[VOL-4291] Rw-core updates for gRPC migration

Change-Id: I8d5a554409115b29318089671ca4e1ab3fa98810
diff --git a/vendor/github.com/klauspost/compress/fse/README.md b/vendor/github.com/klauspost/compress/fse/README.md
new file mode 100644
index 0000000..ea7324d
--- /dev/null
+++ b/vendor/github.com/klauspost/compress/fse/README.md
@@ -0,0 +1,79 @@
+# Finite State Entropy

+

+This package provides Finite State Entropy encoding and decoding.

+            

+Finite State Entropy (also referenced as [tANS](https://en.wikipedia.org/wiki/Asymmetric_numeral_systems#tANS)) 

+encoding provides a fast near-optimal symbol encoding/decoding

+for byte blocks as implemented in [zstandard](https://github.com/facebook/zstd).

+

+This can be used for compressing input with a lot of similar input values to the smallest number of bytes.

+This does not perform any multi-byte [dictionary coding](https://en.wikipedia.org/wiki/Dictionary_coder) as LZ coders,

+but it can be used as a secondary step to compressors (like Snappy) that does not do entropy encoding. 

+

+* [Godoc documentation](https://godoc.org/github.com/klauspost/compress/fse)

+

+## News

+

+ * Feb 2018: First implementation released. Consider this beta software for now.

+

+# Usage

+

+This package provides a low level interface that allows to compress single independent blocks. 

+

+Each block is separate, and there is no built in integrity checks. 

+This means that the caller should keep track of block sizes and also do checksums if needed.  

+

+Compressing a block is done via the [`Compress`](https://godoc.org/github.com/klauspost/compress/fse#Compress) function.

+You must provide input and will receive the output and maybe an error.

+

+These error values can be returned:

+

+| Error               | Description                                                                 |

+|---------------------|-----------------------------------------------------------------------------|

+| `<nil>`             | Everything ok, output is returned                                           |

+| `ErrIncompressible` | Returned when input is judged to be too hard to compress                    |

+| `ErrUseRLE`         | Returned from the compressor when the input is a single byte value repeated |

+| `(error)`           | An internal error occurred.                                                 |

+

+As can be seen above there are errors that will be returned even under normal operation so it is important to handle these.

+

+To reduce allocations you can provide a [`Scratch`](https://godoc.org/github.com/klauspost/compress/fse#Scratch) object 

+that can be re-used for successive calls. Both compression and decompression accepts a `Scratch` object, and the same 

+object can be used for both.   

+

+Be aware, that when re-using a `Scratch` object that the *output* buffer is also re-used, so if you are still using this

+you must set the `Out` field in the scratch to nil. The same buffer is used for compression and decompression output.

+

+Decompressing is done by calling the [`Decompress`](https://godoc.org/github.com/klauspost/compress/fse#Decompress) function.

+You must provide the output from the compression stage, at exactly the size you got back. If you receive an error back

+your input was likely corrupted. 

+

+It is important to note that a successful decoding does *not* mean your output matches your original input. 

+There are no integrity checks, so relying on errors from the decompressor does not assure your data is valid.

+

+For more detailed usage, see examples in the [godoc documentation](https://godoc.org/github.com/klauspost/compress/fse#pkg-examples).

+

+# Performance

+

+A lot of factors are affecting speed. Block sizes and compressibility of the material are primary factors.  

+All compression functions are currently only running on the calling goroutine so only one core will be used per block.  

+

+The compressor is significantly faster if symbols are kept as small as possible. The highest byte value of the input

+is used to reduce some of the processing, so if all your input is above byte value 64 for instance, it may be 

+beneficial to transpose all your input values down by 64.   

+

+With moderate block sizes around 64k speed are typically 200MB/s per core for compression and 

+around 300MB/s decompression speed. 

+

+The same hardware typically does Huffman (deflate) encoding at 125MB/s and decompression at 100MB/s. 

+

+# Plans

+

+At one point, more internals will be exposed to facilitate more "expert" usage of the components. 

+

+A streaming interface is also likely to be implemented. Likely compatible with [FSE stream format](https://github.com/Cyan4973/FiniteStateEntropy/blob/dev/programs/fileio.c#L261).  

+

+# Contributing

+

+Contributions are always welcome. Be aware that adding public functions will require good justification and breaking 

+changes will likely not be accepted. If in doubt open an issue before writing the PR.  
\ No newline at end of file
diff --git a/vendor/github.com/klauspost/compress/fse/bitreader.go b/vendor/github.com/klauspost/compress/fse/bitreader.go
new file mode 100644
index 0000000..f65eb39
--- /dev/null
+++ b/vendor/github.com/klauspost/compress/fse/bitreader.go
@@ -0,0 +1,122 @@
+// Copyright 2018 Klaus Post. All rights reserved.
+// Use of this source code is governed by a BSD-style
+// license that can be found in the LICENSE file.
+// Based on work Copyright (c) 2013, Yann Collet, released under BSD License.
+
+package fse
+
+import (
+	"encoding/binary"
+	"errors"
+	"io"
+)
+
+// bitReader reads a bitstream in reverse.
+// The last set bit indicates the start of the stream and is used
+// for aligning the input.
+type bitReader struct {
+	in       []byte
+	off      uint // next byte to read is at in[off - 1]
+	value    uint64
+	bitsRead uint8
+}
+
+// init initializes and resets the bit reader.
+func (b *bitReader) init(in []byte) error {
+	if len(in) < 1 {
+		return errors.New("corrupt stream: too short")
+	}
+	b.in = in
+	b.off = uint(len(in))
+	// The highest bit of the last byte indicates where to start
+	v := in[len(in)-1]
+	if v == 0 {
+		return errors.New("corrupt stream, did not find end of stream")
+	}
+	b.bitsRead = 64
+	b.value = 0
+	if len(in) >= 8 {
+		b.fillFastStart()
+	} else {
+		b.fill()
+		b.fill()
+	}
+	b.bitsRead += 8 - uint8(highBits(uint32(v)))
+	return nil
+}
+
+// getBits will return n bits. n can be 0.
+func (b *bitReader) getBits(n uint8) uint16 {
+	if n == 0 || b.bitsRead >= 64 {
+		return 0
+	}
+	return b.getBitsFast(n)
+}
+
+// getBitsFast requires that at least one bit is requested every time.
+// There are no checks if the buffer is filled.
+func (b *bitReader) getBitsFast(n uint8) uint16 {
+	const regMask = 64 - 1
+	v := uint16((b.value << (b.bitsRead & regMask)) >> ((regMask + 1 - n) & regMask))
+	b.bitsRead += n
+	return v
+}
+
+// fillFast() will make sure at least 32 bits are available.
+// There must be at least 4 bytes available.
+func (b *bitReader) fillFast() {
+	if b.bitsRead < 32 {
+		return
+	}
+	// 2 bounds checks.
+	v := b.in[b.off-4:]
+	v = v[:4]
+	low := (uint32(v[0])) | (uint32(v[1]) << 8) | (uint32(v[2]) << 16) | (uint32(v[3]) << 24)
+	b.value = (b.value << 32) | uint64(low)
+	b.bitsRead -= 32
+	b.off -= 4
+}
+
+// fill() will make sure at least 32 bits are available.
+func (b *bitReader) fill() {
+	if b.bitsRead < 32 {
+		return
+	}
+	if b.off > 4 {
+		v := b.in[b.off-4:]
+		v = v[:4]
+		low := (uint32(v[0])) | (uint32(v[1]) << 8) | (uint32(v[2]) << 16) | (uint32(v[3]) << 24)
+		b.value = (b.value << 32) | uint64(low)
+		b.bitsRead -= 32
+		b.off -= 4
+		return
+	}
+	for b.off > 0 {
+		b.value = (b.value << 8) | uint64(b.in[b.off-1])
+		b.bitsRead -= 8
+		b.off--
+	}
+}
+
+// fillFastStart() assumes the bitreader is empty and there is at least 8 bytes to read.
+func (b *bitReader) fillFastStart() {
+	// Do single re-slice to avoid bounds checks.
+	b.value = binary.LittleEndian.Uint64(b.in[b.off-8:])
+	b.bitsRead = 0
+	b.off -= 8
+}
+
+// finished returns true if all bits have been read from the bit stream.
+func (b *bitReader) finished() bool {
+	return b.bitsRead >= 64 && b.off == 0
+}
+
+// close the bitstream and returns an error if out-of-buffer reads occurred.
+func (b *bitReader) close() error {
+	// Release reference.
+	b.in = nil
+	if b.bitsRead > 64 {
+		return io.ErrUnexpectedEOF
+	}
+	return nil
+}
diff --git a/vendor/github.com/klauspost/compress/fse/bitwriter.go b/vendor/github.com/klauspost/compress/fse/bitwriter.go
new file mode 100644
index 0000000..43e4636
--- /dev/null
+++ b/vendor/github.com/klauspost/compress/fse/bitwriter.go
@@ -0,0 +1,168 @@
+// Copyright 2018 Klaus Post. All rights reserved.
+// Use of this source code is governed by a BSD-style
+// license that can be found in the LICENSE file.
+// Based on work Copyright (c) 2013, Yann Collet, released under BSD License.
+
+package fse
+
+import "fmt"
+
+// bitWriter will write bits.
+// First bit will be LSB of the first byte of output.
+type bitWriter struct {
+	bitContainer uint64
+	nBits        uint8
+	out          []byte
+}
+
+// bitMask16 is bitmasks. Has extra to avoid bounds check.
+var bitMask16 = [32]uint16{
+	0, 1, 3, 7, 0xF, 0x1F,
+	0x3F, 0x7F, 0xFF, 0x1FF, 0x3FF, 0x7FF,
+	0xFFF, 0x1FFF, 0x3FFF, 0x7FFF, 0xFFFF, 0xFFFF,
+	0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF,
+	0xFFFF, 0xFFFF} /* up to 16 bits */
+
+// addBits16NC will add up to 16 bits.
+// It will not check if there is space for them,
+// so the caller must ensure that it has flushed recently.
+func (b *bitWriter) addBits16NC(value uint16, bits uint8) {
+	b.bitContainer |= uint64(value&bitMask16[bits&31]) << (b.nBits & 63)
+	b.nBits += bits
+}
+
+// addBits16Clean will add up to 16 bits. value may not contain more set bits than indicated.
+// It will not check if there is space for them, so the caller must ensure that it has flushed recently.
+func (b *bitWriter) addBits16Clean(value uint16, bits uint8) {
+	b.bitContainer |= uint64(value) << (b.nBits & 63)
+	b.nBits += bits
+}
+
+// addBits16ZeroNC will add up to 16 bits.
+// It will not check if there is space for them,
+// so the caller must ensure that it has flushed recently.
+// This is fastest if bits can be zero.
+func (b *bitWriter) addBits16ZeroNC(value uint16, bits uint8) {
+	if bits == 0 {
+		return
+	}
+	value <<= (16 - bits) & 15
+	value >>= (16 - bits) & 15
+	b.bitContainer |= uint64(value) << (b.nBits & 63)
+	b.nBits += bits
+}
+
+// flush will flush all pending full bytes.
+// There will be at least 56 bits available for writing when this has been called.
+// Using flush32 is faster, but leaves less space for writing.
+func (b *bitWriter) flush() {
+	v := b.nBits >> 3
+	switch v {
+	case 0:
+	case 1:
+		b.out = append(b.out,
+			byte(b.bitContainer),
+		)
+	case 2:
+		b.out = append(b.out,
+			byte(b.bitContainer),
+			byte(b.bitContainer>>8),
+		)
+	case 3:
+		b.out = append(b.out,
+			byte(b.bitContainer),
+			byte(b.bitContainer>>8),
+			byte(b.bitContainer>>16),
+		)
+	case 4:
+		b.out = append(b.out,
+			byte(b.bitContainer),
+			byte(b.bitContainer>>8),
+			byte(b.bitContainer>>16),
+			byte(b.bitContainer>>24),
+		)
+	case 5:
+		b.out = append(b.out,
+			byte(b.bitContainer),
+			byte(b.bitContainer>>8),
+			byte(b.bitContainer>>16),
+			byte(b.bitContainer>>24),
+			byte(b.bitContainer>>32),
+		)
+	case 6:
+		b.out = append(b.out,
+			byte(b.bitContainer),
+			byte(b.bitContainer>>8),
+			byte(b.bitContainer>>16),
+			byte(b.bitContainer>>24),
+			byte(b.bitContainer>>32),
+			byte(b.bitContainer>>40),
+		)
+	case 7:
+		b.out = append(b.out,
+			byte(b.bitContainer),
+			byte(b.bitContainer>>8),
+			byte(b.bitContainer>>16),
+			byte(b.bitContainer>>24),
+			byte(b.bitContainer>>32),
+			byte(b.bitContainer>>40),
+			byte(b.bitContainer>>48),
+		)
+	case 8:
+		b.out = append(b.out,
+			byte(b.bitContainer),
+			byte(b.bitContainer>>8),
+			byte(b.bitContainer>>16),
+			byte(b.bitContainer>>24),
+			byte(b.bitContainer>>32),
+			byte(b.bitContainer>>40),
+			byte(b.bitContainer>>48),
+			byte(b.bitContainer>>56),
+		)
+	default:
+		panic(fmt.Errorf("bits (%d) > 64", b.nBits))
+	}
+	b.bitContainer >>= v << 3
+	b.nBits &= 7
+}
+
+// flush32 will flush out, so there are at least 32 bits available for writing.
+func (b *bitWriter) flush32() {
+	if b.nBits < 32 {
+		return
+	}
+	b.out = append(b.out,
+		byte(b.bitContainer),
+		byte(b.bitContainer>>8),
+		byte(b.bitContainer>>16),
+		byte(b.bitContainer>>24))
+	b.nBits -= 32
+	b.bitContainer >>= 32
+}
+
+// flushAlign will flush remaining full bytes and align to next byte boundary.
+func (b *bitWriter) flushAlign() {
+	nbBytes := (b.nBits + 7) >> 3
+	for i := uint8(0); i < nbBytes; i++ {
+		b.out = append(b.out, byte(b.bitContainer>>(i*8)))
+	}
+	b.nBits = 0
+	b.bitContainer = 0
+}
+
+// close will write the alignment bit and write the final byte(s)
+// to the output.
+func (b *bitWriter) close() error {
+	// End mark
+	b.addBits16Clean(1, 1)
+	// flush until next byte.
+	b.flushAlign()
+	return nil
+}
+
+// reset and continue writing by appending to out.
+func (b *bitWriter) reset(out []byte) {
+	b.bitContainer = 0
+	b.nBits = 0
+	b.out = out
+}
diff --git a/vendor/github.com/klauspost/compress/fse/bytereader.go b/vendor/github.com/klauspost/compress/fse/bytereader.go
new file mode 100644
index 0000000..abade2d
--- /dev/null
+++ b/vendor/github.com/klauspost/compress/fse/bytereader.go
@@ -0,0 +1,47 @@
+// Copyright 2018 Klaus Post. All rights reserved.
+// Use of this source code is governed by a BSD-style
+// license that can be found in the LICENSE file.
+// Based on work Copyright (c) 2013, Yann Collet, released under BSD License.
+
+package fse
+
+// byteReader provides a byte reader that reads
+// little endian values from a byte stream.
+// The input stream is manually advanced.
+// The reader performs no bounds checks.
+type byteReader struct {
+	b   []byte
+	off int
+}
+
+// init will initialize the reader and set the input.
+func (b *byteReader) init(in []byte) {
+	b.b = in
+	b.off = 0
+}
+
+// advance the stream b n bytes.
+func (b *byteReader) advance(n uint) {
+	b.off += int(n)
+}
+
+// Uint32 returns a little endian uint32 starting at current offset.
+func (b byteReader) Uint32() uint32 {
+	b2 := b.b[b.off:]
+	b2 = b2[:4]
+	v3 := uint32(b2[3])
+	v2 := uint32(b2[2])
+	v1 := uint32(b2[1])
+	v0 := uint32(b2[0])
+	return v0 | (v1 << 8) | (v2 << 16) | (v3 << 24)
+}
+
+// unread returns the unread portion of the input.
+func (b byteReader) unread() []byte {
+	return b.b[b.off:]
+}
+
+// remain will return the number of bytes remaining.
+func (b byteReader) remain() int {
+	return len(b.b) - b.off
+}
diff --git a/vendor/github.com/klauspost/compress/fse/compress.go b/vendor/github.com/klauspost/compress/fse/compress.go
new file mode 100644
index 0000000..6f34191
--- /dev/null
+++ b/vendor/github.com/klauspost/compress/fse/compress.go
@@ -0,0 +1,683 @@
+// Copyright 2018 Klaus Post. All rights reserved.
+// Use of this source code is governed by a BSD-style
+// license that can be found in the LICENSE file.
+// Based on work Copyright (c) 2013, Yann Collet, released under BSD License.
+
+package fse
+
+import (
+	"errors"
+	"fmt"
+)
+
+// Compress the input bytes. Input must be < 2GB.
+// Provide a Scratch buffer to avoid memory allocations.
+// Note that the output is also kept in the scratch buffer.
+// If input is too hard to compress, ErrIncompressible is returned.
+// If input is a single byte value repeated ErrUseRLE is returned.
+func Compress(in []byte, s *Scratch) ([]byte, error) {
+	if len(in) <= 1 {
+		return nil, ErrIncompressible
+	}
+	if len(in) > (2<<30)-1 {
+		return nil, errors.New("input too big, must be < 2GB")
+	}
+	s, err := s.prepare(in)
+	if err != nil {
+		return nil, err
+	}
+
+	// Create histogram, if none was provided.
+	maxCount := s.maxCount
+	if maxCount == 0 {
+		maxCount = s.countSimple(in)
+	}
+	// Reset for next run.
+	s.clearCount = true
+	s.maxCount = 0
+	if maxCount == len(in) {
+		// One symbol, use RLE
+		return nil, ErrUseRLE
+	}
+	if maxCount == 1 || maxCount < (len(in)>>7) {
+		// Each symbol present maximum once or too well distributed.
+		return nil, ErrIncompressible
+	}
+	s.optimalTableLog()
+	err = s.normalizeCount()
+	if err != nil {
+		return nil, err
+	}
+	err = s.writeCount()
+	if err != nil {
+		return nil, err
+	}
+
+	if false {
+		err = s.validateNorm()
+		if err != nil {
+			return nil, err
+		}
+	}
+
+	err = s.buildCTable()
+	if err != nil {
+		return nil, err
+	}
+	err = s.compress(in)
+	if err != nil {
+		return nil, err
+	}
+	s.Out = s.bw.out
+	// Check if we compressed.
+	if len(s.Out) >= len(in) {
+		return nil, ErrIncompressible
+	}
+	return s.Out, nil
+}
+
+// cState contains the compression state of a stream.
+type cState struct {
+	bw         *bitWriter
+	stateTable []uint16
+	state      uint16
+}
+
+// init will initialize the compression state to the first symbol of the stream.
+func (c *cState) init(bw *bitWriter, ct *cTable, tableLog uint8, first symbolTransform) {
+	c.bw = bw
+	c.stateTable = ct.stateTable
+
+	nbBitsOut := (first.deltaNbBits + (1 << 15)) >> 16
+	im := int32((nbBitsOut << 16) - first.deltaNbBits)
+	lu := (im >> nbBitsOut) + first.deltaFindState
+	c.state = c.stateTable[lu]
+}
+
+// encode the output symbol provided and write it to the bitstream.
+func (c *cState) encode(symbolTT symbolTransform) {
+	nbBitsOut := (uint32(c.state) + symbolTT.deltaNbBits) >> 16
+	dstState := int32(c.state>>(nbBitsOut&15)) + symbolTT.deltaFindState
+	c.bw.addBits16NC(c.state, uint8(nbBitsOut))
+	c.state = c.stateTable[dstState]
+}
+
+// encode the output symbol provided and write it to the bitstream.
+func (c *cState) encodeZero(symbolTT symbolTransform) {
+	nbBitsOut := (uint32(c.state) + symbolTT.deltaNbBits) >> 16
+	dstState := int32(c.state>>(nbBitsOut&15)) + symbolTT.deltaFindState
+	c.bw.addBits16ZeroNC(c.state, uint8(nbBitsOut))
+	c.state = c.stateTable[dstState]
+}
+
+// flush will write the tablelog to the output and flush the remaining full bytes.
+func (c *cState) flush(tableLog uint8) {
+	c.bw.flush32()
+	c.bw.addBits16NC(c.state, tableLog)
+	c.bw.flush()
+}
+
+// compress is the main compression loop that will encode the input from the last byte to the first.
+func (s *Scratch) compress(src []byte) error {
+	if len(src) <= 2 {
+		return errors.New("compress: src too small")
+	}
+	tt := s.ct.symbolTT[:256]
+	s.bw.reset(s.Out)
+
+	// Our two states each encodes every second byte.
+	// Last byte encoded (first byte decoded) will always be encoded by c1.
+	var c1, c2 cState
+
+	// Encode so remaining size is divisible by 4.
+	ip := len(src)
+	if ip&1 == 1 {
+		c1.init(&s.bw, &s.ct, s.actualTableLog, tt[src[ip-1]])
+		c2.init(&s.bw, &s.ct, s.actualTableLog, tt[src[ip-2]])
+		c1.encodeZero(tt[src[ip-3]])
+		ip -= 3
+	} else {
+		c2.init(&s.bw, &s.ct, s.actualTableLog, tt[src[ip-1]])
+		c1.init(&s.bw, &s.ct, s.actualTableLog, tt[src[ip-2]])
+		ip -= 2
+	}
+	if ip&2 != 0 {
+		c2.encodeZero(tt[src[ip-1]])
+		c1.encodeZero(tt[src[ip-2]])
+		ip -= 2
+	}
+
+	// Main compression loop.
+	switch {
+	case !s.zeroBits && s.actualTableLog <= 8:
+		// We can encode 4 symbols without requiring a flush.
+		// We do not need to check if any output is 0 bits.
+		for ip >= 4 {
+			s.bw.flush32()
+			v3, v2, v1, v0 := src[ip-4], src[ip-3], src[ip-2], src[ip-1]
+			c2.encode(tt[v0])
+			c1.encode(tt[v1])
+			c2.encode(tt[v2])
+			c1.encode(tt[v3])
+			ip -= 4
+		}
+	case !s.zeroBits:
+		// We do not need to check if any output is 0 bits.
+		for ip >= 4 {
+			s.bw.flush32()
+			v3, v2, v1, v0 := src[ip-4], src[ip-3], src[ip-2], src[ip-1]
+			c2.encode(tt[v0])
+			c1.encode(tt[v1])
+			s.bw.flush32()
+			c2.encode(tt[v2])
+			c1.encode(tt[v3])
+			ip -= 4
+		}
+	case s.actualTableLog <= 8:
+		// We can encode 4 symbols without requiring a flush
+		for ip >= 4 {
+			s.bw.flush32()
+			v3, v2, v1, v0 := src[ip-4], src[ip-3], src[ip-2], src[ip-1]
+			c2.encodeZero(tt[v0])
+			c1.encodeZero(tt[v1])
+			c2.encodeZero(tt[v2])
+			c1.encodeZero(tt[v3])
+			ip -= 4
+		}
+	default:
+		for ip >= 4 {
+			s.bw.flush32()
+			v3, v2, v1, v0 := src[ip-4], src[ip-3], src[ip-2], src[ip-1]
+			c2.encodeZero(tt[v0])
+			c1.encodeZero(tt[v1])
+			s.bw.flush32()
+			c2.encodeZero(tt[v2])
+			c1.encodeZero(tt[v3])
+			ip -= 4
+		}
+	}
+
+	// Flush final state.
+	// Used to initialize state when decoding.
+	c2.flush(s.actualTableLog)
+	c1.flush(s.actualTableLog)
+
+	return s.bw.close()
+}
+
+// writeCount will write the normalized histogram count to header.
+// This is read back by readNCount.
+func (s *Scratch) writeCount() error {
+	var (
+		tableLog  = s.actualTableLog
+		tableSize = 1 << tableLog
+		previous0 bool
+		charnum   uint16
+
+		maxHeaderSize = ((int(s.symbolLen) * int(tableLog)) >> 3) + 3
+
+		// Write Table Size
+		bitStream = uint32(tableLog - minTablelog)
+		bitCount  = uint(4)
+		remaining = int16(tableSize + 1) /* +1 for extra accuracy */
+		threshold = int16(tableSize)
+		nbBits    = uint(tableLog + 1)
+	)
+	if cap(s.Out) < maxHeaderSize {
+		s.Out = make([]byte, 0, s.br.remain()+maxHeaderSize)
+	}
+	outP := uint(0)
+	out := s.Out[:maxHeaderSize]
+
+	// stops at 1
+	for remaining > 1 {
+		if previous0 {
+			start := charnum
+			for s.norm[charnum] == 0 {
+				charnum++
+			}
+			for charnum >= start+24 {
+				start += 24
+				bitStream += uint32(0xFFFF) << bitCount
+				out[outP] = byte(bitStream)
+				out[outP+1] = byte(bitStream >> 8)
+				outP += 2
+				bitStream >>= 16
+			}
+			for charnum >= start+3 {
+				start += 3
+				bitStream += 3 << bitCount
+				bitCount += 2
+			}
+			bitStream += uint32(charnum-start) << bitCount
+			bitCount += 2
+			if bitCount > 16 {
+				out[outP] = byte(bitStream)
+				out[outP+1] = byte(bitStream >> 8)
+				outP += 2
+				bitStream >>= 16
+				bitCount -= 16
+			}
+		}
+
+		count := s.norm[charnum]
+		charnum++
+		max := (2*threshold - 1) - remaining
+		if count < 0 {
+			remaining += count
+		} else {
+			remaining -= count
+		}
+		count++ // +1 for extra accuracy
+		if count >= threshold {
+			count += max // [0..max[ [max..threshold[ (...) [threshold+max 2*threshold[
+		}
+		bitStream += uint32(count) << bitCount
+		bitCount += nbBits
+		if count < max {
+			bitCount--
+		}
+
+		previous0 = count == 1
+		if remaining < 1 {
+			return errors.New("internal error: remaining<1")
+		}
+		for remaining < threshold {
+			nbBits--
+			threshold >>= 1
+		}
+
+		if bitCount > 16 {
+			out[outP] = byte(bitStream)
+			out[outP+1] = byte(bitStream >> 8)
+			outP += 2
+			bitStream >>= 16
+			bitCount -= 16
+		}
+	}
+
+	out[outP] = byte(bitStream)
+	out[outP+1] = byte(bitStream >> 8)
+	outP += (bitCount + 7) / 8
+
+	if charnum > s.symbolLen {
+		return errors.New("internal error: charnum > s.symbolLen")
+	}
+	s.Out = out[:outP]
+	return nil
+}
+
+// symbolTransform contains the state transform for a symbol.
+type symbolTransform struct {
+	deltaFindState int32
+	deltaNbBits    uint32
+}
+
+// String prints values as a human readable string.
+func (s symbolTransform) String() string {
+	return fmt.Sprintf("dnbits: %08x, fs:%d", s.deltaNbBits, s.deltaFindState)
+}
+
+// cTable contains tables used for compression.
+type cTable struct {
+	tableSymbol []byte
+	stateTable  []uint16
+	symbolTT    []symbolTransform
+}
+
+// allocCtable will allocate tables needed for compression.
+// If existing tables a re big enough, they are simply re-used.
+func (s *Scratch) allocCtable() {
+	tableSize := 1 << s.actualTableLog
+	// get tableSymbol that is big enough.
+	if cap(s.ct.tableSymbol) < tableSize {
+		s.ct.tableSymbol = make([]byte, tableSize)
+	}
+	s.ct.tableSymbol = s.ct.tableSymbol[:tableSize]
+
+	ctSize := tableSize
+	if cap(s.ct.stateTable) < ctSize {
+		s.ct.stateTable = make([]uint16, ctSize)
+	}
+	s.ct.stateTable = s.ct.stateTable[:ctSize]
+
+	if cap(s.ct.symbolTT) < 256 {
+		s.ct.symbolTT = make([]symbolTransform, 256)
+	}
+	s.ct.symbolTT = s.ct.symbolTT[:256]
+}
+
+// buildCTable will populate the compression table so it is ready to be used.
+func (s *Scratch) buildCTable() error {
+	tableSize := uint32(1 << s.actualTableLog)
+	highThreshold := tableSize - 1
+	var cumul [maxSymbolValue + 2]int16
+
+	s.allocCtable()
+	tableSymbol := s.ct.tableSymbol[:tableSize]
+	// symbol start positions
+	{
+		cumul[0] = 0
+		for ui, v := range s.norm[:s.symbolLen-1] {
+			u := byte(ui) // one less than reference
+			if v == -1 {
+				// Low proba symbol
+				cumul[u+1] = cumul[u] + 1
+				tableSymbol[highThreshold] = u
+				highThreshold--
+			} else {
+				cumul[u+1] = cumul[u] + v
+			}
+		}
+		// Encode last symbol separately to avoid overflowing u
+		u := int(s.symbolLen - 1)
+		v := s.norm[s.symbolLen-1]
+		if v == -1 {
+			// Low proba symbol
+			cumul[u+1] = cumul[u] + 1
+			tableSymbol[highThreshold] = byte(u)
+			highThreshold--
+		} else {
+			cumul[u+1] = cumul[u] + v
+		}
+		if uint32(cumul[s.symbolLen]) != tableSize {
+			return fmt.Errorf("internal error: expected cumul[s.symbolLen] (%d) == tableSize (%d)", cumul[s.symbolLen], tableSize)
+		}
+		cumul[s.symbolLen] = int16(tableSize) + 1
+	}
+	// Spread symbols
+	s.zeroBits = false
+	{
+		step := tableStep(tableSize)
+		tableMask := tableSize - 1
+		var position uint32
+		// if any symbol > largeLimit, we may have 0 bits output.
+		largeLimit := int16(1 << (s.actualTableLog - 1))
+		for ui, v := range s.norm[:s.symbolLen] {
+			symbol := byte(ui)
+			if v > largeLimit {
+				s.zeroBits = true
+			}
+			for nbOccurrences := int16(0); nbOccurrences < v; nbOccurrences++ {
+				tableSymbol[position] = symbol
+				position = (position + step) & tableMask
+				for position > highThreshold {
+					position = (position + step) & tableMask
+				} /* Low proba area */
+			}
+		}
+
+		// Check if we have gone through all positions
+		if position != 0 {
+			return errors.New("position!=0")
+		}
+	}
+
+	// Build table
+	table := s.ct.stateTable
+	{
+		tsi := int(tableSize)
+		for u, v := range tableSymbol {
+			// TableU16 : sorted by symbol order; gives next state value
+			table[cumul[v]] = uint16(tsi + u)
+			cumul[v]++
+		}
+	}
+
+	// Build Symbol Transformation Table
+	{
+		total := int16(0)
+		symbolTT := s.ct.symbolTT[:s.symbolLen]
+		tableLog := s.actualTableLog
+		tl := (uint32(tableLog) << 16) - (1 << tableLog)
+		for i, v := range s.norm[:s.symbolLen] {
+			switch v {
+			case 0:
+			case -1, 1:
+				symbolTT[i].deltaNbBits = tl
+				symbolTT[i].deltaFindState = int32(total - 1)
+				total++
+			default:
+				maxBitsOut := uint32(tableLog) - highBits(uint32(v-1))
+				minStatePlus := uint32(v) << maxBitsOut
+				symbolTT[i].deltaNbBits = (maxBitsOut << 16) - minStatePlus
+				symbolTT[i].deltaFindState = int32(total - v)
+				total += v
+			}
+		}
+		if total != int16(tableSize) {
+			return fmt.Errorf("total mismatch %d (got) != %d (want)", total, tableSize)
+		}
+	}
+	return nil
+}
+
+// countSimple will create a simple histogram in s.count.
+// Returns the biggest count.
+// Does not update s.clearCount.
+func (s *Scratch) countSimple(in []byte) (max int) {
+	for _, v := range in {
+		s.count[v]++
+	}
+	m := uint32(0)
+	for i, v := range s.count[:] {
+		if v > m {
+			m = v
+		}
+		if v > 0 {
+			s.symbolLen = uint16(i) + 1
+		}
+	}
+	return int(m)
+}
+
+// minTableLog provides the minimum logSize to safely represent a distribution.
+func (s *Scratch) minTableLog() uint8 {
+	minBitsSrc := highBits(uint32(s.br.remain()-1)) + 1
+	minBitsSymbols := highBits(uint32(s.symbolLen-1)) + 2
+	if minBitsSrc < minBitsSymbols {
+		return uint8(minBitsSrc)
+	}
+	return uint8(minBitsSymbols)
+}
+
+// optimalTableLog calculates and sets the optimal tableLog in s.actualTableLog
+func (s *Scratch) optimalTableLog() {
+	tableLog := s.TableLog
+	minBits := s.minTableLog()
+	maxBitsSrc := uint8(highBits(uint32(s.br.remain()-1))) - 2
+	if maxBitsSrc < tableLog {
+		// Accuracy can be reduced
+		tableLog = maxBitsSrc
+	}
+	if minBits > tableLog {
+		tableLog = minBits
+	}
+	// Need a minimum to safely represent all symbol values
+	if tableLog < minTablelog {
+		tableLog = minTablelog
+	}
+	if tableLog > maxTableLog {
+		tableLog = maxTableLog
+	}
+	s.actualTableLog = tableLog
+}
+
+var rtbTable = [...]uint32{0, 473195, 504333, 520860, 550000, 700000, 750000, 830000}
+
+// normalizeCount will normalize the count of the symbols so
+// the total is equal to the table size.
+func (s *Scratch) normalizeCount() error {
+	var (
+		tableLog          = s.actualTableLog
+		scale             = 62 - uint64(tableLog)
+		step              = (1 << 62) / uint64(s.br.remain())
+		vStep             = uint64(1) << (scale - 20)
+		stillToDistribute = int16(1 << tableLog)
+		largest           int
+		largestP          int16
+		lowThreshold      = (uint32)(s.br.remain() >> tableLog)
+	)
+
+	for i, cnt := range s.count[:s.symbolLen] {
+		// already handled
+		// if (count[s] == s.length) return 0;   /* rle special case */
+
+		if cnt == 0 {
+			s.norm[i] = 0
+			continue
+		}
+		if cnt <= lowThreshold {
+			s.norm[i] = -1
+			stillToDistribute--
+		} else {
+			proba := (int16)((uint64(cnt) * step) >> scale)
+			if proba < 8 {
+				restToBeat := vStep * uint64(rtbTable[proba])
+				v := uint64(cnt)*step - (uint64(proba) << scale)
+				if v > restToBeat {
+					proba++
+				}
+			}
+			if proba > largestP {
+				largestP = proba
+				largest = i
+			}
+			s.norm[i] = proba
+			stillToDistribute -= proba
+		}
+	}
+
+	if -stillToDistribute >= (s.norm[largest] >> 1) {
+		// corner case, need another normalization method
+		return s.normalizeCount2()
+	}
+	s.norm[largest] += stillToDistribute
+	return nil
+}
+
+// Secondary normalization method.
+// To be used when primary method fails.
+func (s *Scratch) normalizeCount2() error {
+	const notYetAssigned = -2
+	var (
+		distributed  uint32
+		total        = uint32(s.br.remain())
+		tableLog     = s.actualTableLog
+		lowThreshold = total >> tableLog
+		lowOne       = (total * 3) >> (tableLog + 1)
+	)
+	for i, cnt := range s.count[:s.symbolLen] {
+		if cnt == 0 {
+			s.norm[i] = 0
+			continue
+		}
+		if cnt <= lowThreshold {
+			s.norm[i] = -1
+			distributed++
+			total -= cnt
+			continue
+		}
+		if cnt <= lowOne {
+			s.norm[i] = 1
+			distributed++
+			total -= cnt
+			continue
+		}
+		s.norm[i] = notYetAssigned
+	}
+	toDistribute := (1 << tableLog) - distributed
+
+	if (total / toDistribute) > lowOne {
+		// risk of rounding to zero
+		lowOne = (total * 3) / (toDistribute * 2)
+		for i, cnt := range s.count[:s.symbolLen] {
+			if (s.norm[i] == notYetAssigned) && (cnt <= lowOne) {
+				s.norm[i] = 1
+				distributed++
+				total -= cnt
+				continue
+			}
+		}
+		toDistribute = (1 << tableLog) - distributed
+	}
+	if distributed == uint32(s.symbolLen)+1 {
+		// all values are pretty poor;
+		//   probably incompressible data (should have already been detected);
+		//   find max, then give all remaining points to max
+		var maxV int
+		var maxC uint32
+		for i, cnt := range s.count[:s.symbolLen] {
+			if cnt > maxC {
+				maxV = i
+				maxC = cnt
+			}
+		}
+		s.norm[maxV] += int16(toDistribute)
+		return nil
+	}
+
+	if total == 0 {
+		// all of the symbols were low enough for the lowOne or lowThreshold
+		for i := uint32(0); toDistribute > 0; i = (i + 1) % (uint32(s.symbolLen)) {
+			if s.norm[i] > 0 {
+				toDistribute--
+				s.norm[i]++
+			}
+		}
+		return nil
+	}
+
+	var (
+		vStepLog = 62 - uint64(tableLog)
+		mid      = uint64((1 << (vStepLog - 1)) - 1)
+		rStep    = (((1 << vStepLog) * uint64(toDistribute)) + mid) / uint64(total) // scale on remaining
+		tmpTotal = mid
+	)
+	for i, cnt := range s.count[:s.symbolLen] {
+		if s.norm[i] == notYetAssigned {
+			var (
+				end    = tmpTotal + uint64(cnt)*rStep
+				sStart = uint32(tmpTotal >> vStepLog)
+				sEnd   = uint32(end >> vStepLog)
+				weight = sEnd - sStart
+			)
+			if weight < 1 {
+				return errors.New("weight < 1")
+			}
+			s.norm[i] = int16(weight)
+			tmpTotal = end
+		}
+	}
+	return nil
+}
+
+// validateNorm validates the normalized histogram table.
+func (s *Scratch) validateNorm() (err error) {
+	var total int
+	for _, v := range s.norm[:s.symbolLen] {
+		if v >= 0 {
+			total += int(v)
+		} else {
+			total -= int(v)
+		}
+	}
+	defer func() {
+		if err == nil {
+			return
+		}
+		fmt.Printf("selected TableLog: %d, Symbol length: %d\n", s.actualTableLog, s.symbolLen)
+		for i, v := range s.norm[:s.symbolLen] {
+			fmt.Printf("%3d: %5d -> %4d \n", i, s.count[i], v)
+		}
+	}()
+	if total != (1 << s.actualTableLog) {
+		return fmt.Errorf("warning: Total == %d != %d", total, 1<<s.actualTableLog)
+	}
+	for i, v := range s.count[s.symbolLen:] {
+		if v != 0 {
+			return fmt.Errorf("warning: Found symbol out of range, %d after cut", i)
+		}
+	}
+	return nil
+}
diff --git a/vendor/github.com/klauspost/compress/fse/decompress.go b/vendor/github.com/klauspost/compress/fse/decompress.go
new file mode 100644
index 0000000..926f5f1
--- /dev/null
+++ b/vendor/github.com/klauspost/compress/fse/decompress.go
@@ -0,0 +1,374 @@
+package fse
+
+import (
+	"errors"
+	"fmt"
+)
+
+const (
+	tablelogAbsoluteMax = 15
+)
+
+// Decompress a block of data.
+// You can provide a scratch buffer to avoid allocations.
+// If nil is provided a temporary one will be allocated.
+// It is possible, but by no way guaranteed that corrupt data will
+// return an error.
+// It is up to the caller to verify integrity of the returned data.
+// Use a predefined Scrach to set maximum acceptable output size.
+func Decompress(b []byte, s *Scratch) ([]byte, error) {
+	s, err := s.prepare(b)
+	if err != nil {
+		return nil, err
+	}
+	s.Out = s.Out[:0]
+	err = s.readNCount()
+	if err != nil {
+		return nil, err
+	}
+	err = s.buildDtable()
+	if err != nil {
+		return nil, err
+	}
+	err = s.decompress()
+	if err != nil {
+		return nil, err
+	}
+
+	return s.Out, nil
+}
+
+// readNCount will read the symbol distribution so decoding tables can be constructed.
+func (s *Scratch) readNCount() error {
+	var (
+		charnum   uint16
+		previous0 bool
+		b         = &s.br
+	)
+	iend := b.remain()
+	if iend < 4 {
+		return errors.New("input too small")
+	}
+	bitStream := b.Uint32()
+	nbBits := uint((bitStream & 0xF) + minTablelog) // extract tableLog
+	if nbBits > tablelogAbsoluteMax {
+		return errors.New("tableLog too large")
+	}
+	bitStream >>= 4
+	bitCount := uint(4)
+
+	s.actualTableLog = uint8(nbBits)
+	remaining := int32((1 << nbBits) + 1)
+	threshold := int32(1 << nbBits)
+	gotTotal := int32(0)
+	nbBits++
+
+	for remaining > 1 {
+		if previous0 {
+			n0 := charnum
+			for (bitStream & 0xFFFF) == 0xFFFF {
+				n0 += 24
+				if b.off < iend-5 {
+					b.advance(2)
+					bitStream = b.Uint32() >> bitCount
+				} else {
+					bitStream >>= 16
+					bitCount += 16
+				}
+			}
+			for (bitStream & 3) == 3 {
+				n0 += 3
+				bitStream >>= 2
+				bitCount += 2
+			}
+			n0 += uint16(bitStream & 3)
+			bitCount += 2
+			if n0 > maxSymbolValue {
+				return errors.New("maxSymbolValue too small")
+			}
+			for charnum < n0 {
+				s.norm[charnum&0xff] = 0
+				charnum++
+			}
+
+			if b.off <= iend-7 || b.off+int(bitCount>>3) <= iend-4 {
+				b.advance(bitCount >> 3)
+				bitCount &= 7
+				bitStream = b.Uint32() >> bitCount
+			} else {
+				bitStream >>= 2
+			}
+		}
+
+		max := (2*(threshold) - 1) - (remaining)
+		var count int32
+
+		if (int32(bitStream) & (threshold - 1)) < max {
+			count = int32(bitStream) & (threshold - 1)
+			bitCount += nbBits - 1
+		} else {
+			count = int32(bitStream) & (2*threshold - 1)
+			if count >= threshold {
+				count -= max
+			}
+			bitCount += nbBits
+		}
+
+		count-- // extra accuracy
+		if count < 0 {
+			// -1 means +1
+			remaining += count
+			gotTotal -= count
+		} else {
+			remaining -= count
+			gotTotal += count
+		}
+		s.norm[charnum&0xff] = int16(count)
+		charnum++
+		previous0 = count == 0
+		for remaining < threshold {
+			nbBits--
+			threshold >>= 1
+		}
+		if b.off <= iend-7 || b.off+int(bitCount>>3) <= iend-4 {
+			b.advance(bitCount >> 3)
+			bitCount &= 7
+		} else {
+			bitCount -= (uint)(8 * (len(b.b) - 4 - b.off))
+			b.off = len(b.b) - 4
+		}
+		bitStream = b.Uint32() >> (bitCount & 31)
+	}
+	s.symbolLen = charnum
+
+	if s.symbolLen <= 1 {
+		return fmt.Errorf("symbolLen (%d) too small", s.symbolLen)
+	}
+	if s.symbolLen > maxSymbolValue+1 {
+		return fmt.Errorf("symbolLen (%d) too big", s.symbolLen)
+	}
+	if remaining != 1 {
+		return fmt.Errorf("corruption detected (remaining %d != 1)", remaining)
+	}
+	if bitCount > 32 {
+		return fmt.Errorf("corruption detected (bitCount %d > 32)", bitCount)
+	}
+	if gotTotal != 1<<s.actualTableLog {
+		return fmt.Errorf("corruption detected (total %d != %d)", gotTotal, 1<<s.actualTableLog)
+	}
+	b.advance((bitCount + 7) >> 3)
+	return nil
+}
+
+// decSymbol contains information about a state entry,
+// Including the state offset base, the output symbol and
+// the number of bits to read for the low part of the destination state.
+type decSymbol struct {
+	newState uint16
+	symbol   uint8
+	nbBits   uint8
+}
+
+// allocDtable will allocate decoding tables if they are not big enough.
+func (s *Scratch) allocDtable() {
+	tableSize := 1 << s.actualTableLog
+	if cap(s.decTable) < tableSize {
+		s.decTable = make([]decSymbol, tableSize)
+	}
+	s.decTable = s.decTable[:tableSize]
+
+	if cap(s.ct.tableSymbol) < 256 {
+		s.ct.tableSymbol = make([]byte, 256)
+	}
+	s.ct.tableSymbol = s.ct.tableSymbol[:256]
+
+	if cap(s.ct.stateTable) < 256 {
+		s.ct.stateTable = make([]uint16, 256)
+	}
+	s.ct.stateTable = s.ct.stateTable[:256]
+}
+
+// buildDtable will build the decoding table.
+func (s *Scratch) buildDtable() error {
+	tableSize := uint32(1 << s.actualTableLog)
+	highThreshold := tableSize - 1
+	s.allocDtable()
+	symbolNext := s.ct.stateTable[:256]
+
+	// Init, lay down lowprob symbols
+	s.zeroBits = false
+	{
+		largeLimit := int16(1 << (s.actualTableLog - 1))
+		for i, v := range s.norm[:s.symbolLen] {
+			if v == -1 {
+				s.decTable[highThreshold].symbol = uint8(i)
+				highThreshold--
+				symbolNext[i] = 1
+			} else {
+				if v >= largeLimit {
+					s.zeroBits = true
+				}
+				symbolNext[i] = uint16(v)
+			}
+		}
+	}
+	// Spread symbols
+	{
+		tableMask := tableSize - 1
+		step := tableStep(tableSize)
+		position := uint32(0)
+		for ss, v := range s.norm[:s.symbolLen] {
+			for i := 0; i < int(v); i++ {
+				s.decTable[position].symbol = uint8(ss)
+				position = (position + step) & tableMask
+				for position > highThreshold {
+					// lowprob area
+					position = (position + step) & tableMask
+				}
+			}
+		}
+		if position != 0 {
+			// position must reach all cells once, otherwise normalizedCounter is incorrect
+			return errors.New("corrupted input (position != 0)")
+		}
+	}
+
+	// Build Decoding table
+	{
+		tableSize := uint16(1 << s.actualTableLog)
+		for u, v := range s.decTable {
+			symbol := v.symbol
+			nextState := symbolNext[symbol]
+			symbolNext[symbol] = nextState + 1
+			nBits := s.actualTableLog - byte(highBits(uint32(nextState)))
+			s.decTable[u].nbBits = nBits
+			newState := (nextState << nBits) - tableSize
+			if newState >= tableSize {
+				return fmt.Errorf("newState (%d) outside table size (%d)", newState, tableSize)
+			}
+			if newState == uint16(u) && nBits == 0 {
+				// Seems weird that this is possible with nbits > 0.
+				return fmt.Errorf("newState (%d) == oldState (%d) and no bits", newState, u)
+			}
+			s.decTable[u].newState = newState
+		}
+	}
+	return nil
+}
+
+// decompress will decompress the bitstream.
+// If the buffer is over-read an error is returned.
+func (s *Scratch) decompress() error {
+	br := &s.bits
+	br.init(s.br.unread())
+
+	var s1, s2 decoder
+	// Initialize and decode first state and symbol.
+	s1.init(br, s.decTable, s.actualTableLog)
+	s2.init(br, s.decTable, s.actualTableLog)
+
+	// Use temp table to avoid bound checks/append penalty.
+	var tmp = s.ct.tableSymbol[:256]
+	var off uint8
+
+	// Main part
+	if !s.zeroBits {
+		for br.off >= 8 {
+			br.fillFast()
+			tmp[off+0] = s1.nextFast()
+			tmp[off+1] = s2.nextFast()
+			br.fillFast()
+			tmp[off+2] = s1.nextFast()
+			tmp[off+3] = s2.nextFast()
+			off += 4
+			// When off is 0, we have overflowed and should write.
+			if off == 0 {
+				s.Out = append(s.Out, tmp...)
+				if len(s.Out) >= s.DecompressLimit {
+					return fmt.Errorf("output size (%d) > DecompressLimit (%d)", len(s.Out), s.DecompressLimit)
+				}
+			}
+		}
+	} else {
+		for br.off >= 8 {
+			br.fillFast()
+			tmp[off+0] = s1.next()
+			tmp[off+1] = s2.next()
+			br.fillFast()
+			tmp[off+2] = s1.next()
+			tmp[off+3] = s2.next()
+			off += 4
+			if off == 0 {
+				s.Out = append(s.Out, tmp...)
+				// When off is 0, we have overflowed and should write.
+				if len(s.Out) >= s.DecompressLimit {
+					return fmt.Errorf("output size (%d) > DecompressLimit (%d)", len(s.Out), s.DecompressLimit)
+				}
+			}
+		}
+	}
+	s.Out = append(s.Out, tmp[:off]...)
+
+	// Final bits, a bit more expensive check
+	for {
+		if s1.finished() {
+			s.Out = append(s.Out, s1.final(), s2.final())
+			break
+		}
+		br.fill()
+		s.Out = append(s.Out, s1.next())
+		if s2.finished() {
+			s.Out = append(s.Out, s2.final(), s1.final())
+			break
+		}
+		s.Out = append(s.Out, s2.next())
+		if len(s.Out) >= s.DecompressLimit {
+			return fmt.Errorf("output size (%d) > DecompressLimit (%d)", len(s.Out), s.DecompressLimit)
+		}
+	}
+	return br.close()
+}
+
+// decoder keeps track of the current state and updates it from the bitstream.
+type decoder struct {
+	state uint16
+	br    *bitReader
+	dt    []decSymbol
+}
+
+// init will initialize the decoder and read the first state from the stream.
+func (d *decoder) init(in *bitReader, dt []decSymbol, tableLog uint8) {
+	d.dt = dt
+	d.br = in
+	d.state = in.getBits(tableLog)
+}
+
+// next returns the next symbol and sets the next state.
+// At least tablelog bits must be available in the bit reader.
+func (d *decoder) next() uint8 {
+	n := &d.dt[d.state]
+	lowBits := d.br.getBits(n.nbBits)
+	d.state = n.newState + lowBits
+	return n.symbol
+}
+
+// finished returns true if all bits have been read from the bitstream
+// and the next state would require reading bits from the input.
+func (d *decoder) finished() bool {
+	return d.br.finished() && d.dt[d.state].nbBits > 0
+}
+
+// final returns the current state symbol without decoding the next.
+func (d *decoder) final() uint8 {
+	return d.dt[d.state].symbol
+}
+
+// nextFast returns the next symbol and sets the next state.
+// This can only be used if no symbols are 0 bits.
+// At least tablelog bits must be available in the bit reader.
+func (d *decoder) nextFast() uint8 {
+	n := d.dt[d.state]
+	lowBits := d.br.getBitsFast(n.nbBits)
+	d.state = n.newState + lowBits
+	return n.symbol
+}
diff --git a/vendor/github.com/klauspost/compress/fse/fse.go b/vendor/github.com/klauspost/compress/fse/fse.go
new file mode 100644
index 0000000..535cbad
--- /dev/null
+++ b/vendor/github.com/klauspost/compress/fse/fse.go
@@ -0,0 +1,144 @@
+// Copyright 2018 Klaus Post. All rights reserved.
+// Use of this source code is governed by a BSD-style
+// license that can be found in the LICENSE file.
+// Based on work Copyright (c) 2013, Yann Collet, released under BSD License.
+
+// Package fse provides Finite State Entropy encoding and decoding.
+//
+// Finite State Entropy encoding provides a fast near-optimal symbol encoding/decoding
+// for byte blocks as implemented in zstd.
+//
+// See https://github.com/klauspost/compress/tree/master/fse for more information.
+package fse
+
+import (
+	"errors"
+	"fmt"
+	"math/bits"
+)
+
+const (
+	/*!MEMORY_USAGE :
+	 *  Memory usage formula : N->2^N Bytes (examples : 10 -> 1KB; 12 -> 4KB ; 16 -> 64KB; 20 -> 1MB; etc.)
+	 *  Increasing memory usage improves compression ratio
+	 *  Reduced memory usage can improve speed, due to cache effect
+	 *  Recommended max value is 14, for 16KB, which nicely fits into Intel x86 L1 cache */
+	maxMemoryUsage     = 14
+	defaultMemoryUsage = 13
+
+	maxTableLog     = maxMemoryUsage - 2
+	maxTablesize    = 1 << maxTableLog
+	defaultTablelog = defaultMemoryUsage - 2
+	minTablelog     = 5
+	maxSymbolValue  = 255
+)
+
+var (
+	// ErrIncompressible is returned when input is judged to be too hard to compress.
+	ErrIncompressible = errors.New("input is not compressible")
+
+	// ErrUseRLE is returned from the compressor when the input is a single byte value repeated.
+	ErrUseRLE = errors.New("input is single value repeated")
+)
+
+// Scratch provides temporary storage for compression and decompression.
+type Scratch struct {
+	// Private
+	count    [maxSymbolValue + 1]uint32
+	norm     [maxSymbolValue + 1]int16
+	br       byteReader
+	bits     bitReader
+	bw       bitWriter
+	ct       cTable      // Compression tables.
+	decTable []decSymbol // Decompression table.
+	maxCount int         // count of the most probable symbol
+
+	// Per block parameters.
+	// These can be used to override compression parameters of the block.
+	// Do not touch, unless you know what you are doing.
+
+	// Out is output buffer.
+	// If the scratch is re-used before the caller is done processing the output,
+	// set this field to nil.
+	// Otherwise the output buffer will be re-used for next Compression/Decompression step
+	// and allocation will be avoided.
+	Out []byte
+
+	// DecompressLimit limits the maximum decoded size acceptable.
+	// If > 0 decompression will stop when approximately this many bytes
+	// has been decoded.
+	// If 0, maximum size will be 2GB.
+	DecompressLimit int
+
+	symbolLen      uint16 // Length of active part of the symbol table.
+	actualTableLog uint8  // Selected tablelog.
+	zeroBits       bool   // no bits has prob > 50%.
+	clearCount     bool   // clear count
+
+	// MaxSymbolValue will override the maximum symbol value of the next block.
+	MaxSymbolValue uint8
+
+	// TableLog will attempt to override the tablelog for the next block.
+	TableLog uint8
+}
+
+// Histogram allows to populate the histogram and skip that step in the compression,
+// It otherwise allows to inspect the histogram when compression is done.
+// To indicate that you have populated the histogram call HistogramFinished
+// with the value of the highest populated symbol, as well as the number of entries
+// in the most populated entry. These are accepted at face value.
+// The returned slice will always be length 256.
+func (s *Scratch) Histogram() []uint32 {
+	return s.count[:]
+}
+
+// HistogramFinished can be called to indicate that the histogram has been populated.
+// maxSymbol is the index of the highest set symbol of the next data segment.
+// maxCount is the number of entries in the most populated entry.
+// These are accepted at face value.
+func (s *Scratch) HistogramFinished(maxSymbol uint8, maxCount int) {
+	s.maxCount = maxCount
+	s.symbolLen = uint16(maxSymbol) + 1
+	s.clearCount = maxCount != 0
+}
+
+// prepare will prepare and allocate scratch tables used for both compression and decompression.
+func (s *Scratch) prepare(in []byte) (*Scratch, error) {
+	if s == nil {
+		s = &Scratch{}
+	}
+	if s.MaxSymbolValue == 0 {
+		s.MaxSymbolValue = 255
+	}
+	if s.TableLog == 0 {
+		s.TableLog = defaultTablelog
+	}
+	if s.TableLog > maxTableLog {
+		return nil, fmt.Errorf("tableLog (%d) > maxTableLog (%d)", s.TableLog, maxTableLog)
+	}
+	if cap(s.Out) == 0 {
+		s.Out = make([]byte, 0, len(in))
+	}
+	if s.clearCount && s.maxCount == 0 {
+		for i := range s.count {
+			s.count[i] = 0
+		}
+		s.clearCount = false
+	}
+	s.br.init(in)
+	if s.DecompressLimit == 0 {
+		// Max size 2GB.
+		s.DecompressLimit = (2 << 30) - 1
+	}
+
+	return s, nil
+}
+
+// tableStep returns the next table index.
+func tableStep(tableSize uint32) uint32 {
+	return (tableSize >> 1) + (tableSize >> 3) + 3
+}
+
+func highBits(val uint32) (n uint32) {
+	return uint32(bits.Len32(val) - 1)
+}