blob: 037734c68ec0264051ec9c4833ca39d587229984 [file] [log] [blame]
Shad Ansari47432b62021-09-27 22:46:25 +00001"""
2SPDX-FileCopyrightText: 2020-present Open Networking Foundation <info@opennetworking.org>
3SPDX-License-Identifier: LicenseRef-ONF-Member-1.01
4"""
5
6from __future__ import print_function
7
8import logging as log
9import os
10import sys
11import time
12from argparse import ArgumentParser, SUPPRESS
13
14import cv2
15from imutils import build_montages
16from openvino.inference_engine import IECore
17
18
19def build_argparser():
20 parser = ArgumentParser(add_help=False)
21 args = parser.add_argument_group('Options')
22 args.add_argument('-h', '--help', action='help', default=SUPPRESS, help='Show this help message and exit.')
23 args.add_argument("-m", "--model", help="Required. Path to an .xml file with a trained model.",
24 required=True, type=str)
25 args.add_argument("-i", "--input",
26 help="Required. Path to video file or image. 'cam' for capturing video stream from camera",
27 required=True, type=str)
28 # args.add_argument("-i2", "--input2",
29 # help="Optional. Path to second video file or image. 'cam' for capturing video stream from camera",
30 # default=None, type=str)
31 args.add_argument("-l", "--cpu_extension",
32 help="Optional. Required for CPU custom layers. Absolute path to a shared library with the "
33 "kernels implementations.", type=str, default=None)
34 args.add_argument("-pp", "--plugin_dir", help="Optional. Path to a plugin folder", type=str, default=None)
35 args.add_argument("-d", "--device",
36 help="Optional. Specify the target device to infer on; CPU, GPU, FPGA, HDDL or MYRIAD is "
37 "acceptable. The demo will look for a suitable plugin for device specified. "
38 "Default value is CPU", default="CPU", type=str)
39 args.add_argument("--labels", help="Optional. Path to labels mapping file", default=None, type=str)
40 args.add_argument("-pt", "--prob_threshold", help="Optional. Probability threshold for detections filtering",
41 default=0.5, type=float)
42 args.add_argument("-ns", help='No show output', action='store_true')
43
44 return parser
45
46
47def main():
48 log.basicConfig(format="[ %(levelname)s ] %(message)s", level=log.INFO, stream=sys.stdout)
49 args = build_argparser().parse_args()
50 model_xml = args.model
51 model_bin = os.path.splitext(model_xml)[0] + ".bin"
52 # Plugin initialization for specified device and load extensions library if specified
53 log.info("Initializing plugin for {} device...".format(args.device))
54 # plugin = IEPlugin(device=args.device, plugin_dirs=args.plugin_dir)
55 # if args.cpu_extension and 'CPU' in args.device:
56 # plugin.add_cpu_extension(args.cpu_extension)
57 # Read IR
58 log.info("Reading IR...")
59 net = IECore().read_network(model=model_xml, weights=model_bin)
60
61 assert len(net.inputs.keys()) == 1, "Demo supports only single input topologies"
62 assert len(net.outputs) == 1, "Demo supports only single output topologies"
63 input_blob = next(iter(net.inputs))
64 out_blob = next(iter(net.outputs))
65
66 # input_blob2 = next(iter(net.inputs))
67 # out_blob2 = next(iter(net.outputs))
68
69 log.info("Loading IR to the plugin...")
70 # exec_net = IECore().load_network(network=net, device_name=args.device, num_requests=2)
71 exec_net = IECore().load_network(network=net, device_name=args.device, num_requests=1)
72 # Read and pre-process input image
73 n, c, h, w = net.inputs[input_blob].shape
74 # n2, c2, h2, w2 = net.inputs[input_blob2].shape
75 del net
76 if args.input == 'cam':
77 input_stream = 0
78 elif args.input == 'gstreamer':
79 # gst rtp sink
80 input_stream = 'udpsrc port=5000 caps = " application/x-rtp, encoding-name=JPEG,payload=26" ! rtpjpegdepay ! decodebin ! videoconvert ! appsink'
81 #input_stream = 'udpsrc port=5000 caps = "application/x-rtp, media=(string)video, clock-rate=(int)90000, encoding-name=(string)H264, payload=(int)96" ! rtph264depay ! decodebin ! videoconvert ! appsink'
82 else:
83 input_stream = args.input
84 assert os.path.isfile(args.input), "Specified input file doesn't exist"
85
86 if input_stream == 'gstreamer':
87 cap = cv2.VideoCapture(input_stream, cv2.CAP_GSTREAMER)
88 else:
89 cap = cv2.VideoCapture(input_stream)
90
91 # if args.input2 == 'cam':
92 # input_stream2 = 0
93 # elif args.input2 == 'gstreamer':
94 # input_stream2 = 'udpsrc port=5001 caps = " application/x-rtp, encoding-name=JPEG,payload=26" ! rtpjpegdepay ! decodebin ! videoconvert ! appsink'
95 # else:
96 # input_stream2 = args.input2
97 # assert os.path.isfile(args.input2), "Specified input file doesn't exist"
98 if args.labels:
99 with open(args.labels, 'r') as f:
100 labels_map = [x.strip() for x in f]
101 else:
102 labels_map = None
103
104 # if input_stream2 == 'gstreamer':
105 # cap2 = cv2.VideoCapture(input_stream2, cv2.CAP_GSTREAMER)
106 # else:
107 # cap2 = cv2.VideoCapture(input_stream2)
108
109 cur_request_id = 0
110 next_request_id = 1
111
112 # cur_request_id2 = 1
113 # next_request_id2 = 0
114
115 log.info("Starting inference in async mode...")
116 log.info("To switch between sync and async modes press Tab button")
117 log.info("To stop the demo execution press Esc button")
118
119 # Async doesn't work if True
120 # Request issues = Runtime Error: [REQUEST BUSY]
121 is_async_mode = False
122 render_time = 0
123 ret, frame = cap.read()
124 # ret2, frame2 = cap2.read()
125
126 # Montage width and height
127 # In this case means 2x1 boxes
128 mW = 2
129 mH = 1
130
131 frameList = []
132
133 print("To close the application, press 'CTRL+C' or any key with focus on the output window")
134 # while cap.isOpened() or cap2.isOpened():
135 while cap.isOpened():
136 if is_async_mode:
137 ret, next_frame = cap.read()
138 # ret2, next_frame2 = cap2.read()
139 else:
140 ret, frame = cap.read()
141 # ret2, frame2 = cap2.read()
142 #if not (ret and ret2):
143 if not ret:
144 break
145 initial_w = cap.get(3)
146 initial_h = cap.get(4)
147 # initial_w2 = cap2.get(3)
148 # initial_h2 = cap2.get(4)
149 # Main sync point:
150 # in the truly Async mode we start the NEXT infer request, while waiting for the CURRENT to complete
151 # in the regular mode we start the CURRENT request and immediately wait for it's completion
152 inf_start = time.time()
153 if is_async_mode:
154 # if ret and ret2:
155 if ret:
156 in_frame = cv2.resize(next_frame, (w, h))
157 in_frame = in_frame.transpose((2, 0, 1)) # Change data layout from HWC to CHW
158 in_frame = in_frame.reshape((n, c, h, w))
159 exec_net.start_async(request_id=next_request_id, inputs={input_blob: in_frame})
160
161 # in_frame2 = cv2.resize(next_frame2, (w2, h2))
162 # in_frame2 = in_frame2.transpose((2, 0, 1)) # Change data layout from HWC to CHW
163 # in_frame2 = in_frame2.reshape((n2, c2, h2, w2))
164 # exec_net.start_async(request_id=next_request_id2, inputs={input_blob2: in_frame2})
165
166 else:
167 # if (ret and ret2):
168 if ret:
169 in_frame = cv2.resize(frame, (w, h))
170 in_frame = in_frame.transpose((2, 0, 1)) # Change data layout from HWC to CHW
171 in_frame = in_frame.reshape((n, c, h, w))
172 exec_net.start_async(request_id=cur_request_id, inputs={input_blob: in_frame})
173
174 # in_frame2 = cv2.resize(frame2, (w2, h2))
175 # in_frame2 = in_frame2.transpose((2, 0, 1)) # Change data layout from HWC to CHW
176 # in_frame2 = in_frame2.reshape((n2, c2, h2, w2))
177 # exec_net.start_async(request_id=cur_request_id2, inputs={input_blob2: in_frame2})
178
179 # if exec_net.requests[cur_request_id].wait(-1) == 0 and exec_net.requests[cur_request_id2].wait(-1) == 0:
180 if exec_net.requests[cur_request_id].wait(-1) == 0:
181 inf_end = time.time()
182 det_time = inf_end - inf_start
183
184 # Parse detection results of the current request
185 res = exec_net.requests[cur_request_id].outputs[out_blob]
186 # res2 = exec_net.requests[cur_request_id2].outputs[out_blob2]
187
188 for obj in res[0][0]:
189 # Draw only objects when probability more than specified threshold
190 if obj[2] > args.prob_threshold:
191 xmin = int(obj[3] * initial_w)
192 ymin = int(obj[4] * initial_h)
193 xmax = int(obj[5] * initial_w)
194 ymax = int(obj[6] * initial_h)
195 class_id = int(obj[1])
196 # Draw box and label\class_id
197 color = (min(class_id * 12.5, 255), min(class_id * 7, 255), min(class_id * 5, 255))
198 cv2.rectangle(frame, (xmin, ymin), (xmax, ymax), color, 2)
199 det_label = labels_map[class_id] if labels_map else str(class_id)
200 cv2.putText(frame, det_label + ' ' + str(round(obj[2] * 100, 1)) + ' %', (xmin, ymin - 7),
201 cv2.FONT_HERSHEY_COMPLEX, 0.6, color, 1)
202 print('Object detected, class_id:', class_id, 'probability:', obj[2], 'xmin:', xmin, 'ymin:', ymin,
203 'xmax:', xmax, 'ymax:', ymax)
204
205 # for obj in res2[0][0]:
206 # # Draw only objects when probability more than specified threshold
207 # if obj[2] > args.prob_threshold:
208 # xmin = int(obj[3] * initial_w2)
209 # ymin = int(obj[4] * initial_h2)
210 # xmax = int(obj[5] * initial_w2)
211 # ymax = int(obj[6] * initial_h2)
212 # class_id = int(obj[1])
213 # # Draw box and label\class_id
214 # color = (min(class_id * 12.5, 255), min(class_id * 7, 255), min(class_id * 5, 255))
215 # cv2.rectangle(frame2, (xmin, ymin), (xmax, ymax), color, 2)
216 # det_label = labels_map[class_id] if labels_map else str(class_id)
217 # cv2.putText(frame2, det_label + ' ' + str(round(obj[2] * 100, 1)) + ' %', (xmin, ymin - 7),
218 # cv2.FONT_HERSHEY_COMPLEX, 0.6, color, 1)
219 # print('Object detected, class_id:', class_id, 'probability:', obj[2], 'xmin:', xmin, 'ymin:', ymin,
220 # 'xmax:', xmax, 'ymax:', ymax)
221
222 # Draw performance stats
223 inf_time_message = "Inference time: Not applicable for async mode" if is_async_mode else \
224 "Inference time: {:.3f} ms".format(det_time * 1000)
225 render_time_message = "OpenCV rendering time: {:.3f} ms".format(render_time * 1000)
226 if is_async_mode:
227 async_mode_message = "Async mode is on. Processing request {}".format(cur_request_id)
228 else:
229 async_mode_message = "Async mode is off. Processing request {}".format(cur_request_id)
230
231 cv2.putText(frame, inf_time_message, (15, 15), cv2.FONT_HERSHEY_COMPLEX, 0.5, (200, 10, 10), 1)
232 cv2.putText(frame, render_time_message, (15, 30), cv2.FONT_HERSHEY_COMPLEX, 0.5, (10, 10, 200), 1)
233 cv2.putText(frame, async_mode_message, (10, int(initial_h - 20)), cv2.FONT_HERSHEY_COMPLEX, 0.5,
234 (10, 10, 200), 1)
235
236 # cv2.putText(frame2, inf_time_message, (15, 15), cv2.FONT_HERSHEY_COMPLEX, 0.5, (200, 10, 10), 1)
237 # cv2.putText(frame2, render_time_message, (15, 30), cv2.FONT_HERSHEY_COMPLEX, 0.5, (10, 10, 200), 1)
238 # cv2.putText(frame2, async_mode_message, (10, int(initial_h - 20)), cv2.FONT_HERSHEY_COMPLEX, 0.5,
239 # (10, 10, 200), 1)
240
241 render_start = time.time()
242
243 if not args.ns:
244 # if ret and ret2:
245 if ret:
246 # frameList.append(frame)
247 # # frameList.append(frame2)
248 # montages = build_montages(frameList, (640, 480), (mW, mH))
249 # for montage in montages:
250 # cv2.imshow("Detection results", montage)
251 cv2.imshow("Detection results", frame)
252 render_end = time.time()
253 render_time = render_end - render_start
254
255 if is_async_mode:
256 cur_request_id, next_request_id = next_request_id, cur_request_id
257
258 frame = next_frame
259 # frame2 = next_frame2
260 key = cv2.waitKey(1)
261 if key == 27:
262 break
263 if 9 == key:
264 is_async_mode = not is_async_mode
265 log.info("Switched to {} mode".format("async" if is_async_mode else "sync"))
266
267 cap.release()
268 # cap2.release()
269 cv2.destroyAllWindows()
270
271
272if __name__ == '__main__':
273 sys.exit(main() or 0)