Joey Armstrong | 44fa7d8 | 2022-11-01 17:46:04 -0400 | [diff] [blame] | 1 | # -*- python -*- |
| 2 | # ----------------------------------------------------------------------- |
Joey Armstrong | 9fadcbe | 2024-01-17 19:00:37 -0500 | [diff] [blame] | 3 | # Copyright 2022-2024 Open Networking Foundation (ONF) and the ONF Contributors |
Matteo Scandolo | 3ed8987 | 2020-07-15 17:01:02 -0700 | [diff] [blame] | 4 | # |
| 5 | # Licensed under the Apache License, Version 2.0 (the "License"); |
| 6 | # you may not use this file except in compliance with the License. |
| 7 | # You may obtain a copy of the License at |
| 8 | # |
| 9 | # http://www.apache.org/licenses/LICENSE-2.0 |
| 10 | # |
| 11 | # Unless required by applicable law or agreed to in writing, software |
| 12 | # distributed under the License is distributed on an "AS IS" BASIS, |
| 13 | # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| 14 | # See the License for the specific language governing permissions and |
| 15 | # limitations under the License. |
Joey Armstrong | 44fa7d8 | 2022-11-01 17:46:04 -0400 | [diff] [blame] | 16 | # ----------------------------------------------------------------------- |
Matteo Scandolo | 3ed8987 | 2020-07-15 17:01:02 -0700 | [diff] [blame] | 17 | |
| 18 | # This tool collects CPU and Memory informations for each container in the VOLTHA stack |
| 19 | |
| 20 | # NOTE |
| 21 | # Collecting the info for all containers in the same chart can be confusing, |
| 22 | # we may want to create subcharts for the different groups, eg: infra, ONOS, core, adapters |
| 23 | |
Matteo Scandolo | 7274b43 | 2020-08-27 14:28:43 -0700 | [diff] [blame] | 24 | import csv |
| 25 | from sys import platform as sys_pf |
| 26 | |
| 27 | if sys_pf == 'darwin': |
| 28 | import matplotlib |
| 29 | |
| 30 | matplotlib.use("TkAgg") |
| 31 | |
Matteo Scandolo | 3ed8987 | 2020-07-15 17:01:02 -0700 | [diff] [blame] | 32 | import argparse |
| 33 | import requests |
| 34 | import matplotlib.pyplot as plt |
| 35 | import matplotlib.dates as mdates |
| 36 | from datetime import datetime |
| 37 | import time |
| 38 | |
| 39 | EXCLUDED_POD_NAMES = [ |
| 40 | "kube", "coredns", "kind", "grafana", |
| 41 | "prometheus", "tiller", "control-plane", |
Matteo Scandolo | 7274b43 | 2020-08-27 14:28:43 -0700 | [diff] [blame] | 42 | "calico", "nginx", "registry", "cattle", "canal", "metrics", |
Matteo Scandolo | 3ed8987 | 2020-07-15 17:01:02 -0700 | [diff] [blame] | 43 | ] |
| 44 | |
| 45 | DATE_FORMATTER_FN = mdates.DateFormatter('%Y-%m-%d %H:%M:%S') |
| 46 | |
Matteo Scandolo | 88d01c1 | 2020-11-02 17:11:26 -0800 | [diff] [blame] | 47 | KAFKA_TOPICS = [ |
| 48 | "openolt", |
| 49 | "brcm_openomci_onu", |
| 50 | "voltha", |
| 51 | "adapters", |
| 52 | "rwcore" |
| 53 | ] |
Matteo Scandolo | 3ed8987 | 2020-07-15 17:01:02 -0700 | [diff] [blame] | 54 | |
Andrey Pozolotin | 0f43771 | 2021-07-30 17:36:41 +0300 | [diff] [blame] | 55 | def main(address, out_folder, since, namespace="default", ratePeriod = "5m", step = 30): |
Matteo Scandolo | 3ed8987 | 2020-07-15 17:01:02 -0700 | [diff] [blame] | 56 | """ |
| 57 | Query Prometheus and generate .pdf files for CPU and Memory consumption for each POD |
| 58 | :param address: string The address of the Prometheus instance to query |
| 59 | :param out_folder: string The output folder (where to save the .pdf files) |
| 60 | :param since: int When to start collection data (minutes in the past) |
| 61 | :return: void |
| 62 | """ |
| 63 | time_delta = int(since) * 60 |
Matteo Scandolo | 7274b43 | 2020-08-27 14:28:43 -0700 | [diff] [blame] | 64 | |
Andrea Campanella | 010428f | 2021-08-24 11:58:47 +0200 | [diff] [blame] | 65 | container_mem_query = 'sum by(pod) (container_memory_working_set_bytes{namespace="%s",container!="",container!="POD"})' % namespace |
Matteo Scandolo | 86334f5 | 2020-08-28 10:56:25 -0700 | [diff] [blame] | 66 | |
Andrea Campanella | 010428f | 2021-08-24 11:58:47 +0200 | [diff] [blame] | 67 | container_cpu_query = 'sum by(pod) (rate(container_cpu_usage_seconds_total{namespace="%s",container!="",container!="POD"}[%s]))' % (namespace, ratePeriod) |
Matteo Scandolo | 3ed8987 | 2020-07-15 17:01:02 -0700 | [diff] [blame] | 68 | |
| 69 | now = time.time() |
| 70 | cpu_params = { |
| 71 | "query": container_cpu_query, |
| 72 | "start": now - time_delta, |
| 73 | "end": now, |
Andrey Pozolotin | 0f43771 | 2021-07-30 17:36:41 +0300 | [diff] [blame] | 74 | "step": step, |
Matteo Scandolo | 3ed8987 | 2020-07-15 17:01:02 -0700 | [diff] [blame] | 75 | } |
Andrey Pozolotin | 0f43771 | 2021-07-30 17:36:41 +0300 | [diff] [blame] | 76 | print("CPU usage query: %s" % cpu_params) |
Matteo Scandolo | 86334f5 | 2020-08-28 10:56:25 -0700 | [diff] [blame] | 77 | |
Matteo Scandolo | 3ed8987 | 2020-07-15 17:01:02 -0700 | [diff] [blame] | 78 | r = requests.get("http://%s/api/v1/query_range" % address, cpu_params) |
| 79 | print("Downloading CPU info from: %s" % r.url) |
| 80 | container_cpu = r.json()["data"]["result"] |
Matteo Scandolo | 7274b43 | 2020-08-27 14:28:43 -0700 | [diff] [blame] | 81 | containers = remove_unwanted_containers(container_cpu) |
| 82 | plot_cpu_consumption(containers, |
Matteo Scandolo | 806637d | 2020-07-30 02:07:06 +0000 | [diff] [blame] | 83 | output="%s/cpu.pdf" % out_folder) |
Matteo Scandolo | 7274b43 | 2020-08-27 14:28:43 -0700 | [diff] [blame] | 84 | data_to_csv(containers, output="%s/cpu.csv" % out_folder, |
Matteo Scandolo | 86334f5 | 2020-08-28 10:56:25 -0700 | [diff] [blame] | 85 | convert_values=lambda values: ["{:.2f}".format(v) for v in values]) |
Matteo Scandolo | 3ed8987 | 2020-07-15 17:01:02 -0700 | [diff] [blame] | 86 | |
Matteo Scandolo | 7274b43 | 2020-08-27 14:28:43 -0700 | [diff] [blame] | 87 | mem_params = { |
| 88 | "query": container_mem_query, |
| 89 | "start": now - time_delta, |
| 90 | "end": now, |
Andrey Pozolotin | 0f43771 | 2021-07-30 17:36:41 +0300 | [diff] [blame] | 91 | "step": step, |
Matteo Scandolo | 7274b43 | 2020-08-27 14:28:43 -0700 | [diff] [blame] | 92 | } |
Andrey Pozolotin | 0f43771 | 2021-07-30 17:36:41 +0300 | [diff] [blame] | 93 | print("Memory query: %s" % mem_params) |
Matteo Scandolo | 7274b43 | 2020-08-27 14:28:43 -0700 | [diff] [blame] | 94 | |
| 95 | r = requests.get("http://%s/api/v1/query_range" % address, mem_params) |
Matteo Scandolo | 3ed8987 | 2020-07-15 17:01:02 -0700 | [diff] [blame] | 96 | print("Downloading Memory info from: %s" % r.url) |
| 97 | container_mem = r.json()["data"]["result"] |
Matteo Scandolo | 7274b43 | 2020-08-27 14:28:43 -0700 | [diff] [blame] | 98 | containers = remove_unwanted_containers(container_mem) |
| 99 | plot_memory_consumption(containers, output="%s/memory.pdf" % out_folder) |
| 100 | data_to_csv(containers, output="%s/memory.csv" % out_folder, |
Matteo Scandolo | 86334f5 | 2020-08-28 10:56:25 -0700 | [diff] [blame] | 101 | convert_values=lambda values: ["{:.2f}".format(bytesto(v, "m")) for v in values]) |
Matteo Scandolo | 7274b43 | 2020-08-27 14:28:43 -0700 | [diff] [blame] | 102 | |
Matteo Scandolo | 88d01c1 | 2020-11-02 17:11:26 -0800 | [diff] [blame] | 103 | print("Downloading KAFKA stats") |
| 104 | get_kafka_stats(address, out_folder) |
| 105 | print("Downloading ETCD stats") |
| 106 | get_etcd_stats(address, out_folder) |
| 107 | |
| 108 | |
Matteo Scandolo | 7274b43 | 2020-08-27 14:28:43 -0700 | [diff] [blame] | 109 | |
| 110 | def data_to_csv(containers, output=None, convert_values=None): |
| 111 | """ |
| 112 | Get a list of prometheus metrics and dumps them in a csv |
| 113 | :param containers: Prometheus metrics |
| 114 | :param output: Destination file |
| 115 | :param convert_values: Function to convert the valus, take a list on numbers |
| 116 | """ |
| 117 | csv_file = open(output, "w+") |
| 118 | csv_writer = csv.writer(csv_file, delimiter=',', quotechar='"', quoting=csv.QUOTE_MINIMAL) |
| 119 | |
| 120 | # we assume all the containers have the same timestamps |
Matteo Scandolo | 7e3dd12 | 2020-11-04 15:24:00 -0800 | [diff] [blame] | 121 | # FIXME pods may have different timestamps depending on when the collection started |
| 122 | # - find the longest list in containers |
| 123 | # - add empty values at the beginning of the other list |
Andrey Pozolotin | e78670c | 2021-07-30 13:33:27 +0300 | [diff] [blame] | 124 | if not containers: |
| 125 | return |
Andrey Pozolotin | 0f43771 | 2021-07-30 17:36:41 +0300 | [diff] [blame] | 126 | |
| 127 | container_index_longest_row = 0 |
| 128 | longest_row = 0 |
| 129 | for i, c in enumerate(containers): |
| 130 | cur_row_len = len(c["values"]) |
| 131 | if cur_row_len > longest_row: |
| 132 | longest_row = cur_row_len |
| 133 | container_index_longest_row = i |
| 134 | |
| 135 | dates = [datetime.fromtimestamp(x[0]) for x in containers[container_index_longest_row]["values"]] |
Matteo Scandolo | 7274b43 | 2020-08-27 14:28:43 -0700 | [diff] [blame] | 136 | csv_writer.writerow([''] + dates) |
| 137 | |
| 138 | for c in containers: |
| 139 | name = c["metric"]["pod"] |
| 140 | data = c["values"] |
| 141 | |
| 142 | values = [float(x[1]) for x in data] |
| 143 | |
| 144 | if convert_values: |
| 145 | values = convert_values(values) |
| 146 | csv_writer.writerow([name] + values) |
Matteo Scandolo | 3ed8987 | 2020-07-15 17:01:02 -0700 | [diff] [blame] | 147 | |
| 148 | |
| 149 | def plot_cpu_consumption(containers, output=None): |
Matteo Scandolo | 3ed8987 | 2020-07-15 17:01:02 -0700 | [diff] [blame] | 150 | plt.figure('cpu') |
| 151 | fig, ax = plt.subplots() |
| 152 | ax.xaxis.set_major_formatter(DATE_FORMATTER_FN) |
| 153 | ax.xaxis_date() |
| 154 | fig.autofmt_xdate() |
| 155 | |
| 156 | plt.title("CPU Usage per POD") |
| 157 | plt.xlabel("Timestamp") |
Andrey Pozolotin | ced58a0 | 2021-07-13 18:49:05 +0300 | [diff] [blame] | 158 | plt.ylabel("CPU cores used") |
Matteo Scandolo | 3ed8987 | 2020-07-15 17:01:02 -0700 | [diff] [blame] | 159 | |
Andrey Pozolotin | 0f43771 | 2021-07-30 17:36:41 +0300 | [diff] [blame] | 160 | for i, c in enumerate(containers): |
Matteo Scandolo | 7274b43 | 2020-08-27 14:28:43 -0700 | [diff] [blame] | 161 | name = c["metric"]["pod"] |
Matteo Scandolo | 3ed8987 | 2020-07-15 17:01:02 -0700 | [diff] [blame] | 162 | data = c["values"] |
| 163 | |
| 164 | dates = [datetime.fromtimestamp(x[0]) for x in data] |
| 165 | |
| 166 | values = [float(x[1]) for x in data] |
| 167 | |
Andrey Pozolotin | 0f43771 | 2021-07-30 17:36:41 +0300 | [diff] [blame] | 168 | plt.plot(dates, values, label=name, lw=2, color=get_line_color(name, i)) |
Matteo Scandolo | 3ed8987 | 2020-07-15 17:01:02 -0700 | [diff] [blame] | 169 | # plt.plot(dates[1:], get_diff(values), label=name, lw=2, color=get_line_color(name)) |
| 170 | |
Matteo Scandolo | 7274b43 | 2020-08-27 14:28:43 -0700 | [diff] [blame] | 171 | plt.legend(loc='upper left', title="CPU Consumption", bbox_to_anchor=(1.05, 1)) |
Matteo Scandolo | 3ed8987 | 2020-07-15 17:01:02 -0700 | [diff] [blame] | 172 | |
| 173 | fig = plt.gcf() |
| 174 | fig.set_size_inches(20, 11) |
| 175 | |
Matteo Scandolo | 7274b43 | 2020-08-27 14:28:43 -0700 | [diff] [blame] | 176 | plt.savefig(output, bbox_inches="tight") |
Matteo Scandolo | 3ed8987 | 2020-07-15 17:01:02 -0700 | [diff] [blame] | 177 | |
| 178 | |
| 179 | def plot_memory_consumption(containers, output=None): |
| 180 | plt.figure("memory") |
| 181 | fig, ax = plt.subplots() |
| 182 | ax.xaxis.set_major_formatter(DATE_FORMATTER_FN) |
| 183 | ax.xaxis_date() |
| 184 | fig.autofmt_xdate() |
| 185 | plt.title("Memory Usage") |
| 186 | plt.xlabel("Timestamp") |
| 187 | plt.ylabel("MB") |
| 188 | |
Andrey Pozolotin | 0f43771 | 2021-07-30 17:36:41 +0300 | [diff] [blame] | 189 | for i, c in enumerate(containers): |
Matteo Scandolo | 7274b43 | 2020-08-27 14:28:43 -0700 | [diff] [blame] | 190 | name = c["metric"]["pod"] |
Matteo Scandolo | 3ed8987 | 2020-07-15 17:01:02 -0700 | [diff] [blame] | 191 | data = c["values"] |
| 192 | |
| 193 | dates = [datetime.fromtimestamp(x[0]) for x in data] |
| 194 | values = [bytesto(float(x[1]), "m") for x in data] |
| 195 | |
Matteo Scandolo | 7274b43 | 2020-08-27 14:28:43 -0700 | [diff] [blame] | 196 | # plt.plot(dates[1:], get_diff(values), label=name, lw=2, color=get_line_color(name)) |
Andrey Pozolotin | 0f43771 | 2021-07-30 17:36:41 +0300 | [diff] [blame] | 197 | plt.plot(dates[1:], values[1:], label=name, lw=2, color=get_line_color(name, i)) |
Matteo Scandolo | 3ed8987 | 2020-07-15 17:01:02 -0700 | [diff] [blame] | 198 | |
Matteo Scandolo | 7274b43 | 2020-08-27 14:28:43 -0700 | [diff] [blame] | 199 | plt.legend(loc='upper left', title="Memory Usage", bbox_to_anchor=(1.05, 1)) |
Matteo Scandolo | 3ed8987 | 2020-07-15 17:01:02 -0700 | [diff] [blame] | 200 | |
| 201 | fig = plt.gcf() |
| 202 | fig.set_size_inches(20, 11) |
| 203 | |
Matteo Scandolo | 7274b43 | 2020-08-27 14:28:43 -0700 | [diff] [blame] | 204 | plt.savefig(output, bbox_inches="tight") |
Matteo Scandolo | 3ed8987 | 2020-07-15 17:01:02 -0700 | [diff] [blame] | 205 | |
| 206 | |
| 207 | def remove_unwanted_containers(cpus): |
| 208 | res = [] |
| 209 | for c in cpus: |
Matteo Scandolo | 3ed8987 | 2020-07-15 17:01:02 -0700 | [diff] [blame] | 210 | |
Matteo Scandolo | 7274b43 | 2020-08-27 14:28:43 -0700 | [diff] [blame] | 211 | if "pod" in c["metric"]: |
| 212 | pod_name = c["metric"]["pod"] |
Matteo Scandolo | 3ed8987 | 2020-07-15 17:01:02 -0700 | [diff] [blame] | 213 | if any(x in pod_name for x in EXCLUDED_POD_NAMES): |
| 214 | continue |
Matteo Scandolo | 3ed8987 | 2020-07-15 17:01:02 -0700 | [diff] [blame] | 215 | res.append(c) |
Matteo Scandolo | 806637d | 2020-07-30 02:07:06 +0000 | [diff] [blame] | 216 | |
Matteo Scandolo | 3ed8987 | 2020-07-15 17:01:02 -0700 | [diff] [blame] | 217 | return res |
| 218 | |
| 219 | |
Andrey Pozolotin | 0f43771 | 2021-07-30 17:36:41 +0300 | [diff] [blame] | 220 | def get_line_color(container_name, i): |
Matteo Scandolo | 3ed8987 | 2020-07-15 17:01:02 -0700 | [diff] [blame] | 221 | colors = { |
| 222 | "bbsim0": "#884EA0", |
| 223 | "bbsim1": "#9B59B6", |
| 224 | "bbsim-sadis-server": "#D2B4DE", |
| 225 | "onos-atomix-0": "#85C1E9", |
| 226 | "onos-atomix-1": "#7FB3D5", |
| 227 | "onos-atomix-2": "#3498DB", |
| 228 | "onos-onos-classic-0": "#1A5276", |
| 229 | "onos-onos-classic-1": "#1B4F72", |
| 230 | "onos-onos-classic-2": "#154360", |
| 231 | "etcd-0": "#7D6608", |
| 232 | "etcd-1": "#9A7D0A", |
| 233 | "etcd-2": "#B7950B", |
| 234 | "open-olt-voltha-adapter-openolt": "#7E5109", |
| 235 | "open-onu-voltha-adapter-openonu-0": "#6E2C00", |
| 236 | "open-onu-voltha-adapter-openonu-1": "#873600", |
| 237 | "open-onu-voltha-adapter-openonu-2": "#A04000", |
| 238 | "open-onu-voltha-adapter-openonu-3": "#BA4A00", |
| 239 | "open-onu-voltha-adapter-openonu-4": "#D35400", |
| 240 | "open-onu-voltha-adapter-openonu-5": "#D35400", |
| 241 | "open-onu-voltha-adapter-openonu-6": "#E59866", |
| 242 | "open-onu-voltha-adapter-openonu-7": "#EDBB99", |
| 243 | "kafka-0": "#4D5656", |
| 244 | "kafka-1": "#5F6A6A", |
| 245 | "kafka-2": "#717D7E", |
| 246 | "kafka-zookeeper-0": "#839192", |
| 247 | "kafka-zookeeper-1": "#95A5A6", |
| 248 | "kafka-zookeeper-2": "#717D7E", |
| 249 | "radius": "#82E0AA", |
| 250 | "voltha-voltha-ofagent": "#641E16", |
| 251 | "voltha-voltha-rw-core": "#7B241C", |
| 252 | } |
| 253 | |
Andrey Pozolotin | 0f43771 | 2021-07-30 17:36:41 +0300 | [diff] [blame] | 254 | colorsToPickup = [ |
| 255 | "#f44336", |
| 256 | "#4bde31", |
| 257 | "#31dea7", |
| 258 | "#31a5de", |
| 259 | "#313dde", |
| 260 | "#ffac2c", |
| 261 | "#f16443", |
| 262 | "#8cff00", |
| 263 | "#990000", |
| 264 | "#b8ce85", |
| 265 | "#5662f6", |
| 266 | "#e42491", |
| 267 | "#5b4f5b", |
| 268 | "#df1019", |
| 269 | "#b9faf8", |
| 270 | "#1d903f", |
| 271 | "#56c7f2", |
| 272 | "#40dfa0", |
| 273 | "#5662f6", |
| 274 | "#400080", |
| 275 | "#b73e34", |
| 276 | ] |
| 277 | |
Matteo Scandolo | 3ed8987 | 2020-07-15 17:01:02 -0700 | [diff] [blame] | 278 | if container_name in colors: |
| 279 | return colors[container_name] |
| 280 | elif "openolt" in container_name: |
| 281 | return colors["open-olt-voltha-adapter-openolt"] |
| 282 | elif "ofagent" in container_name: |
| 283 | return colors["voltha-voltha-ofagent"] |
| 284 | elif "rw-core" in container_name: |
| 285 | return colors["voltha-voltha-rw-core"] |
| 286 | elif "bbsim0" in container_name: |
| 287 | return colors["bbsim0"] |
| 288 | elif "bbsim1" in container_name: |
| 289 | return colors["bbsim1"] |
| 290 | elif "bbsim-sadis-server" in container_name: |
| 291 | return colors["bbsim-sadis-server"] |
| 292 | elif "radius" in container_name: |
| 293 | return colors["radius"] |
| 294 | else: |
Andrey Pozolotin | 0f43771 | 2021-07-30 17:36:41 +0300 | [diff] [blame] | 295 | colorIdx = i % len(colorsToPickup) |
| 296 | pickupColor = colorsToPickup[colorIdx] |
| 297 | return pickupColor |
Matteo Scandolo | 3ed8987 | 2020-07-15 17:01:02 -0700 | [diff] [blame] | 298 | |
| 299 | |
| 300 | def get_diff(data): |
Matteo Scandolo | 7274b43 | 2020-08-27 14:28:43 -0700 | [diff] [blame] | 301 | # get the delta between the current data and the previous point |
Matteo Scandolo | 3ed8987 | 2020-07-15 17:01:02 -0700 | [diff] [blame] | 302 | return [x - data[i - 1] for i, x in enumerate(data)][1:] |
| 303 | |
| 304 | |
| 305 | def bytesto(b, to, bsize=1024): |
| 306 | """convert bytes to megabytes, etc. |
| 307 | sample code: |
| 308 | print('mb= ' + str(bytesto(314575262000000, 'm'))) |
| 309 | sample output: |
| 310 | mb= 300002347.946 |
| 311 | """ |
| 312 | |
| 313 | a = {'k': 1, 'm': 2, 'g': 3, 't': 4, 'p': 5, 'e': 6} |
| 314 | r = float(b) |
| 315 | for i in range(a[to]): |
| 316 | r = r / bsize |
| 317 | |
| 318 | return r |
| 319 | |
| 320 | |
Matteo Scandolo | 88d01c1 | 2020-11-02 17:11:26 -0800 | [diff] [blame] | 321 | |
| 322 | def get_etcd_stats(address, out_folder): |
| 323 | """ |
| 324 | :param address: The prometheus address |
| 325 | :param out_folder: The folder in which store the output files |
| 326 | """ |
| 327 | |
| 328 | etcd_stats = { |
| 329 | "size":"etcd_debugging_mvcc_db_total_size_in_bytes", |
| 330 | "keys":"etcd_debugging_mvcc_keys_total" |
| 331 | } |
| 332 | |
| 333 | etcd = {} |
| 334 | |
| 335 | time_delta = 80 |
| 336 | for stat,query in etcd_stats.items(): |
| 337 | now = time.time() |
| 338 | etcd_params = { |
| 339 | "query": "%s{}" % query, |
| 340 | "start": now - time_delta, |
| 341 | "end": now, |
| 342 | "step": "30", |
| 343 | } |
| 344 | r = requests.get("http://%s/api/v1/query_range" % address, etcd_params) |
Andrey Pozolotin | e78670c | 2021-07-30 13:33:27 +0300 | [diff] [blame] | 345 | etcdStats = r.json()["data"]["result"] |
| 346 | if etcdStats: |
| 347 | i = etcdStats[0] |
| 348 | etcd[stat] = i["values"][-1][1] |
Matteo Scandolo | 88d01c1 | 2020-11-02 17:11:26 -0800 | [diff] [blame] | 349 | |
| 350 | csv_file = open("%s/etcd_stats.csv" % out_folder, "w+") |
| 351 | csv_writer = csv.writer(csv_file, delimiter=',', quotechar='"', quoting=csv.QUOTE_MINIMAL) |
| 352 | |
| 353 | for k,v in etcd.items(): |
| 354 | csv_writer.writerow([k, v]) |
| 355 | |
| 356 | def get_kafka_stats(address, out_folder): |
| 357 | """ |
| 358 | :param address: The prometheus address |
| 359 | :param out_folder: The folder in which store the output files |
| 360 | """ |
| 361 | # get the last information for all topics, we only care about the last value so a short interval is fine |
| 362 | now = time.time() |
| 363 | time_delta = 80 |
| 364 | kafka_params = { |
| 365 | "query": "kafka_topic_partition_current_offset{}", |
| 366 | "start": now - time_delta, |
| 367 | "end": now, |
| 368 | "step": "30", |
| 369 | } |
| 370 | |
| 371 | r = requests.get("http://%s/api/v1/query_range" % address, kafka_params) |
| 372 | |
| 373 | msg_per_topic = {} |
| 374 | |
| 375 | for t in r.json()["data"]["result"]: |
| 376 | # we only care about some topics |
| 377 | topic_name = t["metric"]["topic"] |
| 378 | |
| 379 | if any(x in topic_name for x in KAFKA_TOPICS): |
| 380 | # get only the value at the last timestamp |
| 381 | msg_per_topic[t["metric"]["topic"]] = t["values"][-1][1] |
| 382 | |
| 383 | csv_file = open("%s/kafka_msg_per_topic.csv" % out_folder, "w+") |
| 384 | csv_writer = csv.writer(csv_file, delimiter=',', quotechar='"', quoting=csv.QUOTE_MINIMAL) |
| 385 | |
| 386 | for k,v in msg_per_topic.items(): |
| 387 | csv_writer.writerow([k, v]) |
| 388 | |
Matteo Scandolo | 3ed8987 | 2020-07-15 17:01:02 -0700 | [diff] [blame] | 389 | if __name__ == "__main__": |
| 390 | parser = argparse.ArgumentParser(prog="sizing") |
| 391 | parser.add_argument("-a", "--address", help="The address of the Prometheus instance we're targeting", |
| 392 | default="127.0.0.1:31301") |
| 393 | parser.add_argument("-o", "--output", help="Where to output the generated files", |
| 394 | default="plots") |
| 395 | parser.add_argument("-s", "--since", help="When to start sampling the data (in minutes before now)", |
| 396 | default=10) |
Andrey Pozolotin | e78670c | 2021-07-30 13:33:27 +0300 | [diff] [blame] | 397 | parser.add_argument("-n", "--namespace", help="Kubernetes namespace for collecting metrics", |
| 398 | default="default") |
Andrey Pozolotin | 0f43771 | 2021-07-30 17:36:41 +0300 | [diff] [blame] | 399 | parser.add_argument("-r", "--rate", help="Rate period", |
| 400 | default="5m") |
| 401 | parser.add_argument("-t", "--step", help="Step in seconds", |
| 402 | default=30) |
Matteo Scandolo | 3ed8987 | 2020-07-15 17:01:02 -0700 | [diff] [blame] | 403 | |
| 404 | args = parser.parse_args() |
Andrey Pozolotin | 0f43771 | 2021-07-30 17:36:41 +0300 | [diff] [blame] | 405 | main(args.address, args.output, args.since, args.namespace, args.rate, args.step) |