blob: b412a96c5043b1b96e217fa534cd82daa052f549 [file] [log] [blame]
Don Newton98fd8812019-09-23 15:15:02 -04001// Copyright 2014 The Go Authors. All rights reserved.
2// Use of this source code is governed by a BSD-style
3// license that can be found in the LICENSE file.
4
5package hpack
6
7import (
8 "bytes"
9 "errors"
10 "io"
11 "sync"
12)
13
14var bufPool = sync.Pool{
15 New: func() interface{} { return new(bytes.Buffer) },
16}
17
18// HuffmanDecode decodes the string in v and writes the expanded
19// result to w, returning the number of bytes written to w and the
20// Write call's return value. At most one Write call is made.
21func HuffmanDecode(w io.Writer, v []byte) (int, error) {
22 buf := bufPool.Get().(*bytes.Buffer)
23 buf.Reset()
24 defer bufPool.Put(buf)
25 if err := huffmanDecode(buf, 0, v); err != nil {
26 return 0, err
27 }
28 return w.Write(buf.Bytes())
29}
30
31// HuffmanDecodeToString decodes the string in v.
32func HuffmanDecodeToString(v []byte) (string, error) {
33 buf := bufPool.Get().(*bytes.Buffer)
34 buf.Reset()
35 defer bufPool.Put(buf)
36 if err := huffmanDecode(buf, 0, v); err != nil {
37 return "", err
38 }
39 return buf.String(), nil
40}
41
42// ErrInvalidHuffman is returned for errors found decoding
43// Huffman-encoded strings.
44var ErrInvalidHuffman = errors.New("hpack: invalid Huffman-encoded data")
45
46// huffmanDecode decodes v to buf.
47// If maxLen is greater than 0, attempts to write more to buf than
48// maxLen bytes will return ErrStringLength.
49func huffmanDecode(buf *bytes.Buffer, maxLen int, v []byte) error {
50 rootHuffmanNode := getRootHuffmanNode()
51 n := rootHuffmanNode
52 // cur is the bit buffer that has not been fed into n.
53 // cbits is the number of low order bits in cur that are valid.
54 // sbits is the number of bits of the symbol prefix being decoded.
55 cur, cbits, sbits := uint(0), uint8(0), uint8(0)
56 for _, b := range v {
57 cur = cur<<8 | uint(b)
58 cbits += 8
59 sbits += 8
60 for cbits >= 8 {
61 idx := byte(cur >> (cbits - 8))
62 n = n.children[idx]
63 if n == nil {
64 return ErrInvalidHuffman
65 }
66 if n.children == nil {
67 if maxLen != 0 && buf.Len() == maxLen {
68 return ErrStringLength
69 }
70 buf.WriteByte(n.sym)
71 cbits -= n.codeLen
72 n = rootHuffmanNode
73 sbits = cbits
74 } else {
75 cbits -= 8
76 }
77 }
78 }
79 for cbits > 0 {
80 n = n.children[byte(cur<<(8-cbits))]
81 if n == nil {
82 return ErrInvalidHuffman
83 }
84 if n.children != nil || n.codeLen > cbits {
85 break
86 }
87 if maxLen != 0 && buf.Len() == maxLen {
88 return ErrStringLength
89 }
90 buf.WriteByte(n.sym)
91 cbits -= n.codeLen
92 n = rootHuffmanNode
93 sbits = cbits
94 }
95 if sbits > 7 {
96 // Either there was an incomplete symbol, or overlong padding.
97 // Both are decoding errors per RFC 7541 section 5.2.
98 return ErrInvalidHuffman
99 }
100 if mask := uint(1<<cbits - 1); cur&mask != mask {
101 // Trailing bits must be a prefix of EOS per RFC 7541 section 5.2.
102 return ErrInvalidHuffman
103 }
104
105 return nil
106}
107
108type node struct {
109 // children is non-nil for internal nodes
110 children *[256]*node
111
112 // The following are only valid if children is nil:
113 codeLen uint8 // number of bits that led to the output of sym
114 sym byte // output symbol
115}
116
117func newInternalNode() *node {
118 return &node{children: new([256]*node)}
119}
120
121var (
122 buildRootOnce sync.Once
123 lazyRootHuffmanNode *node
124)
125
126func getRootHuffmanNode() *node {
127 buildRootOnce.Do(buildRootHuffmanNode)
128 return lazyRootHuffmanNode
129}
130
131func buildRootHuffmanNode() {
132 if len(huffmanCodes) != 256 {
133 panic("unexpected size")
134 }
135 lazyRootHuffmanNode = newInternalNode()
136 for i, code := range huffmanCodes {
137 addDecoderNode(byte(i), code, huffmanCodeLen[i])
138 }
139}
140
141func addDecoderNode(sym byte, code uint32, codeLen uint8) {
142 cur := lazyRootHuffmanNode
143 for codeLen > 8 {
144 codeLen -= 8
145 i := uint8(code >> codeLen)
146 if cur.children[i] == nil {
147 cur.children[i] = newInternalNode()
148 }
149 cur = cur.children[i]
150 }
151 shift := 8 - codeLen
152 start, end := int(uint8(code<<shift)), int(1<<shift)
153 for i := start; i < start+end; i++ {
154 cur.children[i] = &node{sym: sym, codeLen: codeLen}
155 }
156}
157
158// AppendHuffmanString appends s, as encoded in Huffman codes, to dst
159// and returns the extended buffer.
160func AppendHuffmanString(dst []byte, s string) []byte {
161 rembits := uint8(8)
162
163 for i := 0; i < len(s); i++ {
164 if rembits == 8 {
165 dst = append(dst, 0)
166 }
167 dst, rembits = appendByteToHuffmanCode(dst, rembits, s[i])
168 }
169
170 if rembits < 8 {
171 // special EOS symbol
172 code := uint32(0x3fffffff)
173 nbits := uint8(30)
174
175 t := uint8(code >> (nbits - rembits))
176 dst[len(dst)-1] |= t
177 }
178
179 return dst
180}
181
182// HuffmanEncodeLength returns the number of bytes required to encode
183// s in Huffman codes. The result is round up to byte boundary.
184func HuffmanEncodeLength(s string) uint64 {
185 n := uint64(0)
186 for i := 0; i < len(s); i++ {
187 n += uint64(huffmanCodeLen[s[i]])
188 }
189 return (n + 7) / 8
190}
191
192// appendByteToHuffmanCode appends Huffman code for c to dst and
193// returns the extended buffer and the remaining bits in the last
194// element. The appending is not byte aligned and the remaining bits
195// in the last element of dst is given in rembits.
196func appendByteToHuffmanCode(dst []byte, rembits uint8, c byte) ([]byte, uint8) {
197 code := huffmanCodes[c]
198 nbits := huffmanCodeLen[c]
199
200 for {
201 if rembits > nbits {
202 t := uint8(code << (rembits - nbits))
203 dst[len(dst)-1] |= t
204 rembits -= nbits
205 break
206 }
207
208 t := uint8(code >> (nbits - rembits))
209 dst[len(dst)-1] |= t
210
211 nbits -= rembits
212 rembits = 8
213
214 if nbits == 0 {
215 break
216 }
217
218 dst = append(dst, 0)
219 }
220
221 return dst, rembits
222}