD_initCStream_internal(mtctx->cctxPool->cctx[0], |
| 1411 | dict, dictSize, cdict, |
| 1412 | singleThreadParams, pledgedSrcSize); |
| 1413 | } |
| 1414 | |
| 1415 | DEBUGLOG(4, "ZSTDMT_initCStream_internal: %u workers", params.nbWorkers); |
| 1416 | |
| 1417 | if (mtctx->allJobsCompleted == 0) { /* previous compression not correctly finished */ |
| 1418 | ZSTDMT_waitForAllJobsCompleted(mtctx); |
| 1419 | ZSTDMT_releaseAllJobResources(mtctx); |
| 1420 | mtctx->allJobsCompleted = 1; |
| 1421 | } |
| 1422 | |
| 1423 | mtctx->params = params; |
| 1424 | mtctx->frameContentSize = pledgedSrcSize; |
| 1425 | if (dict) { |
| 1426 | ZSTD_freeCDict(mtctx->cdictLocal); |
| 1427 | mtctx->cdictLocal = ZSTD_createCDict_advanced(dict, dictSize, |
| 1428 | ZSTD_dlm_byCopy, dictContentType, /* note : a loadPrefix becomes an internal CDict */ |
| 1429 | params.cParams, mtctx->cMem); |
| 1430 | mtctx->cdict = mtctx->cdictLocal; |
| 1431 | if (mtctx->cdictLocal == NULL) return ERROR(memory_allocation); |
| 1432 | } else { |
| 1433 | ZSTD_freeCDict(mtctx->cdictLocal); |
| 1434 | mtctx->cdictLocal = NULL; |
| 1435 | mtctx->cdict = cdict; |
| 1436 | } |
| 1437 | |
| 1438 | mtctx->targetPrefixSize = ZSTDMT_computeOverlapSize(params); |
| 1439 | DEBUGLOG(4, "overlapLog=%i => %u KB", params.overlapLog, (U32)(mtctx->targetPrefixSize>>10)); |
| 1440 | mtctx->targetSectionSize = params.jobSize; |
| 1441 | if (mtctx->targetSectionSize == 0) { |
| 1442 | mtctx->targetSectionSize = 1ULL << ZSTDMT_computeTargetJobLog(params); |
| 1443 | } |
| 1444 | assert(mtctx->targetSectionSize <= (size_t)ZSTDMT_JOBSIZE_MAX); |
| 1445 | |
| 1446 | if (params.rsyncable) { |
| 1447 | /* Aim for the targetsectionSize as the average job size. */ |
| 1448 | U32 const jobSizeMB = (U32)(mtctx->targetSectionSize >> 20); |
| 1449 | U32 const rsyncBits = ZSTD_highbit32(jobSizeMB) + 20; |
| 1450 | assert(jobSizeMB >= 1); |
| 1451 | DEBUGLOG(4, "rsyncLog = %u", rsyncBits); |
| 1452 | mtctx->rsync.hash = 0; |
| 1453 | mtctx->rsync.hitMask = (1ULL << rsyncBits) - 1; |
| 1454 | mtctx->rsync.primePower = ZSTD_rollingHash_primePower(RSYNC_LENGTH); |
| 1455 | } |
| 1456 | if (mtctx->targetSectionSize < mtctx->targetPrefixSize) mtctx->targetSectionSize = mtctx->targetPrefixSize; /* job size must be >= overlap size */ |
| 1457 | DEBUGLOG(4, "Job Size : %u KB (note : set to %u)", (U32)(mtctx->targetSectionSize>>10), (U32)params.jobSize); |
| 1458 | DEBUGLOG(4, "inBuff Size : %u KB", (U32)(mtctx->targetSectionSize>>10)); |
| 1459 | ZSTDMT_setBufferSize(mtctx->bufPool, ZSTD_compressBound(mtctx->targetSectionSize)); |
| 1460 | { |
| 1461 | /* If ldm is enabled we need windowSize space. */ |
| 1462 | size_t const windowSize = mtctx->params.ldmParams.enableLdm ? (1U << mtctx->params.cParams.windowLog) : 0; |
| 1463 | /* Two buffers of slack, plus extra space for the overlap |
| 1464 | * This is the minimum slack that LDM works with. One extra because |
| 1465 | * flush might waste up to targetSectionSize-1 bytes. Another extra |
| 1466 | * for the overlap (if > 0), then one to fill which doesn't overlap |
| 1467 | * with the LDM window. |
| 1468 | */ |
| 1469 | size_t const nbSlackBuffers = 2 + (mtctx->targetPrefixSize > 0); |
| 1470 | size_t const slackSize = mtctx->targetSectionSize * nbSlackBuffers; |
| 1471 | /* Compute the total size, and always have enough slack */ |
| 1472 | size_t const nbWorkers = MAX(mtctx->params.nbWorkers, 1); |
| 1473 | size_t const sectionsSize = mtctx->targetSectionSize * nbWorkers; |
| 1474 | size_t const capacity = MAX(windowSize, sectionsSize) + slackSize; |
| 1475 | if (mtctx->roundBuff.capacity < capacity) { |
| 1476 | if (mtctx->roundBuff.buffer) |
| 1477 | ZSTD_free(mtctx->roundBuff.buffer, mtctx->cMem); |
| 1478 | mtctx->roundBuff.buffer = (BYTE*)ZSTD_malloc(capacity, mtctx->cMem); |
| 1479 | if (mtctx->roundBuff.buffer == NULL) { |
| 1480 | mtctx->roundBuff.capacity = 0; |
| 1481 | return ERROR(memory_allocation); |
| 1482 | } |
| 1483 | mtctx->roundBuff.capacity = capacity; |
| 1484 | } |
| 1485 | } |
| 1486 | DEBUGLOG(4, "roundBuff capacity : %u KB", (U32)(mtctx->roundBuff.capacity>>10)); |
| 1487 | mtctx->roundBuff.pos = 0; |
| 1488 | mtctx->inBuff.buffer = g_nullBuffer; |
| 1489 | mtctx->inBuff.filled = 0; |
| 1490 | mtctx->inBuff.prefix = kNullRange; |
| 1491 | mtctx->doneJobID = 0; |
| 1492 | mtctx->nextJobID = 0; |
| 1493 | mtctx->frameEnded = 0; |
| 1494 | mtctx->allJobsCompleted = 0; |
| 1495 | mtctx->consumed = 0; |
| 1496 | mtctx->produced = 0; |
| 1497 | if (ZSTDMT_serialState_reset(&mtctx->serial, mtctx->seqPool, params, mtctx->targetSectionSize)) |
| 1498 | return ERROR(memory_allocation); |
| 1499 | return 0; |
| 1500 | } |
| 1501 | |
| 1502 | size_t ZSTDMT_initCStream_advanced(ZSTDMT_CCtx* mtctx, |
| 1503 | const void* dict, size_t dictSize, |
| 1504 | ZSTD_parameters params, |
| 1505 | unsigned long long pledgedSrcSize) |
| 1506 | { |
| 1507 | ZSTD_CCtx_params cctxParams = mtctx->params; /* retrieve sticky params */ |
| 1508 | DEBUGLOG(4, "ZSTDMT_initCStream_advanced (pledgedSrcSize=%u)", (U32)pledgedSrcSize); |
| 1509 | cctxParams.cParams = params.cParams; |
| 1510 | cctxParams.fParams = params.fParams; |
| 1511 | return ZSTDMT_initCStream_internal(mtctx, dict, dictSize, ZSTD_dct_auto, NULL, |
| 1512 | cctxParams, pledgedSrcSize); |
| 1513 | } |
| 1514 | |
| 1515 | size_t ZSTDMT_initCStream_usingCDict(ZSTDMT_CCtx* mtctx, |
| 1516 | const ZSTD_CDict* cdict, |
| 1517 | ZSTD_frameParameters fParams, |
| 1518 | unsigned long long pledgedSrcSize) |
| 1519 | { |
| 1520 | ZSTD_CCtx_params cctxParams = mtctx->params; |
| 1521 | if (cdict==NULL) return ERROR(dictionary_wrong); /* method incompatible with NULL cdict */ |
| 1522 | cctxParams.cParams = ZSTD_getCParamsFromCDict(cdict); |
| 1523 | cctxParams.fParams = fParams; |
| 1524 | return ZSTDMT_initCStream_internal(mtctx, NULL, 0 /*dictSize*/, ZSTD_dct_auto, cdict, |
| 1525 | cctxParams, pledgedSrcSize); |
| 1526 | } |
| 1527 | |
| 1528 | |
| 1529 | /* ZSTDMT_resetCStream() : |
| 1530 | * pledgedSrcSize can be zero == unknown (for the time being) |
| 1531 | * prefer using ZSTD_CONTENTSIZE_UNKNOWN, |
| 1532 | * as `0` might mean "empty" in the future */ |
| 1533 | size_t ZSTDMT_resetCStream(ZSTDMT_CCtx* mtctx, unsigned long long pledgedSrcSize) |
| 1534 | { |
| 1535 | if (!pledgedSrcSize) pledgedSrcSize = ZSTD_CONTENTSIZE_UNKNOWN; |
| 1536 | return ZSTDMT_initCStream_internal(mtctx, NULL, 0, ZSTD_dct_auto, 0, mtctx->params, |
| 1537 | pledgedSrcSize); |
| 1538 | } |
| 1539 | |
| 1540 | size_t ZSTDMT_initCStream(ZSTDMT_CCtx* mtctx, int compressionLevel) { |
| 1541 | ZSTD_parameters const params = ZSTD_getParams(compressionLevel, ZSTD_CONTENTSIZE_UNKNOWN, 0); |
| 1542 | ZSTD_CCtx_params cctxParams = mtctx->params; /* retrieve sticky params */ |
| 1543 | DEBUGLOG(4, "ZSTDMT_initCStream (cLevel=%i)", compressionLevel); |
| 1544 | cctxParams.cParams = params.cParams; |
| 1545 | cctxParams.fParams = params.fParams; |
| 1546 | return ZSTDMT_initCStream_internal(mtctx, NULL, 0, ZSTD_dct_auto, NULL, cctxParams, ZSTD_CONTENTSIZE_UNKNOWN); |
| 1547 | } |
| 1548 | |
| 1549 | |
| 1550 | /* ZSTDMT_writeLastEmptyBlock() |
| 1551 | * Write a single empty block with an end-of-frame to finish a frame. |
| 1552 | * Job must be created from streaming variant. |
| 1553 | * This function is always successful if expected conditions are fulfilled. |
| 1554 | */ |
| 1555 | static void ZSTDMT_writeLastEmptyBlock(ZSTDMT_jobDescription* job) |
| 1556 | { |
| 1557 | assert(job->lastJob == 1); |
| 1558 | assert(job->src.size == 0); /* last job is empty -> will be simplified into a last empty block */ |
| 1559 | assert(job->firstJob == 0); /* cannot be first job, as it also needs to create frame header */ |
| 1560 | assert(job->dstBuff.start == NULL); /* invoked from streaming variant only (otherwise, dstBuff might be user's output) */ |
| 1561 | job->dstBuff = ZSTDMT_getBuffer(job->bufPool); |
| 1562 | if (job->dstBuff.start == NULL) { |
| 1563 | job->cSize = ERROR(memory_allocation); |
| 1564 | return; |
| 1565 | } |
| 1566 | assert(job->dstBuff.capacity >= ZSTD_blockHeaderSize); /* no buffer should ever be that small */ |
| 1567 | job->src = kNullRange; |
| 1568 | job->cSize = ZSTD_writeLastEmptyBlock(job->dstBuff.start, job->dstBuff.capacity); |
| 1569 | assert(!ZSTD_isError(job->cSize)); |
| 1570 | assert(job->consumed == 0); |
| 1571 | } |
| 1572 | |
| 1573 | static size_t ZSTDMT_createCompressionJob(ZSTDMT_CCtx* mtctx, size_t srcSize, ZSTD_EndDirective endOp) |
| 1574 | { |
| 1575 | unsigned const jobID = mtctx->nextJobID & mtctx->jobIDMask; |
| 1576 | int const endFrame = (endOp == ZSTD_e_end); |
| 1577 | |
| 1578 | if (mtctx->nextJobID > mtctx->doneJobID + mtctx->jobIDMask) { |
| 1579 | DEBUGLOG(5, "ZSTDMT_createCompressionJob: will not create new job : table is full"); |
| 1580 | assert((mtctx->nextJobID & mtctx->jobIDMask) == (mtctx->doneJobID & mtctx->jobIDMask)); |
| 1581 | return 0; |
| 1582 | } |
| 1583 | |
| 1584 | if (!mtctx->jobReady) { |
| 1585 | BYTE const* src = (BYTE const*)mtctx->inBuff.buffer.start; |
| 1586 | DEBUGLOG(5, "ZSTDMT_createCompressionJob: preparing job %u to compress %u bytes with %u preload ", |
| 1587 | mtctx->nextJobID, (U32)srcSize, (U32)mtctx->inBuff.prefix.size); |
| 1588 | mtctx->jobs[jobID].src.start = src; |
| 1589 | mtctx->jobs[jobID].src.size = srcSize; |
| 1590 | assert(mtctx->inBuff.filled >= srcSize); |
| 1591 | mtctx->jobs[jobID].prefix = mtctx->inBuff.prefix; |
| 1592 | mtctx->jobs[jobID].consumed = 0; |
| 1593 | mtctx->jobs[jobID].cSize = 0; |
| 1594 | mtctx->jobs[jobID].params = mtctx->params; |
| 1595 | mtctx->jobs[jobID].cdict = mtctx->nextJobID==0 ? mtctx->cdict : NULL; |
| 1596 | mtctx->jobs[jobID].fullFrameSize = mtctx->frameContentSize; |
| 1597 | mtctx->jobs[jobID].dstBuff = g_nullBuffer; |
| 1598 | mtctx->jobs[jobID].cctxPool = mtctx->cctxPool; |
| 1599 | mtctx->jobs[jobID].bufPool = mtctx->bufPool; |
| 1600 | mtctx->jobs[jobID].seqPool = mtctx->seqPool; |
| 1601 | mtctx->jobs[jobID].serial = &mtctx->serial; |
| 1602 | mtctx->jobs[jobID].jobID = mtctx->nextJobID; |
| 1603 | mtctx->jobs[jobID].firstJob = (mtctx->nextJobID==0); |
| 1604 | mtctx->jobs[jobID].lastJob = endFrame; |
| 1605 | mtctx->jobs[jobID].frameChecksumNeeded = mtctx->params.fParams.checksumFlag && endFrame && (mtctx->nextJobID>0); |
| 1606 | mtctx->jobs[jobID].dstFlushed = 0; |
| 1607 | |
| 1608 | /* Update the round buffer pos and clear the input buffer to be reset */ |
| 1609 | mtctx->roundBuff.pos += srcSize; |
| 1610 | mtctx->inBuff.buffer = g_nullBuffer; |
| 1611 | mtctx->inBuff.filled = 0; |
| 1612 | /* Set the prefix */ |
| 1613 | if (!endFrame) { |
| 1614 | size_t const newPrefixSize = MIN(srcSize, mtctx->targetPrefixSize); |
| 1615 | mtctx->inBuff.prefix.start = src + srcSize - newPrefixSize; |
| 1616 | mtctx->inBuff.prefix.size = newPrefixSize; |
| 1617 | } else { /* endFrame==1 => no need for another input buffer */ |
| 1618 | mtctx->inBuff.prefix = kNullRange; |
| 1619 | mtctx->frameEnded = endFrame; |
| 1620 | if (mtctx->nextJobID == 0) { |
| 1621 | /* single job exception : checksum is already calculated directly within worker thread */ |
| 1622 | mtctx->params.fParams.checksumFlag = 0; |
| 1623 | } } |
| 1624 | |
| 1625 | if ( (srcSize == 0) |
| 1626 | && (mtctx->nextJobID>0)/*single job must also write frame header*/ ) { |
| 1627 | DEBUGLOG(5, "ZSTDMT_createCompressionJob: creating a last empty block to end frame"); |
| 1628 | assert(endOp == ZSTD_e_end); /* only possible case : need to end the frame with an empty last block */ |
| 1629 | ZSTDMT_writeLastEmptyBlock(mtctx->jobs + jobID); |
| 1630 | mtctx->nextJobID++; |
| 1631 | return 0; |
| 1632 | } |
| 1633 | } |
| 1634 | |
| 1635 | DEBUGLOG(5, "ZSTDMT_createCompressionJob: posting job %u : %u bytes (end:%u, jobNb == %u (mod:%u))", |
| 1636 | mtctx->nextJobID, |
| 1637 | (U32)mtctx->jobs[jobID].src.size, |
| 1638 | mtctx->jobs[jobID].lastJob, |
| 1639 | mtctx->nextJobID, |
| 1640 | jobID); |
| 1641 | if (POOL_tryAdd(mtctx->factory, ZSTDMT_compressionJob, &mtctx->jobs[jobID])) { |
| 1642 | mtctx->nextJobID++; |
| 1643 | mtctx->jobReady = 0; |
| 1644 | } else { |
| 1645 | DEBUGLOG(5, "ZSTDMT_createCompressionJob: no worker available for job %u", mtctx->nextJobID); |
| 1646 | mtctx->jobReady = 1; |
| 1647 | } |
| 1648 | return 0; |
| 1649 | } |
| 1650 | |
| 1651 | |
| 1652 | /*! ZSTDMT_flushProduced() : |
| 1653 | * flush whatever data has been produced but not yet flushed in current job. |
| 1654 | * move to next job if current one is fully flushed. |
| 1655 | * `output` : `pos` will be updated with amount of data flushed . |
| 1656 | * `blockToFlush` : if >0, the function will block and wait if there is no data available to flush . |
| 1657 | * @return : amount of data remaining within internal buffer, 0 if no more, 1 if unknown but > 0, or an error code */ |
| 1658 | static size_t ZSTDMT_flushProduced(ZSTDMT_CCtx* mtctx, ZSTD_outBuffer* output, unsigned blockToFlush, ZSTD_EndDirective end) |
| 1659 | { |
| 1660 | unsigned const wJobID = mtctx->doneJobID & mtctx->jobIDMask; |
| 1661 | DEBUGLOG(5, "ZSTDMT_flushProduced (blocking:%u , job %u <= %u)", |
| 1662 | blockToFlush, mtctx->doneJobID, mtctx->nextJobID); |
| 1663 | assert(output->size >= output->pos); |
| 1664 | |
| 1665 | ZSTD_PTHREAD_MUTEX_LOCK(&mtctx->jobs[wJobID].job_mutex); |
| 1666 | if ( blockToFlush |
| 1667 | && (mtctx->doneJobID < mtctx->nextJobID) ) { |
| 1668 | assert(mtctx->jobs[wJobID].dstFlushed <= mtctx->jobs[wJobID].cSize); |
| 1669 | while (mtctx->jobs[wJobID].dstFlushed == mtctx->jobs[wJobID].cSize) { /* nothing to flush */ |
| 1670 | if (mtctx->jobs[wJobID].consumed == mtctx->jobs[wJobID].src.size) { |
| 1671 | DEBUGLOG(5, "job %u is completely consumed (%u == %u) => don't wait for cond, there will be none", |
| 1672 | mtctx->doneJobID, (U32)mtctx->jobs[wJobID].consumed, (U32)mtctx->jobs[wJobID].src.size); |
| 1673 | break; |
| 1674 | } |
| 1675 | DEBUGLOG(5, "waiting for something to flush from job %u (currently flushed: %u bytes)", |
| 1676 | mtctx->doneJobID, (U32)mtctx->jobs[wJobID].dstFlushed); |
| 1677 | ZSTD_pthread_cond_wait(&mtctx->jobs[wJobID].job_cond, &mtctx->jobs[wJobID].job_mutex); /* block when nothing to flush but some to come */ |
| 1678 | } } |
| 1679 | |
| 1680 | /* try to flush something */ |
| 1681 | { size_t cSize = mtctx->jobs[wJobID].cSize; /* shared */ |
| 1682 | size_t const srcConsumed = mtctx->jobs[wJobID].consumed; /* shared */ |
| 1683 | size_t const srcSize = mtctx->jobs[wJobID].src.size; /* read-only, could be done after mutex lock, but no-declaration-after-statement */ |
| 1684 | ZSTD_pthread_mutex_unlock(&mtctx->jobs[wJobID].job_mutex); |
| 1685 | if (ZSTD_isError(cSize)) { |
| 1686 | DEBUGLOG(5, "ZSTDMT_flushProduced: job %u : compression error detected : %s", |
| 1687 | mtctx->doneJobID, ZSTD_getErrorName(cSize)); |
| 1688 | ZSTDMT_waitForAllJobsCompleted(mtctx); |
| 1689 | ZSTDMT_releaseAllJobResources(mtctx); |
| 1690 | return cSize; |
| 1691 | } |
| 1692 | /* add frame checksum if necessary (can only happen once) */ |
| 1693 | assert(srcConsumed <= srcSize); |
| 1694 | if ( (srcConsumed == srcSize) /* job completed -> worker no longer active */ |
| 1695 | && mtctx->jobs[wJobID].frameChecksumNeeded ) { |
| 1696 | U32 const checksum = (U32)XXH64_digest(&mtctx->serial.xxhState); |
| 1697 | DEBUGLOG(4, "ZSTDMT_flushProduced: writing checksum : %08X \n", checksum); |
| 1698 | MEM_writeLE32((char*)mtctx->jobs[wJobID].dstBuff.start + mtctx->jobs[wJobID].cSize, checksum); |
| 1699 | cSize += 4; |
| 1700 | mtctx->jobs[wJobID].cSize += 4; /* can write this shared value, as worker is no longer active */ |
| 1701 | mtctx->jobs[wJobID].frameChecksumNeeded = 0; |
| 1702 | } |
| 1703 | |
| 1704 | if (cSize > 0) { /* compression is ongoing or completed */ |
| 1705 | size_t const toFlush = MIN(cSize - mtctx->jobs[wJobID].dstFlushed, output->size - output->pos); |
| 1706 | DEBUGLOG(5, "ZSTDMT_flushProduced: Flushing %u bytes from job %u (completion:%u/%u, generated:%u)", |
| 1707 | (U32)toFlush, mtctx->doneJobID, (U32)srcConsumed, (U32)srcSize, (U32)cSize); |
| 1708 | assert(mtctx->doneJobID < mtctx->nextJobID); |
| 1709 | assert(cSize >= mtctx->jobs[wJobID].dstFlushed); |
| 1710 | assert(mtctx->jobs[wJobID].dstBuff.start != NULL); |
| 1711 | memcpy((char*)output->dst + output->pos, |
| 1712 | (const char*)mtctx->jobs[wJobID].dstBuff.start + mtctx->jobs[wJobID].dstFlushed, |
| 1713 | toFlush); |
| 1714 | output->pos += toFlush; |
| 1715 | mtctx->jobs[wJobID].dstFlushed += toFlush; /* can write : this value is only used by mtctx */ |
| 1716 | |
| 1717 | if ( (srcConsumed == srcSize) /* job is completed */ |
| 1718 | && (mtctx->jobs[wJobID].dstFlushed == cSize) ) { /* output buffer fully flushed => free this job position */ |
| 1719 | DEBUGLOG(5, "Job %u completed (%u bytes), moving to next one", |
| 1720 | mtctx->doneJobID, (U32)mtctx->jobs[wJobID].dstFlushed); |
| 1721 | ZSTDMT_releaseBuffer(mtctx->bufPool, mtctx->jobs[wJobID].dstBuff); |
| 1722 | DEBUGLOG(5, "dstBuffer released"); |
| 1723 | mtctx->jobs[wJobID].dstBuff = g_nullBuffer; |
| 1724 | mtctx->jobs[wJobID].cSize = 0; /* ensure this job slot is considered "not started" in future check */ |
| 1725 | mtctx->consumed += srcSize; |
| 1726 | mtctx->produced += cSize; |
| 1727 | mtctx->doneJobID++; |
| 1728 | } } |
| 1729 | |
| 1730 | /* return value : how many bytes left in buffer ; fake it to 1 when unknown but >0 */ |
| 1731 | if (cSize > mtctx->jobs[wJobID].dstFlushed) return (cSize - mtctx->jobs[wJobID].dstFlushed); |
| 1732 | if (srcSize > srcConsumed) return 1; /* current job not completely compressed */ |
| 1733 | } |
| 1734 | if (mtctx->doneJobID < mtctx->nextJobID) return 1; /* some more jobs ongoing */ |
| 1735 | if (mtctx->jobReady) return 1; /* one job is ready to push, just not yet in the list */ |
| 1736 | if (mtctx->inBuff.filled > 0) return 1; /* input is not empty, and still needs to be converted into a job */ |
| 1737 | mtctx->allJobsCompleted = mtctx->frameEnded; /* all jobs are entirely flushed => if this one is last one, frame is completed */ |
| 1738 | if (end == ZSTD_e_end) return !mtctx->frameEnded; /* for ZSTD_e_end, question becomes : is frame completed ? instead of : are internal buffers fully flushed ? */ |
| 1739 | return 0; /* internal buffers fully flushed */ |
| 1740 | } |
| 1741 | |
| 1742 | /** |
| 1743 | * Returns the range of data used by the earliest job that is not yet complete. |
| 1744 | * If the data of the first job is broken up into two segments, we cover both |
| 1745 | * sections. |
| 1746 | */ |
| 1747 | static range_t ZSTDMT_getInputDataInUse(ZSTDMT_CCtx* mtctx) |
| 1748 | { |
| 1749 | unsigned const firstJobID = mtctx->doneJobID; |
| 1750 | unsigned const lastJobID = mtctx->nextJobID; |
| 1751 | unsigned jobID; |
| 1752 | |
| 1753 | for (jobID = firstJobID; jobID < lastJobID; ++jobID) { |
| 1754 | unsigned const wJobID = jobID & mtctx->jobIDMask; |
| 1755 | size_t consumed; |
| 1756 | |
| 1757 | ZSTD_PTHREAD_MUTEX_LOCK(&mtctx->jobs[wJobID].job_mutex); |
| 1758 | consumed = mtctx->jobs[wJobID].consumed; |
| 1759 | ZSTD_pthread_mutex_unlock(&mtctx->jobs[wJobID].job_mutex); |
| 1760 | |
| 1761 | if (consumed < mtctx->jobs[wJobID].src.size) { |
| 1762 | range_t range = mtctx->jobs[wJobID].prefix; |
| 1763 | if (range.size == 0) { |
| 1764 | /* Empty prefix */ |
| 1765 | range = mtctx->jobs[wJobID].src; |
| 1766 | } |
| 1767 | /* Job source in multiple segments not supported yet */ |
| 1768 | assert(range.start <= mtctx->jobs[wJobID].src.start); |
| 1769 | return range; |
| 1770 | } |
| 1771 | } |
| 1772 | return kNullRange; |
| 1773 | } |
| 1774 | |
| 1775 | /** |
| 1776 | * Returns non-zero iff buffer and range overlap. |
| 1777 | */ |
| 1778 | static int ZSTDMT_isOverlapped(buffer_t buffer, range_t range) |
| 1779 | { |
| 1780 | BYTE const* const bufferStart = (BYTE const*)buffer.start; |
| 1781 | BYTE const* const bufferEnd = bufferStart + buffer.capacity; |
| 1782 | BYTE const* const rangeStart = (BYTE const*)range.start; |
| 1783 | BYTE const* const rangeEnd = rangeStart + range.size; |
| 1784 | |
| 1785 | if (rangeStart == NULL || bufferStart == NULL) |
| 1786 | return 0; |
| 1787 | /* Empty ranges cannot overlap */ |
| 1788 | if (bufferStart == bufferEnd || rangeStart == rangeEnd) |
| 1789 | return 0; |
| 1790 | |
| 1791 | return bufferStart < rangeEnd && rangeStart < bufferEnd; |
| 1792 | } |
| 1793 | |
| 1794 | static int ZSTDMT_doesOverlapWindow(buffer_t buffer, ZSTD_window_t window) |
| 1795 | { |
| 1796 | range_t extDict; |
| 1797 | range_t prefix; |
| 1798 | |
| 1799 | DEBUGLOG(5, "ZSTDMT_doesOverlapWindow"); |
| 1800 | extDict.start = window.dictBase + window.lowLimit; |
| 1801 | extDict.size = window.dictLimit - window.lowLimit; |
| 1802 | |
| 1803 | prefix.start = window.base + window.dictLimit; |
| 1804 | prefix.size = window.nextSrc - (window.base + window.dictLimit); |
| 1805 | DEBUGLOG(5, "extDict [0x%zx, 0x%zx)", |
| 1806 | (size_t)extDict.start, |
| 1807 | (size_t)extDict.start + extDict.size); |
| 1808 | DEBUGLOG(5, "prefix [0x%zx, 0x%zx)", |
| 1809 | (size_t)prefix.start, |
| 1810 | (size_t)prefix.start + prefix.size); |
| 1811 | |
| 1812 | return ZSTDMT_isOverlapped(buffer, extDict) |
| 1813 | || ZSTDMT_isOverlapped(buffer, prefix); |
| 1814 | } |
| 1815 | |
| 1816 | static void ZSTDMT_waitForLdmComplete(ZSTDMT_CCtx* mtctx, buffer_t buffer) |
| 1817 | { |
| 1818 | if (mtctx->params.ldmParams.enableLdm) { |
| 1819 | ZSTD_pthread_mutex_t* mutex = &mtctx->serial.ldmWindowMutex; |
| 1820 | DEBUGLOG(5, "ZSTDMT_waitForLdmComplete"); |
| 1821 | DEBUGLOG(5, "source [0x%zx, 0x%zx)", |
| 1822 | (size_t)buffer.start, |
| 1823 | (size_t)buffer.start + buffer.capacity); |
| 1824 | ZSTD_PTHREAD_MUTEX_LOCK(mutex); |
| 1825 | while (ZSTDMT_doesOverlapWindow(buffer, mtctx->serial.ldmWindow)) { |
| 1826 | DEBUGLOG(5, "Waiting for LDM to finish..."); |
| 1827 | ZSTD_pthread_cond_wait(&mtctx->serial.ldmWindowCond, mutex); |
| 1828 | } |
| 1829 | DEBUGLOG(6, "Done waiting for LDM to finish"); |
| 1830 | ZSTD_pthread_mutex_unlock(mutex); |
| 1831 | } |
| 1832 | } |
| 1833 | |
| 1834 | /** |
| 1835 | * Attempts to set the inBuff to the next section to fill. |
| 1836 | * If any part of the new section is still in use we give up. |
| 1837 | * Returns non-zero if the buffer is filled. |
| 1838 | */ |
| 1839 | static int ZSTDMT_tryGetInputRange(ZSTDMT_CCtx* mtctx) |
| 1840 | { |
| 1841 | range_t const inUse = ZSTDMT_getInputDataInUse(mtctx); |
| 1842 | size_t const spaceLeft = mtctx->roundBuff.capacity - mtctx->roundBuff.pos; |
| 1843 | size_t const target = mtctx->targetSectionSize; |
| 1844 | buffer_t buffer; |
| 1845 | |
| 1846 | DEBUGLOG(5, "ZSTDMT_tryGetInputRange"); |
| 1847 | assert(mtctx->inBuff.buffer.start == NULL); |
| 1848 | assert(mtctx->roundBuff.capacity >= target); |
| 1849 | |
| 1850 | if (spaceLeft < target) { |
| 1851 | /* ZSTD_invalidateRepCodes() doesn't work for extDict variants. |
| 1852 | * Simply copy the prefix to the beginning in that case. |
| 1853 | */ |
| 1854 | BYTE* const start = (BYTE*)mtctx->roundBuff.buffer; |
| 1855 | size_t const prefixSize = mtctx->inBuff.prefix.size; |
| 1856 | |
| 1857 | buffer.start = start; |
| 1858 | buffer.capacity = prefixSize; |
| 1859 | if (ZSTDMT_isOverlapped(buffer, inUse)) { |
| 1860 | DEBUGLOG(5, "Waiting for buffer..."); |
| 1861 | return 0; |
| 1862 | } |
| 1863 | ZSTDMT_waitForLdmComplete(mtctx, buffer); |
| 1864 | memmove(start, mtctx->inBuff.prefix.start, prefixSize); |
| 1865 | mtctx->inBuff.prefix.start = start; |
| 1866 | mtctx->roundBuff.pos = prefixSize; |
| 1867 | } |
| 1868 | buffer.start = mtctx->roundBuff.buffer + mtctx->roundBuff.pos; |
| 1869 | buffer.capacity = target; |
| 1870 | |
| 1871 | if (ZSTDMT_isOverlapped(buffer, inUse)) { |
| 1872 | DEBUGLOG(5, "Waiting for buffer..."); |
| 1873 | return 0; |
| 1874 | } |
| 1875 | assert(!ZSTDMT_isOverlapped(buffer, mtctx->inBuff.prefix)); |
| 1876 | |
| 1877 | ZSTDMT_waitForLdmComplete(mtctx, buffer); |
| 1878 | |
| 1879 | DEBUGLOG(5, "Using prefix range [%zx, %zx)", |
| 1880 | (size_t)mtctx->inBuff.prefix.start, |
| 1881 | (size_t)mtctx->inBuff.prefix.start + mtctx->inBuff.prefix.size); |
| 1882 | DEBUGLOG(5, "Using source range [%zx, %zx)", |
| 1883 | (size_t)buffer.start, |
| 1884 | (size_t)buffer.start + buffer.capacity); |
| 1885 | |
| 1886 | |
| 1887 | mtctx->inBuff.buffer = buffer; |
| 1888 | mtctx->inBuff.filled = 0; |
| 1889 | assert(mtctx->roundBuff.pos + buffer.capacity <= mtctx->roundBuff.capacity); |
| 1890 | return 1; |
| 1891 | } |
| 1892 | |
| 1893 | typedef struct { |
| 1894 | size_t toLoad; /* The number of bytes to load from the input. */ |
| 1895 | int flush; /* Boolean declaring if we must flush because we found a synchronization point. */ |
| 1896 | } syncPoint_t; |
| 1897 | |
| 1898 | /** |
| 1899 | * Searches through the input for a synchronization point. If one is found, we |
| 1900 | * will instruct the caller to flush, and return the number of bytes to load. |
| 1901 | * Otherwise, we will load as many bytes as possible and instruct the caller |
| 1902 | * to continue as normal. |
| 1903 | */ |
| 1904 | static syncPoint_t |
| 1905 | findSynchronizationPoint(ZSTDMT_CCtx const* mtctx, ZSTD_inBuffer const input) |
| 1906 | { |
| 1907 | BYTE const* const istart = (BYTE const*)input.src + input.pos; |
| 1908 | U64 const primePower = mtctx->rsync.primePower; |
| 1909 | U64 const hitMask = mtctx->rsync.hitMask; |
| 1910 | |
| 1911 | syncPoint_t syncPoint; |
| 1912 | U64 hash; |
| 1913 | BYTE const* prev; |
| 1914 | size_t pos; |
| 1915 | |
| 1916 | syncPoint.toLoad = MIN(input.size - input.pos, mtctx->targetSectionSize - mtctx->inBuff.filled); |
| 1917 | syncPoint.flush = 0; |
| 1918 | if (!mtctx->params.rsyncable) |
| 1919 | /* Rsync is disabled. */ |
| 1920 | return syncPoint; |
| 1921 | if (mtctx->inBuff.filled + syncPoint.toLoad < RSYNC_LENGTH) |
| 1922 | /* Not enough to compute the hash. |
| 1923 | * We will miss any synchronization points in this RSYNC_LENGTH byte |
| 1924 | * window. However, since it depends only in the internal buffers, if the |
| 1925 | * state is already synchronized, we will remain synchronized. |
| 1926 | * Additionally, the probability that we miss a synchronization point is |
| 1927 | * low: RSYNC_LENGTH / targetSectionSize. |
| 1928 | */ |
| 1929 | return syncPoint; |
| 1930 | /* Initialize the loop variables. */ |
| 1931 | if (mtctx->inBuff.filled >= RSYNC_LENGTH) { |
| 1932 | /* We have enough bytes buffered to initialize the hash. |
| 1933 | * Start scanning at the beginning of the input. |
| 1934 | */ |
| 1935 | pos = 0; |
| 1936 | prev = (BYTE const*)mtctx->inBuff.buffer.start + mtctx->inBuff.filled - RSYNC_LENGTH; |
| 1937 | hash = ZSTD_rollingHash_compute(prev, RSYNC_LENGTH); |
| 1938 | } else { |
| 1939 | /* We don't have enough bytes buffered to initialize the hash, but |
| 1940 | * we know we have at least RSYNC_LENGTH bytes total. |
| 1941 | * Start scanning after the first RSYNC_LENGTH bytes less the bytes |
| 1942 | * already buffered. |
| 1943 | */ |
| 1944 | pos = RSYNC_LENGTH - mtctx->inBuff.filled; |
| 1945 | prev = (BYTE const*)mtctx->inBuff.buffer.start - pos; |
| 1946 | hash = ZSTD_rollingHash_compute(mtctx->inBuff.buffer.start, mtctx->inBuff.filled); |
| 1947 | hash = ZSTD_rollingHash_append(hash, istart, pos); |
| 1948 | } |
| 1949 | /* Starting with the hash of the previous RSYNC_LENGTH bytes, roll |
| 1950 | * through the input. If we hit a synchronization point, then cut the |
| 1951 | * job off, and tell the compressor to flush the job. Otherwise, load |
| 1952 | * all the bytes and continue as normal. |
| 1953 | * If we go too long without a synchronization point (targetSectionSize) |
| 1954 | * then a block will be emitted anyways, but this is okay, since if we |
| 1955 | * are already synchronized we will remain synchronized. |
| 1956 | */ |
| 1957 | for (; pos < syncPoint.toLoad; ++pos) { |
| 1958 | BYTE const toRemove = pos < RSYNC_LENGTH ? prev[pos] : istart[pos - RSYNC_LENGTH]; |
| 1959 | /* if (pos >= RSYNC_LENGTH) assert(ZSTD_rollingHash_compute(istart + pos - RSYNC_LENGTH, RSYNC_LENGTH) == hash); */ |
| 1960 | hash = ZSTD_rollingHash_rotate(hash, toRemove, istart[pos], primePower); |
| 1961 | if ((hash & hitMask) == hitMask) { |
| 1962 | syncPoint.toLoad = pos + 1; |
| 1963 | syncPoint.flush = 1; |
| 1964 | break; |
| 1965 | } |
| 1966 | } |
| 1967 | return syncPoint; |
| 1968 | } |
| 1969 | |
| 1970 | size_t ZSTDMT_nextInputSizeHint(const ZSTDMT_CCtx* mtctx) |
| 1971 | { |
| 1972 | size_t hintInSize = mtctx->targetSectionSize - mtctx->inBuff.filled; |
| 1973 | if (hintInSize==0) hintInSize = mtctx->targetSectionSize; |
| 1974 | return hintInSize; |
| 1975 | } |
| 1976 | |
| 1977 | /** ZSTDMT_compressStream_generic() : |
| 1978 | * internal use only - exposed to be invoked from zstd_compress.c |
| 1979 | * assumption : output and input are valid (pos <= size) |
| 1980 | * @return : minimum amount of data remaining to flush, 0 if none */ |
| 1981 | size_t ZSTDMT_compressStream_generic(ZSTDMT_CCtx* mtctx, |
| 1982 | ZSTD_outBuffer* output, |
| 1983 | ZSTD_inBuffer* input, |
| 1984 | ZSTD_EndDirective endOp) |
| 1985 | { |
| 1986 | unsigned forwardInputProgress = 0; |
| 1987 | DEBUGLOG(5, "ZSTDMT_compressStream_generic (endOp=%u, srcSize=%u)", |
| 1988 | (U32)endOp, (U32)(input->size - input->pos)); |
| 1989 | assert(output->pos <= output->size); |
| 1990 | assert(input->pos <= input->size); |
| 1991 | |
| 1992 | if (mtctx->singleBlockingThread) { /* delegate to single-thread (synchronous) */ |
| 1993 | return ZSTD_compressStream2(mtctx->cctxPool->cctx[0], output, input, endOp); |
| 1994 | } |
| 1995 | |
| 1996 | if ((mtctx->frameEnded) && (endOp==ZSTD_e_continue)) { |
| 1997 | /* current frame being ended. Only flush/end are allowed */ |
| 1998 | return ERROR(stage_wrong); |
| 1999 | } |
| 2000 | |
| 2001 | /* single-pass shortcut (note : synchronous-mode) */ |
| 2002 | if ( (!mtctx->params.rsyncable) /* rsyncable mode is disabled */ |
| 2003 | && (mtctx->nextJobID == 0) /* just started */ |
| 2004 | && (mtctx->inBuff.filled == 0) /* nothing buffered */ |
| 2005 | && (!mtctx->jobReady) /* no job already created */ |
| 2006 | && (endOp == ZSTD_e_end) /* end order */ |
| 2007 | && (output->size - output->pos >= ZSTD_compressBound(input->size - input->pos)) ) { /* enough space in dst */ |
| 2008 | size_t const cSize = ZSTDMT_compress_advanced_internal(mtctx, |
| 2009 | (char*)output->dst + output->pos, output->size - output->pos, |
| 2010 | (const char*)input->src + input->pos, input->size - input->pos, |
| 2011 | mtctx->cdict, mtctx->params); |
| 2012 | if (ZSTD_isError(cSize)) return cSize; |
| 2013 | input->pos = input->size; |
| 2014 | output->pos += cSize; |
| 2015 | mtctx->allJobsCompleted = 1; |
| 2016 | mtctx->frameEnded = 1; |
| 2017 | return 0; |
| 2018 | } |
| 2019 | |
| 2020 | /* fill input buffer */ |
| 2021 | if ( (!mtctx->jobReady) |
| 2022 | && (input->size > input->pos) ) { /* support NULL input */ |
| 2023 | if (mtctx->inBuff.buffer.start == NULL) { |
| 2024 | assert(mtctx->inBuff.filled == 0); /* Can't fill an empty buffer */ |
| 2025 | if (!ZSTDMT_tryGetInputRange(mtctx)) { |
| 2026 | /* It is only possible for this operation to fail if there are |
| 2027 | * still compression jobs ongoing. |
| 2028 | */ |
| 2029 | DEBUGLOG(5, "ZSTDMT_tryGetInputRange failed"); |
| 2030 | assert(mtctx->doneJobID != mtctx->nextJobID); |
| 2031 | } else |
| 2032 | DEBUGLOG(5, "ZSTDMT_tryGetInputRange completed successfully : mtctx->inBuff.buffer.start = %p", mtctx->inBuff.buffer.start); |
| 2033 | } |
| 2034 | if (mtctx->inBuff.buffer.start != NULL) { |
| 2035 | syncPoint_t const syncPoint = findSynchronizationPoint(mtctx, *input); |
| 2036 | if (syncPoint.flush && endOp == ZSTD_e_continue) { |
| 2037 | endOp = ZSTD_e_flush; |
| 2038 | } |
| 2039 | assert(mtctx->inBuff.buffer.capacity >= mtctx->targetSectionSize); |
| 2040 | DEBUGLOG(5, "ZSTDMT_compressStream_generic: adding %u bytes on top of %u to buffer of size %u", |
| 2041 | (U32)syncPoint.toLoad, (U32)mtctx->inBuff.filled, (U32)mtctx->targetSectionSize); |
| 2042 | memcpy((char*)mtctx->inBuff.buffer.start + mtctx->inBuff.filled, (const char*)input->src + input->pos, syncPoint.toLoad); |
| 2043 | input->pos += syncPoint.toLoad; |
| 2044 | mtctx->inBuff.filled += syncPoint.toLoad; |
| 2045 | forwardInputProgress = syncPoint.toLoad>0; |
| 2046 | } |
| 2047 | if ((input->pos < input->size) && (endOp == ZSTD_e_end)) |
| 2048 | endOp = ZSTD_e_flush; /* can't end now : not all input consumed */ |
| 2049 | } |
| 2050 | |
| 2051 | if ( (mtctx->jobReady) |
| 2052 | || (mtctx->inBuff.filled >= mtctx->targetSectionSize) /* filled enough : let's compress */ |
| 2053 | || ((endOp != ZSTD_e_continue) && (mtctx->inBuff.filled > 0)) /* something to flush : let's go */ |
| 2054 | || ((endOp == ZSTD_e_end) && (!mtctx->frameEnded)) ) { /* must finish the frame with a zero-size block */ |
| 2055 | size_t const jobSize = mtctx->inBuff.filled; |
| 2056 | assert(mtctx->inBuff.filled <= mtctx->targetSectionSize); |
| 2057 | FORWARD_IF_ERROR( ZSTDMT_createCompressionJob(mtctx, jobSize, endOp) ); |
| 2058 | } |
| 2059 | |
| 2060 | /* check for potential compressed data ready to be flushed */ |
| 2061 | { size_t const remainingToFlush = ZSTDMT_flushProduced(mtctx, output, !forwardInputProgress, endOp); /* block if there was no forward input progress */ |
| 2062 | if (input->pos < input->size) return MAX(remainingToFlush, 1); /* input not consumed : do not end flush yet */ |
| 2063 | DEBUGLOG(5, "end of ZSTDMT_compressStream_generic: remainingToFlush = %u", (U32)remainingToFlush); |
| 2064 | return remainingToFlush; |
| 2065 | } |
| 2066 | } |
| 2067 | |
| 2068 | |
| 2069 | size_t ZSTDMT_compressStream(ZSTDMT_CCtx* mtctx, ZSTD_outBuffer* output, ZSTD_inBuffer* input) |
| 2070 | { |
| 2071 | FORWARD_IF_ERROR( ZSTDMT_compressStream_generic(mtctx, output, input, ZSTD_e_continue) ); |
| 2072 | |
| 2073 | /* recommended next input size : fill current input buffer */ |
| 2074 | return mtctx->targetSectionSize - mtctx->inBuff.filled; /* note : could be zero when input buffer is fully filled and no more availability to create new job */ |
| 2075 | } |
| 2076 | |
| 2077 | |
| 2078 | static size_t ZSTDMT_flushStream_internal(ZSTDMT_CCtx* mtctx, ZSTD_outBuffer* output, ZSTD_EndDirective endFrame) |
| 2079 | { |
| 2080 | size_t const srcSize = mtctx->inBuff.filled; |
| 2081 | DEBUGLOG(5, "ZSTDMT_flushStream_internal"); |
| 2082 | |
| 2083 | if ( mtctx->jobReady /* one job ready for a worker to pick up */ |
| 2084 | || (srcSize > 0) /* still some data within input buffer */ |
| 2085 | || ((endFrame==ZSTD_e_end) && !mtctx->frameEnded)) { /* need a last 0-size block to end frame */ |
| 2086 | DEBUGLOG(5, "ZSTDMT_flushStream_internal : create a new job (%u bytes, end:%u)", |
| 2087 | (U32)srcSize, (U32)endFrame); |
| 2088 | FORWARD_IF_ERROR( ZSTDMT_createCompressionJob(mtctx, srcSize, endFrame) ); |
| 2089 | } |
| 2090 | |
| 2091 | /* check if there is any data available to flush */ |
| 2092 | return ZSTDMT_flushProduced(mtctx, output, 1 /* blockToFlush */, endFrame); |
| 2093 | } |
| 2094 | |
| 2095 | |
| 2096 | size_t ZSTDMT_flushStream(ZSTDMT_CCtx* mtctx, ZSTD_outBuffer* output) |
| 2097 | { |
| 2098 | DEBUGLOG(5, "ZSTDMT_flushStream"); |
| 2099 | if (mtctx->singleBlockingThread) |
| 2100 | return ZSTD_flushStream(mtctx->cctxPool->cctx[0], output); |
| 2101 | return ZSTDMT_flushStream_internal(mtctx, output, ZSTD_e_flush); |
| 2102 | } |
| 2103 | |
| 2104 | size_t ZSTDMT_endStream(ZSTDMT_CCtx* mtctx, ZSTD_outBuffer* output) |
| 2105 | { |
| 2106 | DEBUGLOG(4, "ZSTDMT_endStream"); |
| 2107 | if (mtctx->singleBlockingThread) |
| 2108 | return ZSTD_endStream(mtctx->cctxPool->cctx[0], output); |
| 2109 | return ZSTDMT_flushStream_internal(mtctx, output, ZSTD_e_end); |
| 2110 | } |