David Lamparter | 821df2c | 2015-09-15 01:53:09 -0700 | [diff] [blame] | 1 | #include <zebra.h> |
| 2 | |
jardin | eb5d44e | 2003-12-23 08:09:43 +0000 | [diff] [blame] | 3 | #include <stdio.h> |
| 4 | #include <stdlib.h> |
| 5 | #include <string.h> |
| 6 | #include <values.h> |
| 7 | |
| 8 | #include "random.c" |
| 9 | |
| 10 | #define DASH '-' |
| 11 | #define VERY_FAR 100000000 |
| 12 | |
| 13 | /* generator of random networks for the shortest paths problem; |
| 14 | extended DIMACS format for output */ |
| 15 | |
| 16 | main ( argc, argv ) |
| 17 | |
| 18 | int argc; |
| 19 | char* argv[]; |
| 20 | |
| 21 | { |
| 22 | |
| 23 | char args[30]; |
| 24 | |
| 25 | long n, |
| 26 | n0, |
| 27 | source, |
| 28 | i, |
| 29 | i0, |
| 30 | j, |
| 31 | dij; |
| 32 | |
| 33 | long m, |
| 34 | m0, |
| 35 | mc, |
| 36 | k; |
| 37 | |
| 38 | long *p, |
| 39 | p_t, |
| 40 | l, |
| 41 | lx; |
| 42 | |
| 43 | long seed, |
| 44 | seed1, |
| 45 | seed2; |
| 46 | |
| 47 | int ext=0; |
| 48 | |
| 49 | FILE *fout; |
| 50 | |
| 51 | /* variables for lengths generating */ |
| 52 | /* initialized by default values */ |
| 53 | int l_f = 0, ll_f = 0, lm_f = 0, ln_f = 0, ls_f = 0; |
| 54 | long ll = 10000, /* length of the interval */ |
| 55 | lm = 0; /* minimal bound of the interval */ |
| 56 | double ln = 0, /* l += ln * |i-j| */ |
| 57 | ls = 0; /* l += ls * |i-j|^2 */ |
| 58 | |
| 59 | /* variables for connecting cycle(s) */ |
| 60 | int c_f = 0, cl_f = 0, ch_f = 0, c_random = 1; |
| 61 | long cl = 1; /* length of cycle arc */ |
| 62 | long ch; /* number of arcs in the cycle |
| 63 | n - by default */ |
| 64 | |
| 65 | /* variables for artifical source */ |
| 66 | int s_f = 0, sl_f = 0, sm_f = 0; |
| 67 | long sl = VERY_FAR, /* upper bound of artifical arc */ |
| 68 | sm, /* lower bound of artifical arc */ |
| 69 | s; |
| 70 | |
| 71 | /* variables for potentials */ |
| 72 | int p_f = 0, pl_f = 0, pm_f = 0, pn_f = 0, ps_f = 0, |
| 73 | pa_f = 0, pap_f = 0, pac_f = 0; |
| 74 | long pl, /* length of the interval */ |
| 75 | pm; /* minimal bound of the interval */ |
| 76 | double pn = 0, /* l += ln * |i-j| */ |
| 77 | ps = 0, /* l += ls * |i-j|^2 */ |
| 78 | pap = 0, /* part of nodes with alternative dustribution */ |
| 79 | pac = -1; /* multiplier for alternative distribution */ |
| 80 | |
| 81 | int np; /* number of parameter parsing now */ |
| 82 | |
| 83 | #define PRINT_ARC( i, j, length )\ |
| 84 | {\ |
| 85 | l = length;\ |
| 86 | if ( p_f ) l += ( p[i] - p[j] );\ |
| 87 | printf ("a %8ld %8ld %12ld\n", i, j, l );\ |
| 88 | } |
| 89 | |
| 90 | /* parsing parameters */ |
| 91 | |
| 92 | if ( argc < 2 ) goto usage; |
| 93 | |
| 94 | np = 0; |
| 95 | |
| 96 | strcpy ( args, argv[1] ); |
| 97 | |
| 98 | if ( ( args[0] == DASH ) && ( args[1] == 'h') |
| 99 | ) |
| 100 | goto help; |
| 101 | |
| 102 | if ( argc < 4 ) goto usage; |
| 103 | |
| 104 | /* first parameter - number of nodes */ |
| 105 | np = 1; |
| 106 | if ( ( n = atoi ( argv[1] ) ) < 2 ) goto usage; |
| 107 | |
| 108 | /* second parameter - number of arcs */ |
| 109 | np = 2; |
| 110 | if ( ( m = atoi ( argv[2] ) ) < n ) goto usage; |
| 111 | |
| 112 | /* third parameter - seed */ |
| 113 | np=3; |
| 114 | if ( ( seed = atoi ( argv[3] ) ) <= 0 ) goto usage; |
| 115 | |
| 116 | /* other parameters */ |
| 117 | |
| 118 | for ( np = 4; np < argc; np ++ ) |
| 119 | { |
| 120 | strcpy ( args, argv[np] ); |
| 121 | if ( args[0] != DASH ) goto usage; |
| 122 | |
| 123 | switch ( args[1] ) |
| 124 | { |
| 125 | |
| 126 | case 'l' : /* an interval for arc length */ |
| 127 | l_f = 1; |
| 128 | switch ( args[2] ) |
| 129 | { |
| 130 | case 'l': /* length of the interval */ |
| 131 | ll_f = 1; |
| 132 | ll = (long) atof ( &args[3] ); |
| 133 | break; |
| 134 | case 'm': /* minimal bound */ |
| 135 | lm_f = 1; |
| 136 | lm = (long ) atof ( &args[3] ); |
| 137 | break; |
| 138 | case 'n': /* additional length: l*|i-j| */ |
| 139 | ln_f = 1; |
| 140 | ln = atof ( &args[3] ); |
| 141 | break; |
| 142 | case 's': /* additional length: l*|i-j|^2 */ |
| 143 | ls_f = 1; |
| 144 | ls = atof ( &args[3] ); |
| 145 | break; |
| 146 | default: /* unknown switch value */ |
| 147 | goto usage; |
| 148 | } |
| 149 | break; |
| 150 | |
| 151 | case 'c' : /* connecting cycle(s) */ |
| 152 | c_f = 1; |
| 153 | switch ( args[2] ) |
| 154 | { |
| 155 | case 'l': |
| 156 | c_random = 0; |
| 157 | cl_f = 1; |
| 158 | cl = (long) atof ( &args[3] ); |
| 159 | if ( cl < 0 ) goto usage; |
| 160 | break; |
| 161 | case 'h': |
| 162 | ch_f = 1; |
| 163 | ch = (long) atof ( &args[3] ); |
| 164 | if ( ch < 2 || ch > n ) goto usage; |
| 165 | break; |
| 166 | default: /* unknown switch value */ |
| 167 | goto usage; |
| 168 | } |
| 169 | break; |
| 170 | |
| 171 | case 's' : /* additional source */ |
| 172 | s_f = 1; |
| 173 | if ( strlen ( args ) > 2 ) |
| 174 | { |
| 175 | switch ( args[2] ) |
| 176 | { |
| 177 | case 'l': /* upper bound of art. arc */ |
| 178 | sl_f = 1; |
| 179 | sl = (long) atof ( &args[3] ); |
| 180 | break; |
| 181 | case 'm': /* lower bound of art. arc */ |
| 182 | sm_f = 1; |
| 183 | sm = (long) atof ( &args[3] ); |
| 184 | break; |
| 185 | default: /* unknown switch value */ |
| 186 | goto usage; |
| 187 | } |
| 188 | } |
| 189 | break; |
| 190 | |
| 191 | case 'p' : /* potentials */ |
| 192 | p_f = 1; |
| 193 | if ( strlen ( args ) > 2 ) |
| 194 | { |
| 195 | switch ( args[2] ) |
| 196 | { |
| 197 | case 'l': /* length of the interval */ |
| 198 | pl_f = 1; |
| 199 | pl = (long) atof ( &args[3] ); |
| 200 | break; |
| 201 | case 'm': /* minimal bound */ |
| 202 | pm_f = 1; |
| 203 | pm = (long ) atof ( &args[3] ); |
| 204 | break; |
| 205 | case 'n': /* additional length: l*|i-j| */ |
| 206 | pn_f = 1; |
| 207 | pn = atof ( &args[3] ); |
| 208 | break; |
| 209 | case 's': /* additional length: l*|i-j|^2 */ |
| 210 | ps_f = 1; |
| 211 | ps = atof ( &args[3] ); |
| 212 | break; |
| 213 | case 'a': /* bipolar distribution */ |
| 214 | pa_f = 1; |
| 215 | switch ( args[3] ) |
| 216 | { |
| 217 | case 'p': /* % of alternative potentials */ |
| 218 | pap_f = 1; |
| 219 | pap = atof ( &args[4] ); |
| 220 | if ( pap < 0 ) pap = 0; |
| 221 | if ( pap > 100 ) pap = 100; |
| 222 | pap /= 100; |
| 223 | break; |
| 224 | case 'c': /* multiplier */ |
| 225 | pac_f = 1; |
| 226 | pac = atof ( &args[4] ); |
| 227 | break; |
| 228 | default: /* unknown switch value */ |
| 229 | goto usage; |
| 230 | } |
| 231 | break; |
| 232 | default: /* unknown switch value */ |
| 233 | goto usage; |
| 234 | } |
| 235 | } |
| 236 | break; |
| 237 | |
| 238 | default : /* unknoun case */ |
| 239 | goto usage; |
| 240 | } |
| 241 | } |
| 242 | |
| 243 | |
| 244 | /* ----- ajusting parameters ----- */ |
| 245 | |
| 246 | n0 = n; m0 = m; |
| 247 | |
| 248 | /* length parameters */ |
| 249 | if ( ll < lm ) { lx = ll; ll = lm; lm = lx; } |
| 250 | |
| 251 | /* potential parameters */ |
| 252 | if ( p_f ) |
| 253 | { |
| 254 | if ( ! pl_f ) pl = ll; |
| 255 | if ( ! pm_f ) pm = lm; |
| 256 | if ( pl < pm ) { lx = pl; pl = pm; pm = lx; } |
| 257 | } |
| 258 | |
| 259 | /* path(s) parameters */ |
| 260 | if ( ! ch_f ) ch = n; |
| 261 | |
| 262 | mc = n + (n-2) / (ch-1); |
| 263 | if ( mc > m ) |
| 264 | { fprintf ( stderr, |
| 265 | "Error: not enough arcs for generating connecting cycle(s)\n" ); |
| 266 | exit (4); |
| 267 | } |
| 268 | |
| 269 | /* artifical source parameters */ |
| 270 | if ( s_f ) |
| 271 | { m0 += n; n0 ++ ; |
| 272 | if ( ! sm_f ) sm = sl; |
| 273 | if ( sl < sm ) { lx = sl; sl = sm; sm = lx; } |
| 274 | } |
| 275 | |
| 276 | /* printing title */ |
| 277 | printf ("c random network for shortest paths problem\n"); |
| 278 | printf ("c extended DIMACS format\nc\n" ); |
| 279 | |
| 280 | /* name of the problem */ |
| 281 | printf ("t rd_%ld_%ld_%ld_", n, m, seed ); |
| 282 | if ( l_f ) |
| 283 | printf ("%c", 'l'); |
| 284 | if ( c_f ) |
| 285 | printf ("%c", 'c'); |
| 286 | if ( s_f ) |
| 287 | printf ("%c", 's'); |
| 288 | if ( p_f ) |
| 289 | printf ("%c", 'p'); |
| 290 | printf ("\nc\n"); |
| 291 | |
| 292 | /* printing additional information */ |
| 293 | if ( l_f ) |
| 294 | printf ("c length -> min: %ld max: %ld k1: %.2f k2: %.2f\n", |
| 295 | lm, ll, ln, ls ); |
| 296 | if ( c_f ) |
| 297 | { |
| 298 | if ( c_random ) |
| 299 | printf ("c cycle -> number of arcs: %ld arc length: random\n", ch); |
| 300 | else |
| 301 | printf ("c cycle -> number of arcs: %ld arc length: %ld\n", |
| 302 | ch, cl ); |
| 303 | } |
| 304 | if ( s_f ) |
| 305 | printf ("c length of arcs from artifical source -> min: %ld max: %ld\n", |
| 306 | sm, sl ); |
| 307 | if ( p_f ) |
| 308 | { |
| 309 | printf ("c potentials -> min: %ld max: %ld k1: %.2f k2: %.2f\n", |
| 310 | pm, pl, pn, ps ); |
| 311 | if ( pa_f ) |
| 312 | printf ("c potentials -> part of alternative distribution: %.2f k: %.2f\n", |
| 313 | pap, pac ); |
| 314 | } |
| 315 | printf ("c\n" ); |
| 316 | |
| 317 | |
| 318 | printf ("p sp %8ld %8ld\nc\n", n0, m0 ); |
| 319 | |
| 320 | source = ( s_f ) ? n0 : 1; |
| 321 | printf ("n %8ld\nc\n", source ); |
| 322 | |
| 323 | if ( p_f ) /* generating potentials */ |
| 324 | { |
| 325 | p = (long*) calloc ( n+2, sizeof (long) ); |
| 326 | seed1 = 2*seed + 1; |
| 327 | init_rand ( seed1); |
| 328 | pl = pl - pm + 1; |
| 329 | |
| 330 | for ( i = 0; i <= n; i ++ ) |
| 331 | { |
| 332 | p_t = pm + nrand ( pl ); |
| 333 | if ( pn_f ) p_t += (long) ( i * pn ); |
| 334 | if ( ps_f ) p_t += (long) ( i * ( i * ps )); |
| 335 | if ( pap_f ) |
| 336 | if ( rand01() < pap ) |
| 337 | p_t = (long) ( p_t * pac ); |
| 338 | p[i] = p_t; |
| 339 | } |
| 340 | p[n+1] = 0; |
| 341 | } |
| 342 | |
| 343 | |
| 344 | if ( s_f ) /* additional arcs from artifical source */ |
| 345 | { |
| 346 | seed2 = 3*seed + 1; |
| 347 | init_rand ( seed2 ); |
| 348 | sl = sl - sm + 1; |
| 349 | |
| 350 | for ( i = n; i > 1; i -- ) |
| 351 | { |
| 352 | s = sm + nrand ( sl ); |
| 353 | PRINT_ARC ( n0, i, s ) |
| 354 | } |
| 355 | |
| 356 | PRINT_ARC ( n0, 1, 0 ) |
| 357 | } |
| 358 | |
| 359 | /* initialize random number generator */ |
| 360 | init_rand ( seed ); |
| 361 | ll = ll - lm + 1; |
| 362 | |
| 363 | /* generating connecting cycle(s) */ |
| 364 | if (c_random) |
| 365 | cl = lm + nrand ( ll ); |
| 366 | PRINT_ARC ( 1, 2, cl ) |
| 367 | if (c_random) |
| 368 | cl = lm + nrand ( ll ); |
| 369 | PRINT_ARC ( n, 1, cl ) |
| 370 | |
| 371 | for ( i = 2; i < n; i ++ ) |
| 372 | { |
| 373 | if (c_random) |
| 374 | cl = lm + nrand ( ll ); |
| 375 | |
| 376 | if ( ( (i-1) % (ch-1) ) != 0 ) |
| 377 | PRINT_ARC ( i, i+1, cl ) |
| 378 | else |
| 379 | { PRINT_ARC ( i, 1, cl ) |
| 380 | if (c_random) |
| 381 | cl = lm + nrand ( ll ); |
| 382 | PRINT_ARC ( 1, i+1, cl ) |
| 383 | } |
| 384 | } |
| 385 | |
| 386 | /* generating random arcs */ |
| 387 | |
| 388 | for ( k = 1; k <= m - mc; k ++ ) |
| 389 | { |
| 390 | i = 1 + nrand ( n ); |
| 391 | |
| 392 | do |
| 393 | j = 1 + nrand ( n ); |
| 394 | while ( j == i ); |
| 395 | |
| 396 | dij = ( i > j ) ? ( i - j ) : ( j - i ); |
| 397 | l = lm + nrand ( ll ); |
| 398 | if ( ln_f ) l += (long) ( dij * ln ); |
| 399 | if ( ls_f ) l += (long) ( dij * ( dij * ls ) ); |
| 400 | PRINT_ARC ( i, j, l ); |
| 401 | } |
| 402 | |
| 403 | /* all is done */ |
| 404 | exit (ext); |
| 405 | |
| 406 | /* ----- wrong usage ----- */ |
| 407 | |
| 408 | usage: |
| 409 | fprintf ( stderr, |
| 410 | "\nusage: %s n m seed [ -ll#i -lm#i -cl#i -p -pl#i -pm#i ... ]\n\ |
| 411 | help: %s -h\n\n", argv[0], argv[0] ); |
| 412 | |
| 413 | if ( np > 0 ) |
| 414 | fprintf ( stderr, "error in parameter # %d\n\n", np ); |
| 415 | exit (4); |
| 416 | |
| 417 | /* ---- help ---- */ |
| 418 | |
| 419 | help: |
| 420 | |
| 421 | if ( args[2] == 'h') goto hhelp; |
| 422 | |
| 423 | fprintf ( stderr, |
| 424 | "\n'%s' - random network generator for shortest paths problem.\n\ |
| 425 | Generates problems in extended DIMACS format.\n\ |
| 426 | \n\ |
| 427 | %s n m seed [ -ll#i -lm#i -cl#i -p -pl#i -pm#i ... ]\n\ |
| 428 | %s -hh\n\ |
| 429 | \n\ |
| 430 | #i - integer number #f - real number\n\ |
| 431 | \n\ |
| 432 | -ll#i - #i is the upper bound on arc lengths (default 10000)\n\ |
| 433 | -lm#i - #i is the lower bound on arc lengths (default 0)\n\ |
| 434 | -cl#i - #i is length of arcs in connecting cycle(s) (default random)\n\ |
| 435 | -p - generate potentials \n\ |
| 436 | -pl#i - #i is the upper bound on potentials (default ll)\n\ |
| 437 | -pm#i - #i is the lower bound on potentials (default lm)\n\ |
| 438 | \n\ |
| 439 | -hh - extended help \n\n", |
| 440 | argv[0], argv[0], argv[0] ); |
| 441 | |
| 442 | exit (0); |
| 443 | |
| 444 | /* --------- sophisticated help ------------ */ |
| 445 | hhelp: |
| 446 | |
| 447 | if ( argc < 3 ) |
| 448 | fout = stderr; |
| 449 | else |
| 450 | fout = fopen ( argv[2], "w" ); |
| 451 | |
| 452 | if ( fout == NULL ) |
| 453 | { fprintf ( stderr, "\nCan't open file '%s' for writing help\n\n", argv[2] ); |
| 454 | exit ( 2 ); |
| 455 | } |
| 456 | |
| 457 | fprintf (fout, |
| 458 | "\n'%s' - random network generator for shortest paths problem.\n\ |
| 459 | Generates problems in extended DIMACS format.\n\ |
| 460 | \n\ |
| 461 | %s n m seed [ -ll#i -lm#i -ln#f -ls#f\n\ |
| 462 | -p -pl#i -pm#i -pn#f -ps#f -pap#i -pac#f\n\ |
| 463 | -cl#i -ch#i\n\ |
| 464 | -s -sl#i -sm#i\n\ |
| 465 | ]\n\ |
| 466 | %s -hh file_name\n\ |
| 467 | \n\ |
| 468 | #i - integer number #f - real number\n\ |
| 469 | \n\ |
| 470 | Arc length parameters:\n\ |
| 471 | -ll#i - #i is the upper bound on arc lengths (default 10000)\n\ |
| 472 | -lm#i - #i is the lower bound on arc lengths (default 0)\n\ |
| 473 | -ln#f - multipliy l(i, j) by #f * |i-j| (default 0)\n\ |
| 474 | -ls#f - multipliy l(i, j) by #f * |i-j|^2 (default 0)\n\ |
| 475 | \n\ |
| 476 | Potential parameters:\n\ |
| 477 | -p - generate potentials \n\ |
| 478 | -pl#i - #i is the upper bound on potentials (default ll)\n\ |
| 479 | -pm#i - #i is the lower bound on potentials (default lm)\n\ |
| 480 | -pn#f - multiply p(i) by #f * i (default 0)\n\ |
| 481 | -ps#f - multiply p(i) by #f * i^2 (default 0)\n\ |
| 482 | -pap#i - percentage of alternative potential nodes (default 0)\n\ |
| 483 | -pac#f - if i is alternative, multiply p(i) by #f (default -1)\n\ |
| 484 | \n\ |
| 485 | Connecting cycle(s) parameters:\n\ |
| 486 | -cl#i - #i is length of arcs in connecting cycle(s) (default random)\n\ |
| 487 | -ch#i - #i is length of connecting cycles (default n)\n\ |
| 488 | \n\ |
| 489 | Artificial source parameters:\n\ |
| 490 | -s - generate artificial source with default connecting arc lengths\n\ |
| 491 | -sl#i - #i is the upper bound on art. arc lengths (default 100000000)\n\ |
| 492 | -sm#i - #i is the lower bound on art. arc lengths (default sl)\n\ |
| 493 | \n\ |
| 494 | -hh file_name - save this help in the file 'file_name'\n\n", |
| 495 | argv[0], argv[0], argv[0] ); |
| 496 | |
| 497 | exit (0); |
| 498 | } |
| 499 | |
| 500 | |
| 501 | |