blob: bc196b16cfaadc883ef553badca5f1f16f55dce1 [file] [log] [blame]
Matteo Scandoloa6a3aee2019-11-26 13:30:14 -07001// Copyright 2017, The Go Authors. All rights reserved.
2// Use of this source code is governed by a BSD-style
David K. Bainbridgec415efe2021-08-19 13:05:21 +00003// license that can be found in the LICENSE file.
Matteo Scandoloa6a3aee2019-11-26 13:30:14 -07004
5// Package diff implements an algorithm for producing edit-scripts.
6// The edit-script is a sequence of operations needed to transform one list
7// of symbols into another (or vice-versa). The edits allowed are insertions,
8// deletions, and modifications. The summation of all edits is called the
9// Levenshtein distance as this problem is well-known in computer science.
10//
11// This package prioritizes performance over accuracy. That is, the run time
12// is more important than obtaining a minimal Levenshtein distance.
13package diff
14
David K. Bainbridgec415efe2021-08-19 13:05:21 +000015import (
16 "math/rand"
17 "time"
18
19 "github.com/google/go-cmp/cmp/internal/flags"
20)
21
Matteo Scandoloa6a3aee2019-11-26 13:30:14 -070022// EditType represents a single operation within an edit-script.
23type EditType uint8
24
25const (
26 // Identity indicates that a symbol pair is identical in both list X and Y.
27 Identity EditType = iota
28 // UniqueX indicates that a symbol only exists in X and not Y.
29 UniqueX
30 // UniqueY indicates that a symbol only exists in Y and not X.
31 UniqueY
32 // Modified indicates that a symbol pair is a modification of each other.
33 Modified
34)
35
36// EditScript represents the series of differences between two lists.
37type EditScript []EditType
38
39// String returns a human-readable string representing the edit-script where
40// Identity, UniqueX, UniqueY, and Modified are represented by the
41// '.', 'X', 'Y', and 'M' characters, respectively.
42func (es EditScript) String() string {
43 b := make([]byte, len(es))
44 for i, e := range es {
45 switch e {
46 case Identity:
47 b[i] = '.'
48 case UniqueX:
49 b[i] = 'X'
50 case UniqueY:
51 b[i] = 'Y'
52 case Modified:
53 b[i] = 'M'
54 default:
55 panic("invalid edit-type")
56 }
57 }
58 return string(b)
59}
60
61// stats returns a histogram of the number of each type of edit operation.
62func (es EditScript) stats() (s struct{ NI, NX, NY, NM int }) {
63 for _, e := range es {
64 switch e {
65 case Identity:
66 s.NI++
67 case UniqueX:
68 s.NX++
69 case UniqueY:
70 s.NY++
71 case Modified:
72 s.NM++
73 default:
74 panic("invalid edit-type")
75 }
76 }
77 return
78}
79
80// Dist is the Levenshtein distance and is guaranteed to be 0 if and only if
81// lists X and Y are equal.
82func (es EditScript) Dist() int { return len(es) - es.stats().NI }
83
84// LenX is the length of the X list.
85func (es EditScript) LenX() int { return len(es) - es.stats().NY }
86
87// LenY is the length of the Y list.
88func (es EditScript) LenY() int { return len(es) - es.stats().NX }
89
90// EqualFunc reports whether the symbols at indexes ix and iy are equal.
91// When called by Difference, the index is guaranteed to be within nx and ny.
92type EqualFunc func(ix int, iy int) Result
93
94// Result is the result of comparison.
Pragya Arya324337e2020-02-20 14:35:08 +053095// NumSame is the number of sub-elements that are equal.
96// NumDiff is the number of sub-elements that are not equal.
97type Result struct{ NumSame, NumDiff int }
98
99// BoolResult returns a Result that is either Equal or not Equal.
100func BoolResult(b bool) Result {
101 if b {
102 return Result{NumSame: 1} // Equal, Similar
103 } else {
104 return Result{NumDiff: 2} // Not Equal, not Similar
105 }
106}
Matteo Scandoloa6a3aee2019-11-26 13:30:14 -0700107
108// Equal indicates whether the symbols are equal. Two symbols are equal
Pragya Arya324337e2020-02-20 14:35:08 +0530109// if and only if NumDiff == 0. If Equal, then they are also Similar.
110func (r Result) Equal() bool { return r.NumDiff == 0 }
Matteo Scandoloa6a3aee2019-11-26 13:30:14 -0700111
112// Similar indicates whether two symbols are similar and may be represented
113// by using the Modified type. As a special case, we consider binary comparisons
114// (i.e., those that return Result{1, 0} or Result{0, 1}) to be similar.
115//
Pragya Arya324337e2020-02-20 14:35:08 +0530116// The exact ratio of NumSame to NumDiff to determine similarity may change.
Matteo Scandoloa6a3aee2019-11-26 13:30:14 -0700117func (r Result) Similar() bool {
Pragya Arya324337e2020-02-20 14:35:08 +0530118 // Use NumSame+1 to offset NumSame so that binary comparisons are similar.
119 return r.NumSame+1 >= r.NumDiff
Matteo Scandoloa6a3aee2019-11-26 13:30:14 -0700120}
121
David K. Bainbridgec415efe2021-08-19 13:05:21 +0000122var randBool = rand.New(rand.NewSource(time.Now().Unix())).Intn(2) == 0
123
Matteo Scandoloa6a3aee2019-11-26 13:30:14 -0700124// Difference reports whether two lists of lengths nx and ny are equal
125// given the definition of equality provided as f.
126//
127// This function returns an edit-script, which is a sequence of operations
128// needed to convert one list into the other. The following invariants for
129// the edit-script are maintained:
130// • eq == (es.Dist()==0)
131// • nx == es.LenX()
132// • ny == es.LenY()
133//
134// This algorithm is not guaranteed to be an optimal solution (i.e., one that
135// produces an edit-script with a minimal Levenshtein distance). This algorithm
136// favors performance over optimality. The exact output is not guaranteed to
137// be stable and may change over time.
138func Difference(nx, ny int, f EqualFunc) (es EditScript) {
139 // This algorithm is based on traversing what is known as an "edit-graph".
140 // See Figure 1 from "An O(ND) Difference Algorithm and Its Variations"
141 // by Eugene W. Myers. Since D can be as large as N itself, this is
142 // effectively O(N^2). Unlike the algorithm from that paper, we are not
143 // interested in the optimal path, but at least some "decent" path.
144 //
145 // For example, let X and Y be lists of symbols:
146 // X = [A B C A B B A]
147 // Y = [C B A B A C]
148 //
149 // The edit-graph can be drawn as the following:
150 // A B C A B B A
151 // ┌─────────────┐
152 // C │_|_|\|_|_|_|_│ 0
153 // B │_|\|_|_|\|\|_│ 1
154 // A │\|_|_|\|_|_|\│ 2
155 // B │_|\|_|_|\|\|_│ 3
156 // A │\|_|_|\|_|_|\│ 4
157 // C │ | |\| | | | │ 5
158 // └─────────────┘ 6
159 // 0 1 2 3 4 5 6 7
160 //
161 // List X is written along the horizontal axis, while list Y is written
162 // along the vertical axis. At any point on this grid, if the symbol in
163 // list X matches the corresponding symbol in list Y, then a '\' is drawn.
164 // The goal of any minimal edit-script algorithm is to find a path from the
165 // top-left corner to the bottom-right corner, while traveling through the
166 // fewest horizontal or vertical edges.
167 // A horizontal edge is equivalent to inserting a symbol from list X.
168 // A vertical edge is equivalent to inserting a symbol from list Y.
169 // A diagonal edge is equivalent to a matching symbol between both X and Y.
170
171 // Invariants:
172 // • 0 ≤ fwdPath.X ≤ (fwdFrontier.X, revFrontier.X) ≤ revPath.X ≤ nx
173 // • 0 ≤ fwdPath.Y ≤ (fwdFrontier.Y, revFrontier.Y) ≤ revPath.Y ≤ ny
174 //
175 // In general:
176 // • fwdFrontier.X < revFrontier.X
177 // • fwdFrontier.Y < revFrontier.Y
178 // Unless, it is time for the algorithm to terminate.
179 fwdPath := path{+1, point{0, 0}, make(EditScript, 0, (nx+ny)/2)}
180 revPath := path{-1, point{nx, ny}, make(EditScript, 0)}
181 fwdFrontier := fwdPath.point // Forward search frontier
182 revFrontier := revPath.point // Reverse search frontier
183
184 // Search budget bounds the cost of searching for better paths.
185 // The longest sequence of non-matching symbols that can be tolerated is
186 // approximately the square-root of the search budget.
187 searchBudget := 4 * (nx + ny) // O(n)
188
David K. Bainbridgec415efe2021-08-19 13:05:21 +0000189 // Running the tests with the "cmp_debug" build tag prints a visualization
190 // of the algorithm running in real-time. This is educational for
191 // understanding how the algorithm works. See debug_enable.go.
192 f = debug.Begin(nx, ny, f, &fwdPath.es, &revPath.es)
193
Matteo Scandoloa6a3aee2019-11-26 13:30:14 -0700194 // The algorithm below is a greedy, meet-in-the-middle algorithm for
195 // computing sub-optimal edit-scripts between two lists.
196 //
197 // The algorithm is approximately as follows:
198 // • Searching for differences switches back-and-forth between
199 // a search that starts at the beginning (the top-left corner), and
200 // a search that starts at the end (the bottom-right corner). The goal of
201 // the search is connect with the search from the opposite corner.
202 // • As we search, we build a path in a greedy manner, where the first
203 // match seen is added to the path (this is sub-optimal, but provides a
204 // decent result in practice). When matches are found, we try the next pair
205 // of symbols in the lists and follow all matches as far as possible.
206 // • When searching for matches, we search along a diagonal going through
207 // through the "frontier" point. If no matches are found, we advance the
208 // frontier towards the opposite corner.
209 // • This algorithm terminates when either the X coordinates or the
210 // Y coordinates of the forward and reverse frontier points ever intersect.
David K. Bainbridgec415efe2021-08-19 13:05:21 +0000211
Matteo Scandoloa6a3aee2019-11-26 13:30:14 -0700212 // This algorithm is correct even if searching only in the forward direction
213 // or in the reverse direction. We do both because it is commonly observed
214 // that two lists commonly differ because elements were added to the front
215 // or end of the other list.
216 //
David K. Bainbridgec415efe2021-08-19 13:05:21 +0000217 // Non-deterministically start with either the forward or reverse direction
218 // to introduce some deliberate instability so that we have the flexibility
219 // to change this algorithm in the future.
220 if flags.Deterministic || randBool {
221 goto forwardSearch
222 } else {
223 goto reverseSearch
224 }
225
226forwardSearch:
227 {
Matteo Scandoloa6a3aee2019-11-26 13:30:14 -0700228 // Forward search from the beginning.
229 if fwdFrontier.X >= revFrontier.X || fwdFrontier.Y >= revFrontier.Y || searchBudget == 0 {
David K. Bainbridgec415efe2021-08-19 13:05:21 +0000230 goto finishSearch
Matteo Scandoloa6a3aee2019-11-26 13:30:14 -0700231 }
232 for stop1, stop2, i := false, false, 0; !(stop1 && stop2) && searchBudget > 0; i++ {
233 // Search in a diagonal pattern for a match.
234 z := zigzag(i)
235 p := point{fwdFrontier.X + z, fwdFrontier.Y - z}
236 switch {
237 case p.X >= revPath.X || p.Y < fwdPath.Y:
238 stop1 = true // Hit top-right corner
239 case p.Y >= revPath.Y || p.X < fwdPath.X:
240 stop2 = true // Hit bottom-left corner
241 case f(p.X, p.Y).Equal():
242 // Match found, so connect the path to this point.
243 fwdPath.connect(p, f)
244 fwdPath.append(Identity)
245 // Follow sequence of matches as far as possible.
246 for fwdPath.X < revPath.X && fwdPath.Y < revPath.Y {
247 if !f(fwdPath.X, fwdPath.Y).Equal() {
248 break
249 }
250 fwdPath.append(Identity)
251 }
252 fwdFrontier = fwdPath.point
253 stop1, stop2 = true, true
254 default:
255 searchBudget-- // Match not found
256 }
257 debug.Update()
258 }
259 // Advance the frontier towards reverse point.
260 if revPath.X-fwdFrontier.X >= revPath.Y-fwdFrontier.Y {
261 fwdFrontier.X++
262 } else {
263 fwdFrontier.Y++
264 }
David K. Bainbridgec415efe2021-08-19 13:05:21 +0000265 goto reverseSearch
266 }
Matteo Scandoloa6a3aee2019-11-26 13:30:14 -0700267
David K. Bainbridgec415efe2021-08-19 13:05:21 +0000268reverseSearch:
269 {
Matteo Scandoloa6a3aee2019-11-26 13:30:14 -0700270 // Reverse search from the end.
271 if fwdFrontier.X >= revFrontier.X || fwdFrontier.Y >= revFrontier.Y || searchBudget == 0 {
David K. Bainbridgec415efe2021-08-19 13:05:21 +0000272 goto finishSearch
Matteo Scandoloa6a3aee2019-11-26 13:30:14 -0700273 }
274 for stop1, stop2, i := false, false, 0; !(stop1 && stop2) && searchBudget > 0; i++ {
275 // Search in a diagonal pattern for a match.
276 z := zigzag(i)
277 p := point{revFrontier.X - z, revFrontier.Y + z}
278 switch {
279 case fwdPath.X >= p.X || revPath.Y < p.Y:
280 stop1 = true // Hit bottom-left corner
281 case fwdPath.Y >= p.Y || revPath.X < p.X:
282 stop2 = true // Hit top-right corner
283 case f(p.X-1, p.Y-1).Equal():
284 // Match found, so connect the path to this point.
285 revPath.connect(p, f)
286 revPath.append(Identity)
287 // Follow sequence of matches as far as possible.
288 for fwdPath.X < revPath.X && fwdPath.Y < revPath.Y {
289 if !f(revPath.X-1, revPath.Y-1).Equal() {
290 break
291 }
292 revPath.append(Identity)
293 }
294 revFrontier = revPath.point
295 stop1, stop2 = true, true
296 default:
297 searchBudget-- // Match not found
298 }
299 debug.Update()
300 }
301 // Advance the frontier towards forward point.
302 if revFrontier.X-fwdPath.X >= revFrontier.Y-fwdPath.Y {
303 revFrontier.X--
304 } else {
305 revFrontier.Y--
306 }
David K. Bainbridgec415efe2021-08-19 13:05:21 +0000307 goto forwardSearch
Matteo Scandoloa6a3aee2019-11-26 13:30:14 -0700308 }
309
David K. Bainbridgec415efe2021-08-19 13:05:21 +0000310finishSearch:
Matteo Scandoloa6a3aee2019-11-26 13:30:14 -0700311 // Join the forward and reverse paths and then append the reverse path.
312 fwdPath.connect(revPath.point, f)
313 for i := len(revPath.es) - 1; i >= 0; i-- {
314 t := revPath.es[i]
315 revPath.es = revPath.es[:i]
316 fwdPath.append(t)
317 }
318 debug.Finish()
319 return fwdPath.es
320}
321
322type path struct {
323 dir int // +1 if forward, -1 if reverse
324 point // Leading point of the EditScript path
325 es EditScript
326}
327
328// connect appends any necessary Identity, Modified, UniqueX, or UniqueY types
329// to the edit-script to connect p.point to dst.
330func (p *path) connect(dst point, f EqualFunc) {
331 if p.dir > 0 {
332 // Connect in forward direction.
333 for dst.X > p.X && dst.Y > p.Y {
334 switch r := f(p.X, p.Y); {
335 case r.Equal():
336 p.append(Identity)
337 case r.Similar():
338 p.append(Modified)
339 case dst.X-p.X >= dst.Y-p.Y:
340 p.append(UniqueX)
341 default:
342 p.append(UniqueY)
343 }
344 }
345 for dst.X > p.X {
346 p.append(UniqueX)
347 }
348 for dst.Y > p.Y {
349 p.append(UniqueY)
350 }
351 } else {
352 // Connect in reverse direction.
353 for p.X > dst.X && p.Y > dst.Y {
354 switch r := f(p.X-1, p.Y-1); {
355 case r.Equal():
356 p.append(Identity)
357 case r.Similar():
358 p.append(Modified)
359 case p.Y-dst.Y >= p.X-dst.X:
360 p.append(UniqueY)
361 default:
362 p.append(UniqueX)
363 }
364 }
365 for p.X > dst.X {
366 p.append(UniqueX)
367 }
368 for p.Y > dst.Y {
369 p.append(UniqueY)
370 }
371 }
372}
373
374func (p *path) append(t EditType) {
375 p.es = append(p.es, t)
376 switch t {
377 case Identity, Modified:
378 p.add(p.dir, p.dir)
379 case UniqueX:
380 p.add(p.dir, 0)
381 case UniqueY:
382 p.add(0, p.dir)
383 }
384 debug.Update()
385}
386
387type point struct{ X, Y int }
388
389func (p *point) add(dx, dy int) { p.X += dx; p.Y += dy }
390
391// zigzag maps a consecutive sequence of integers to a zig-zag sequence.
392// [0 1 2 3 4 5 ...] => [0 -1 +1 -2 +2 ...]
393func zigzag(x int) int {
394 if x&1 != 0 {
395 x = ^x
396 }
397 return x >> 1
398}