blob: 037734c68ec0264051ec9c4833ca39d587229984 [file] [log] [blame]
"""
SPDX-FileCopyrightText: 2020-present Open Networking Foundation <info@opennetworking.org>
SPDX-License-Identifier: LicenseRef-ONF-Member-1.01
"""
from __future__ import print_function
import logging as log
import os
import sys
import time
from argparse import ArgumentParser, SUPPRESS
import cv2
from imutils import build_montages
from openvino.inference_engine import IECore
def build_argparser():
parser = ArgumentParser(add_help=False)
args = parser.add_argument_group('Options')
args.add_argument('-h', '--help', action='help', default=SUPPRESS, help='Show this help message and exit.')
args.add_argument("-m", "--model", help="Required. Path to an .xml file with a trained model.",
required=True, type=str)
args.add_argument("-i", "--input",
help="Required. Path to video file or image. 'cam' for capturing video stream from camera",
required=True, type=str)
# args.add_argument("-i2", "--input2",
# help="Optional. Path to second video file or image. 'cam' for capturing video stream from camera",
# default=None, type=str)
args.add_argument("-l", "--cpu_extension",
help="Optional. Required for CPU custom layers. Absolute path to a shared library with the "
"kernels implementations.", type=str, default=None)
args.add_argument("-pp", "--plugin_dir", help="Optional. Path to a plugin folder", type=str, default=None)
args.add_argument("-d", "--device",
help="Optional. Specify the target device to infer on; CPU, GPU, FPGA, HDDL or MYRIAD is "
"acceptable. The demo will look for a suitable plugin for device specified. "
"Default value is CPU", default="CPU", type=str)
args.add_argument("--labels", help="Optional. Path to labels mapping file", default=None, type=str)
args.add_argument("-pt", "--prob_threshold", help="Optional. Probability threshold for detections filtering",
default=0.5, type=float)
args.add_argument("-ns", help='No show output', action='store_true')
return parser
def main():
log.basicConfig(format="[ %(levelname)s ] %(message)s", level=log.INFO, stream=sys.stdout)
args = build_argparser().parse_args()
model_xml = args.model
model_bin = os.path.splitext(model_xml)[0] + ".bin"
# Plugin initialization for specified device and load extensions library if specified
log.info("Initializing plugin for {} device...".format(args.device))
# plugin = IEPlugin(device=args.device, plugin_dirs=args.plugin_dir)
# if args.cpu_extension and 'CPU' in args.device:
# plugin.add_cpu_extension(args.cpu_extension)
# Read IR
log.info("Reading IR...")
net = IECore().read_network(model=model_xml, weights=model_bin)
assert len(net.inputs.keys()) == 1, "Demo supports only single input topologies"
assert len(net.outputs) == 1, "Demo supports only single output topologies"
input_blob = next(iter(net.inputs))
out_blob = next(iter(net.outputs))
# input_blob2 = next(iter(net.inputs))
# out_blob2 = next(iter(net.outputs))
log.info("Loading IR to the plugin...")
# exec_net = IECore().load_network(network=net, device_name=args.device, num_requests=2)
exec_net = IECore().load_network(network=net, device_name=args.device, num_requests=1)
# Read and pre-process input image
n, c, h, w = net.inputs[input_blob].shape
# n2, c2, h2, w2 = net.inputs[input_blob2].shape
del net
if args.input == 'cam':
input_stream = 0
elif args.input == 'gstreamer':
# gst rtp sink
input_stream = 'udpsrc port=5000 caps = " application/x-rtp, encoding-name=JPEG,payload=26" ! rtpjpegdepay ! decodebin ! videoconvert ! appsink'
#input_stream = 'udpsrc port=5000 caps = "application/x-rtp, media=(string)video, clock-rate=(int)90000, encoding-name=(string)H264, payload=(int)96" ! rtph264depay ! decodebin ! videoconvert ! appsink'
else:
input_stream = args.input
assert os.path.isfile(args.input), "Specified input file doesn't exist"
if input_stream == 'gstreamer':
cap = cv2.VideoCapture(input_stream, cv2.CAP_GSTREAMER)
else:
cap = cv2.VideoCapture(input_stream)
# if args.input2 == 'cam':
# input_stream2 = 0
# elif args.input2 == 'gstreamer':
# input_stream2 = 'udpsrc port=5001 caps = " application/x-rtp, encoding-name=JPEG,payload=26" ! rtpjpegdepay ! decodebin ! videoconvert ! appsink'
# else:
# input_stream2 = args.input2
# assert os.path.isfile(args.input2), "Specified input file doesn't exist"
if args.labels:
with open(args.labels, 'r') as f:
labels_map = [x.strip() for x in f]
else:
labels_map = None
# if input_stream2 == 'gstreamer':
# cap2 = cv2.VideoCapture(input_stream2, cv2.CAP_GSTREAMER)
# else:
# cap2 = cv2.VideoCapture(input_stream2)
cur_request_id = 0
next_request_id = 1
# cur_request_id2 = 1
# next_request_id2 = 0
log.info("Starting inference in async mode...")
log.info("To switch between sync and async modes press Tab button")
log.info("To stop the demo execution press Esc button")
# Async doesn't work if True
# Request issues = Runtime Error: [REQUEST BUSY]
is_async_mode = False
render_time = 0
ret, frame = cap.read()
# ret2, frame2 = cap2.read()
# Montage width and height
# In this case means 2x1 boxes
mW = 2
mH = 1
frameList = []
print("To close the application, press 'CTRL+C' or any key with focus on the output window")
# while cap.isOpened() or cap2.isOpened():
while cap.isOpened():
if is_async_mode:
ret, next_frame = cap.read()
# ret2, next_frame2 = cap2.read()
else:
ret, frame = cap.read()
# ret2, frame2 = cap2.read()
#if not (ret and ret2):
if not ret:
break
initial_w = cap.get(3)
initial_h = cap.get(4)
# initial_w2 = cap2.get(3)
# initial_h2 = cap2.get(4)
# Main sync point:
# in the truly Async mode we start the NEXT infer request, while waiting for the CURRENT to complete
# in the regular mode we start the CURRENT request and immediately wait for it's completion
inf_start = time.time()
if is_async_mode:
# if ret and ret2:
if ret:
in_frame = cv2.resize(next_frame, (w, h))
in_frame = in_frame.transpose((2, 0, 1)) # Change data layout from HWC to CHW
in_frame = in_frame.reshape((n, c, h, w))
exec_net.start_async(request_id=next_request_id, inputs={input_blob: in_frame})
# in_frame2 = cv2.resize(next_frame2, (w2, h2))
# in_frame2 = in_frame2.transpose((2, 0, 1)) # Change data layout from HWC to CHW
# in_frame2 = in_frame2.reshape((n2, c2, h2, w2))
# exec_net.start_async(request_id=next_request_id2, inputs={input_blob2: in_frame2})
else:
# if (ret and ret2):
if ret:
in_frame = cv2.resize(frame, (w, h))
in_frame = in_frame.transpose((2, 0, 1)) # Change data layout from HWC to CHW
in_frame = in_frame.reshape((n, c, h, w))
exec_net.start_async(request_id=cur_request_id, inputs={input_blob: in_frame})
# in_frame2 = cv2.resize(frame2, (w2, h2))
# in_frame2 = in_frame2.transpose((2, 0, 1)) # Change data layout from HWC to CHW
# in_frame2 = in_frame2.reshape((n2, c2, h2, w2))
# exec_net.start_async(request_id=cur_request_id2, inputs={input_blob2: in_frame2})
# if exec_net.requests[cur_request_id].wait(-1) == 0 and exec_net.requests[cur_request_id2].wait(-1) == 0:
if exec_net.requests[cur_request_id].wait(-1) == 0:
inf_end = time.time()
det_time = inf_end - inf_start
# Parse detection results of the current request
res = exec_net.requests[cur_request_id].outputs[out_blob]
# res2 = exec_net.requests[cur_request_id2].outputs[out_blob2]
for obj in res[0][0]:
# Draw only objects when probability more than specified threshold
if obj[2] > args.prob_threshold:
xmin = int(obj[3] * initial_w)
ymin = int(obj[4] * initial_h)
xmax = int(obj[5] * initial_w)
ymax = int(obj[6] * initial_h)
class_id = int(obj[1])
# Draw box and label\class_id
color = (min(class_id * 12.5, 255), min(class_id * 7, 255), min(class_id * 5, 255))
cv2.rectangle(frame, (xmin, ymin), (xmax, ymax), color, 2)
det_label = labels_map[class_id] if labels_map else str(class_id)
cv2.putText(frame, det_label + ' ' + str(round(obj[2] * 100, 1)) + ' %', (xmin, ymin - 7),
cv2.FONT_HERSHEY_COMPLEX, 0.6, color, 1)
print('Object detected, class_id:', class_id, 'probability:', obj[2], 'xmin:', xmin, 'ymin:', ymin,
'xmax:', xmax, 'ymax:', ymax)
# for obj in res2[0][0]:
# # Draw only objects when probability more than specified threshold
# if obj[2] > args.prob_threshold:
# xmin = int(obj[3] * initial_w2)
# ymin = int(obj[4] * initial_h2)
# xmax = int(obj[5] * initial_w2)
# ymax = int(obj[6] * initial_h2)
# class_id = int(obj[1])
# # Draw box and label\class_id
# color = (min(class_id * 12.5, 255), min(class_id * 7, 255), min(class_id * 5, 255))
# cv2.rectangle(frame2, (xmin, ymin), (xmax, ymax), color, 2)
# det_label = labels_map[class_id] if labels_map else str(class_id)
# cv2.putText(frame2, det_label + ' ' + str(round(obj[2] * 100, 1)) + ' %', (xmin, ymin - 7),
# cv2.FONT_HERSHEY_COMPLEX, 0.6, color, 1)
# print('Object detected, class_id:', class_id, 'probability:', obj[2], 'xmin:', xmin, 'ymin:', ymin,
# 'xmax:', xmax, 'ymax:', ymax)
# Draw performance stats
inf_time_message = "Inference time: Not applicable for async mode" if is_async_mode else \
"Inference time: {:.3f} ms".format(det_time * 1000)
render_time_message = "OpenCV rendering time: {:.3f} ms".format(render_time * 1000)
if is_async_mode:
async_mode_message = "Async mode is on. Processing request {}".format(cur_request_id)
else:
async_mode_message = "Async mode is off. Processing request {}".format(cur_request_id)
cv2.putText(frame, inf_time_message, (15, 15), cv2.FONT_HERSHEY_COMPLEX, 0.5, (200, 10, 10), 1)
cv2.putText(frame, render_time_message, (15, 30), cv2.FONT_HERSHEY_COMPLEX, 0.5, (10, 10, 200), 1)
cv2.putText(frame, async_mode_message, (10, int(initial_h - 20)), cv2.FONT_HERSHEY_COMPLEX, 0.5,
(10, 10, 200), 1)
# cv2.putText(frame2, inf_time_message, (15, 15), cv2.FONT_HERSHEY_COMPLEX, 0.5, (200, 10, 10), 1)
# cv2.putText(frame2, render_time_message, (15, 30), cv2.FONT_HERSHEY_COMPLEX, 0.5, (10, 10, 200), 1)
# cv2.putText(frame2, async_mode_message, (10, int(initial_h - 20)), cv2.FONT_HERSHEY_COMPLEX, 0.5,
# (10, 10, 200), 1)
render_start = time.time()
if not args.ns:
# if ret and ret2:
if ret:
# frameList.append(frame)
# # frameList.append(frame2)
# montages = build_montages(frameList, (640, 480), (mW, mH))
# for montage in montages:
# cv2.imshow("Detection results", montage)
cv2.imshow("Detection results", frame)
render_end = time.time()
render_time = render_end - render_start
if is_async_mode:
cur_request_id, next_request_id = next_request_id, cur_request_id
frame = next_frame
# frame2 = next_frame2
key = cv2.waitKey(1)
if key == 27:
break
if 9 == key:
is_async_mode = not is_async_mode
log.info("Switched to {} mode".format("async" if is_async_mode else "sync"))
cap.release()
# cap2.release()
cv2.destroyAllWindows()
if __name__ == '__main__':
sys.exit(main() or 0)