blob: 94dafa4e528b3e6d2c5fe3650c12ec068ce27251 [file] [log] [blame]
khenaidooac637102019-01-14 15:44:34 -05001// Copyright 2009 The Go Authors. All rights reserved.
2// Use of this source code is governed by a BSD-style
3// license that can be found in the LICENSE file.
4
5// Linux system calls.
6// This file is compiled as ordinary Go code,
7// but it is also input to mksyscall,
8// which parses the //sys lines and generates system call stubs.
9// Note that sometimes we use a lowercase //sys name and
10// wrap it in our own nicer implementation.
11
12package unix
13
14import (
15 "encoding/binary"
Stephane Barbarie260a5632019-02-26 16:12:49 -050016 "runtime"
khenaidooac637102019-01-14 15:44:34 -050017 "syscall"
18 "unsafe"
19)
20
21/*
22 * Wrapped
23 */
24
25func Access(path string, mode uint32) (err error) {
26 return Faccessat(AT_FDCWD, path, mode, 0)
27}
28
29func Chmod(path string, mode uint32) (err error) {
30 return Fchmodat(AT_FDCWD, path, mode, 0)
31}
32
33func Chown(path string, uid int, gid int) (err error) {
34 return Fchownat(AT_FDCWD, path, uid, gid, 0)
35}
36
37func Creat(path string, mode uint32) (fd int, err error) {
38 return Open(path, O_CREAT|O_WRONLY|O_TRUNC, mode)
39}
40
William Kurkiandaa6bb22019-03-07 12:26:28 -050041//sys FanotifyInit(flags uint, event_f_flags uint) (fd int, err error)
42//sys fanotifyMark(fd int, flags uint, mask uint64, dirFd int, pathname *byte) (err error)
43
44func FanotifyMark(fd int, flags uint, mask uint64, dirFd int, pathname string) (err error) {
45 if pathname == "" {
46 return fanotifyMark(fd, flags, mask, dirFd, nil)
47 }
48 p, err := BytePtrFromString(pathname)
49 if err != nil {
50 return err
51 }
52 return fanotifyMark(fd, flags, mask, dirFd, p)
53}
54
khenaidooac637102019-01-14 15:44:34 -050055//sys fchmodat(dirfd int, path string, mode uint32) (err error)
56
57func Fchmodat(dirfd int, path string, mode uint32, flags int) (err error) {
58 // Linux fchmodat doesn't support the flags parameter. Mimick glibc's behavior
59 // and check the flags. Otherwise the mode would be applied to the symlink
60 // destination which is not what the user expects.
61 if flags&^AT_SYMLINK_NOFOLLOW != 0 {
62 return EINVAL
63 } else if flags&AT_SYMLINK_NOFOLLOW != 0 {
64 return EOPNOTSUPP
65 }
66 return fchmodat(dirfd, path, mode)
67}
68
69//sys ioctl(fd int, req uint, arg uintptr) (err error)
70
71// ioctl itself should not be exposed directly, but additional get/set
72// functions for specific types are permissible.
73
Scott Baker8461e152019-10-01 14:44:30 -070074// IoctlRetInt performs an ioctl operation specified by req on a device
75// associated with opened file descriptor fd, and returns a non-negative
76// integer that is returned by the ioctl syscall.
77func IoctlRetInt(fd int, req uint) (int, error) {
78 ret, _, err := Syscall(SYS_IOCTL, uintptr(fd), uintptr(req), 0)
79 if err != 0 {
80 return 0, err
81 }
82 return int(ret), nil
83}
84
Stephane Barbarie260a5632019-02-26 16:12:49 -050085func IoctlSetRTCTime(fd int, value *RTCTime) error {
86 err := ioctl(fd, RTC_SET_TIME, uintptr(unsafe.Pointer(value)))
87 runtime.KeepAlive(value)
88 return err
89}
90
Andrea Campanella3614a922021-02-25 12:40:42 +010091func IoctlSetRTCWkAlrm(fd int, value *RTCWkAlrm) error {
92 err := ioctl(fd, RTC_WKALM_SET, uintptr(unsafe.Pointer(value)))
93 runtime.KeepAlive(value)
94 return err
95}
96
Scott Baker8461e152019-10-01 14:44:30 -070097func IoctlGetUint32(fd int, req uint) (uint32, error) {
98 var value uint32
khenaidooac637102019-01-14 15:44:34 -050099 err := ioctl(fd, req, uintptr(unsafe.Pointer(&value)))
100 return value, err
101}
102
Stephane Barbarie260a5632019-02-26 16:12:49 -0500103func IoctlGetRTCTime(fd int) (*RTCTime, error) {
104 var value RTCTime
105 err := ioctl(fd, RTC_RD_TIME, uintptr(unsafe.Pointer(&value)))
106 return &value, err
107}
108
Andrea Campanella3614a922021-02-25 12:40:42 +0100109func IoctlGetRTCWkAlrm(fd int) (*RTCWkAlrm, error) {
110 var value RTCWkAlrm
111 err := ioctl(fd, RTC_WKALM_RD, uintptr(unsafe.Pointer(&value)))
112 return &value, err
113}
114
115// IoctlFileClone performs an FICLONERANGE ioctl operation to clone the range of
116// data conveyed in value to the file associated with the file descriptor
117// destFd. See the ioctl_ficlonerange(2) man page for details.
118func IoctlFileCloneRange(destFd int, value *FileCloneRange) error {
119 err := ioctl(destFd, FICLONERANGE, uintptr(unsafe.Pointer(value)))
120 runtime.KeepAlive(value)
121 return err
122}
123
124// IoctlFileClone performs an FICLONE ioctl operation to clone the entire file
125// associated with the file description srcFd to the file associated with the
126// file descriptor destFd. See the ioctl_ficlone(2) man page for details.
127func IoctlFileClone(destFd, srcFd int) error {
128 return ioctl(destFd, FICLONE, uintptr(srcFd))
129}
130
131// IoctlFileClone performs an FIDEDUPERANGE ioctl operation to share the range of
132// data conveyed in value with the file associated with the file descriptor
133// destFd. See the ioctl_fideduperange(2) man page for details.
134func IoctlFileDedupeRange(destFd int, value *FileDedupeRange) error {
135 err := ioctl(destFd, FIDEDUPERANGE, uintptr(unsafe.Pointer(value)))
136 runtime.KeepAlive(value)
137 return err
138}
139
khenaidooac637102019-01-14 15:44:34 -0500140//sys Linkat(olddirfd int, oldpath string, newdirfd int, newpath string, flags int) (err error)
141
142func Link(oldpath string, newpath string) (err error) {
143 return Linkat(AT_FDCWD, oldpath, AT_FDCWD, newpath, 0)
144}
145
146func Mkdir(path string, mode uint32) (err error) {
147 return Mkdirat(AT_FDCWD, path, mode)
148}
149
150func Mknod(path string, mode uint32, dev int) (err error) {
151 return Mknodat(AT_FDCWD, path, mode, dev)
152}
153
154func Open(path string, mode int, perm uint32) (fd int, err error) {
155 return openat(AT_FDCWD, path, mode|O_LARGEFILE, perm)
156}
157
158//sys openat(dirfd int, path string, flags int, mode uint32) (fd int, err error)
159
160func Openat(dirfd int, path string, flags int, mode uint32) (fd int, err error) {
161 return openat(dirfd, path, flags|O_LARGEFILE, mode)
162}
163
Andrea Campanella3614a922021-02-25 12:40:42 +0100164//sys openat2(dirfd int, path string, open_how *OpenHow, size int) (fd int, err error)
165
166func Openat2(dirfd int, path string, how *OpenHow) (fd int, err error) {
167 return openat2(dirfd, path, how, SizeofOpenHow)
168}
169
khenaidooac637102019-01-14 15:44:34 -0500170//sys ppoll(fds *PollFd, nfds int, timeout *Timespec, sigmask *Sigset_t) (n int, err error)
171
172func Ppoll(fds []PollFd, timeout *Timespec, sigmask *Sigset_t) (n int, err error) {
173 if len(fds) == 0 {
174 return ppoll(nil, 0, timeout, sigmask)
175 }
176 return ppoll(&fds[0], len(fds), timeout, sigmask)
177}
178
179//sys Readlinkat(dirfd int, path string, buf []byte) (n int, err error)
180
181func Readlink(path string, buf []byte) (n int, err error) {
182 return Readlinkat(AT_FDCWD, path, buf)
183}
184
185func Rename(oldpath string, newpath string) (err error) {
186 return Renameat(AT_FDCWD, oldpath, AT_FDCWD, newpath)
187}
188
189func Rmdir(path string) error {
190 return Unlinkat(AT_FDCWD, path, AT_REMOVEDIR)
191}
192
193//sys Symlinkat(oldpath string, newdirfd int, newpath string) (err error)
194
195func Symlink(oldpath string, newpath string) (err error) {
196 return Symlinkat(oldpath, AT_FDCWD, newpath)
197}
198
199func Unlink(path string) error {
200 return Unlinkat(AT_FDCWD, path, 0)
201}
202
203//sys Unlinkat(dirfd int, path string, flags int) (err error)
204
205func Utimes(path string, tv []Timeval) error {
206 if tv == nil {
207 err := utimensat(AT_FDCWD, path, nil, 0)
208 if err != ENOSYS {
209 return err
210 }
211 return utimes(path, nil)
212 }
213 if len(tv) != 2 {
214 return EINVAL
215 }
216 var ts [2]Timespec
217 ts[0] = NsecToTimespec(TimevalToNsec(tv[0]))
218 ts[1] = NsecToTimespec(TimevalToNsec(tv[1]))
219 err := utimensat(AT_FDCWD, path, (*[2]Timespec)(unsafe.Pointer(&ts[0])), 0)
220 if err != ENOSYS {
221 return err
222 }
223 return utimes(path, (*[2]Timeval)(unsafe.Pointer(&tv[0])))
224}
225
226//sys utimensat(dirfd int, path string, times *[2]Timespec, flags int) (err error)
227
228func UtimesNano(path string, ts []Timespec) error {
229 if ts == nil {
230 err := utimensat(AT_FDCWD, path, nil, 0)
231 if err != ENOSYS {
232 return err
233 }
234 return utimes(path, nil)
235 }
236 if len(ts) != 2 {
237 return EINVAL
238 }
239 err := utimensat(AT_FDCWD, path, (*[2]Timespec)(unsafe.Pointer(&ts[0])), 0)
240 if err != ENOSYS {
241 return err
242 }
243 // If the utimensat syscall isn't available (utimensat was added to Linux
244 // in 2.6.22, Released, 8 July 2007) then fall back to utimes
245 var tv [2]Timeval
246 for i := 0; i < 2; i++ {
247 tv[i] = NsecToTimeval(TimespecToNsec(ts[i]))
248 }
249 return utimes(path, (*[2]Timeval)(unsafe.Pointer(&tv[0])))
250}
251
252func UtimesNanoAt(dirfd int, path string, ts []Timespec, flags int) error {
253 if ts == nil {
254 return utimensat(dirfd, path, nil, flags)
255 }
256 if len(ts) != 2 {
257 return EINVAL
258 }
259 return utimensat(dirfd, path, (*[2]Timespec)(unsafe.Pointer(&ts[0])), flags)
260}
261
262func Futimesat(dirfd int, path string, tv []Timeval) error {
263 if tv == nil {
264 return futimesat(dirfd, path, nil)
265 }
266 if len(tv) != 2 {
267 return EINVAL
268 }
269 return futimesat(dirfd, path, (*[2]Timeval)(unsafe.Pointer(&tv[0])))
270}
271
272func Futimes(fd int, tv []Timeval) (err error) {
273 // Believe it or not, this is the best we can do on Linux
274 // (and is what glibc does).
275 return Utimes("/proc/self/fd/"+itoa(fd), tv)
276}
277
278const ImplementsGetwd = true
279
280//sys Getcwd(buf []byte) (n int, err error)
281
282func Getwd() (wd string, err error) {
283 var buf [PathMax]byte
284 n, err := Getcwd(buf[0:])
285 if err != nil {
286 return "", err
287 }
288 // Getcwd returns the number of bytes written to buf, including the NUL.
289 if n < 1 || n > len(buf) || buf[n-1] != 0 {
290 return "", EINVAL
291 }
292 return string(buf[0 : n-1]), nil
293}
294
295func Getgroups() (gids []int, err error) {
296 n, err := getgroups(0, nil)
297 if err != nil {
298 return nil, err
299 }
300 if n == 0 {
301 return nil, nil
302 }
303
304 // Sanity check group count. Max is 1<<16 on Linux.
305 if n < 0 || n > 1<<20 {
306 return nil, EINVAL
307 }
308
309 a := make([]_Gid_t, n)
310 n, err = getgroups(n, &a[0])
311 if err != nil {
312 return nil, err
313 }
314 gids = make([]int, n)
315 for i, v := range a[0:n] {
316 gids[i] = int(v)
317 }
318 return
319}
320
321func Setgroups(gids []int) (err error) {
322 if len(gids) == 0 {
323 return setgroups(0, nil)
324 }
325
326 a := make([]_Gid_t, len(gids))
327 for i, v := range gids {
328 a[i] = _Gid_t(v)
329 }
330 return setgroups(len(a), &a[0])
331}
332
333type WaitStatus uint32
334
335// Wait status is 7 bits at bottom, either 0 (exited),
336// 0x7F (stopped), or a signal number that caused an exit.
337// The 0x80 bit is whether there was a core dump.
338// An extra number (exit code, signal causing a stop)
339// is in the high bits. At least that's the idea.
340// There are various irregularities. For example, the
341// "continued" status is 0xFFFF, distinguishing itself
342// from stopped via the core dump bit.
343
344const (
345 mask = 0x7F
346 core = 0x80
347 exited = 0x00
348 stopped = 0x7F
349 shift = 8
350)
351
352func (w WaitStatus) Exited() bool { return w&mask == exited }
353
354func (w WaitStatus) Signaled() bool { return w&mask != stopped && w&mask != exited }
355
356func (w WaitStatus) Stopped() bool { return w&0xFF == stopped }
357
358func (w WaitStatus) Continued() bool { return w == 0xFFFF }
359
360func (w WaitStatus) CoreDump() bool { return w.Signaled() && w&core != 0 }
361
362func (w WaitStatus) ExitStatus() int {
363 if !w.Exited() {
364 return -1
365 }
366 return int(w>>shift) & 0xFF
367}
368
369func (w WaitStatus) Signal() syscall.Signal {
370 if !w.Signaled() {
371 return -1
372 }
373 return syscall.Signal(w & mask)
374}
375
376func (w WaitStatus) StopSignal() syscall.Signal {
377 if !w.Stopped() {
378 return -1
379 }
380 return syscall.Signal(w>>shift) & 0xFF
381}
382
383func (w WaitStatus) TrapCause() int {
384 if w.StopSignal() != SIGTRAP {
385 return -1
386 }
387 return int(w>>shift) >> 8
388}
389
390//sys wait4(pid int, wstatus *_C_int, options int, rusage *Rusage) (wpid int, err error)
391
392func Wait4(pid int, wstatus *WaitStatus, options int, rusage *Rusage) (wpid int, err error) {
393 var status _C_int
394 wpid, err = wait4(pid, &status, options, rusage)
395 if wstatus != nil {
396 *wstatus = WaitStatus(status)
397 }
398 return
399}
400
401func Mkfifo(path string, mode uint32) error {
402 return Mknod(path, mode|S_IFIFO, 0)
403}
404
405func Mkfifoat(dirfd int, path string, mode uint32) error {
406 return Mknodat(dirfd, path, mode|S_IFIFO, 0)
407}
408
409func (sa *SockaddrInet4) sockaddr() (unsafe.Pointer, _Socklen, error) {
410 if sa.Port < 0 || sa.Port > 0xFFFF {
411 return nil, 0, EINVAL
412 }
413 sa.raw.Family = AF_INET
414 p := (*[2]byte)(unsafe.Pointer(&sa.raw.Port))
415 p[0] = byte(sa.Port >> 8)
416 p[1] = byte(sa.Port)
417 for i := 0; i < len(sa.Addr); i++ {
418 sa.raw.Addr[i] = sa.Addr[i]
419 }
420 return unsafe.Pointer(&sa.raw), SizeofSockaddrInet4, nil
421}
422
423func (sa *SockaddrInet6) sockaddr() (unsafe.Pointer, _Socklen, error) {
424 if sa.Port < 0 || sa.Port > 0xFFFF {
425 return nil, 0, EINVAL
426 }
427 sa.raw.Family = AF_INET6
428 p := (*[2]byte)(unsafe.Pointer(&sa.raw.Port))
429 p[0] = byte(sa.Port >> 8)
430 p[1] = byte(sa.Port)
431 sa.raw.Scope_id = sa.ZoneId
432 for i := 0; i < len(sa.Addr); i++ {
433 sa.raw.Addr[i] = sa.Addr[i]
434 }
435 return unsafe.Pointer(&sa.raw), SizeofSockaddrInet6, nil
436}
437
438func (sa *SockaddrUnix) sockaddr() (unsafe.Pointer, _Socklen, error) {
439 name := sa.Name
440 n := len(name)
441 if n >= len(sa.raw.Path) {
442 return nil, 0, EINVAL
443 }
444 sa.raw.Family = AF_UNIX
445 for i := 0; i < n; i++ {
446 sa.raw.Path[i] = int8(name[i])
447 }
448 // length is family (uint16), name, NUL.
449 sl := _Socklen(2)
450 if n > 0 {
451 sl += _Socklen(n) + 1
452 }
453 if sa.raw.Path[0] == '@' {
454 sa.raw.Path[0] = 0
455 // Don't count trailing NUL for abstract address.
456 sl--
457 }
458
459 return unsafe.Pointer(&sa.raw), sl, nil
460}
461
462// SockaddrLinklayer implements the Sockaddr interface for AF_PACKET type sockets.
463type SockaddrLinklayer struct {
464 Protocol uint16
465 Ifindex int
466 Hatype uint16
467 Pkttype uint8
468 Halen uint8
469 Addr [8]byte
470 raw RawSockaddrLinklayer
471}
472
473func (sa *SockaddrLinklayer) sockaddr() (unsafe.Pointer, _Socklen, error) {
474 if sa.Ifindex < 0 || sa.Ifindex > 0x7fffffff {
475 return nil, 0, EINVAL
476 }
477 sa.raw.Family = AF_PACKET
478 sa.raw.Protocol = sa.Protocol
479 sa.raw.Ifindex = int32(sa.Ifindex)
480 sa.raw.Hatype = sa.Hatype
481 sa.raw.Pkttype = sa.Pkttype
482 sa.raw.Halen = sa.Halen
483 for i := 0; i < len(sa.Addr); i++ {
484 sa.raw.Addr[i] = sa.Addr[i]
485 }
486 return unsafe.Pointer(&sa.raw), SizeofSockaddrLinklayer, nil
487}
488
489// SockaddrNetlink implements the Sockaddr interface for AF_NETLINK type sockets.
490type SockaddrNetlink struct {
491 Family uint16
492 Pad uint16
493 Pid uint32
494 Groups uint32
495 raw RawSockaddrNetlink
496}
497
498func (sa *SockaddrNetlink) sockaddr() (unsafe.Pointer, _Socklen, error) {
499 sa.raw.Family = AF_NETLINK
500 sa.raw.Pad = sa.Pad
501 sa.raw.Pid = sa.Pid
502 sa.raw.Groups = sa.Groups
503 return unsafe.Pointer(&sa.raw), SizeofSockaddrNetlink, nil
504}
505
506// SockaddrHCI implements the Sockaddr interface for AF_BLUETOOTH type sockets
507// using the HCI protocol.
508type SockaddrHCI struct {
509 Dev uint16
510 Channel uint16
511 raw RawSockaddrHCI
512}
513
514func (sa *SockaddrHCI) sockaddr() (unsafe.Pointer, _Socklen, error) {
515 sa.raw.Family = AF_BLUETOOTH
516 sa.raw.Dev = sa.Dev
517 sa.raw.Channel = sa.Channel
518 return unsafe.Pointer(&sa.raw), SizeofSockaddrHCI, nil
519}
520
521// SockaddrL2 implements the Sockaddr interface for AF_BLUETOOTH type sockets
522// using the L2CAP protocol.
523type SockaddrL2 struct {
524 PSM uint16
525 CID uint16
526 Addr [6]uint8
527 AddrType uint8
528 raw RawSockaddrL2
529}
530
531func (sa *SockaddrL2) sockaddr() (unsafe.Pointer, _Socklen, error) {
532 sa.raw.Family = AF_BLUETOOTH
533 psm := (*[2]byte)(unsafe.Pointer(&sa.raw.Psm))
534 psm[0] = byte(sa.PSM)
535 psm[1] = byte(sa.PSM >> 8)
536 for i := 0; i < len(sa.Addr); i++ {
537 sa.raw.Bdaddr[i] = sa.Addr[len(sa.Addr)-1-i]
538 }
539 cid := (*[2]byte)(unsafe.Pointer(&sa.raw.Cid))
540 cid[0] = byte(sa.CID)
541 cid[1] = byte(sa.CID >> 8)
542 sa.raw.Bdaddr_type = sa.AddrType
543 return unsafe.Pointer(&sa.raw), SizeofSockaddrL2, nil
544}
545
546// SockaddrRFCOMM implements the Sockaddr interface for AF_BLUETOOTH type sockets
547// using the RFCOMM protocol.
548//
549// Server example:
550//
551// fd, _ := Socket(AF_BLUETOOTH, SOCK_STREAM, BTPROTO_RFCOMM)
552// _ = unix.Bind(fd, &unix.SockaddrRFCOMM{
553// Channel: 1,
554// Addr: [6]uint8{0, 0, 0, 0, 0, 0}, // BDADDR_ANY or 00:00:00:00:00:00
555// })
556// _ = Listen(fd, 1)
557// nfd, sa, _ := Accept(fd)
558// fmt.Printf("conn addr=%v fd=%d", sa.(*unix.SockaddrRFCOMM).Addr, nfd)
559// Read(nfd, buf)
560//
561// Client example:
562//
563// fd, _ := Socket(AF_BLUETOOTH, SOCK_STREAM, BTPROTO_RFCOMM)
564// _ = Connect(fd, &SockaddrRFCOMM{
565// Channel: 1,
566// Addr: [6]byte{0x11, 0x22, 0x33, 0xaa, 0xbb, 0xcc}, // CC:BB:AA:33:22:11
567// })
568// Write(fd, []byte(`hello`))
569type SockaddrRFCOMM struct {
570 // Addr represents a bluetooth address, byte ordering is little-endian.
571 Addr [6]uint8
572
573 // Channel is a designated bluetooth channel, only 1-30 are available for use.
574 // Since Linux 2.6.7 and further zero value is the first available channel.
575 Channel uint8
576
577 raw RawSockaddrRFCOMM
578}
579
580func (sa *SockaddrRFCOMM) sockaddr() (unsafe.Pointer, _Socklen, error) {
581 sa.raw.Family = AF_BLUETOOTH
582 sa.raw.Channel = sa.Channel
583 sa.raw.Bdaddr = sa.Addr
584 return unsafe.Pointer(&sa.raw), SizeofSockaddrRFCOMM, nil
585}
586
587// SockaddrCAN implements the Sockaddr interface for AF_CAN type sockets.
588// The RxID and TxID fields are used for transport protocol addressing in
589// (CAN_TP16, CAN_TP20, CAN_MCNET, and CAN_ISOTP), they can be left with
590// zero values for CAN_RAW and CAN_BCM sockets as they have no meaning.
591//
592// The SockaddrCAN struct must be bound to the socket file descriptor
593// using Bind before the CAN socket can be used.
594//
595// // Read one raw CAN frame
596// fd, _ := Socket(AF_CAN, SOCK_RAW, CAN_RAW)
597// addr := &SockaddrCAN{Ifindex: index}
598// Bind(fd, addr)
599// frame := make([]byte, 16)
600// Read(fd, frame)
601//
602// The full SocketCAN documentation can be found in the linux kernel
603// archives at: https://www.kernel.org/doc/Documentation/networking/can.txt
604type SockaddrCAN struct {
605 Ifindex int
606 RxID uint32
607 TxID uint32
608 raw RawSockaddrCAN
609}
610
611func (sa *SockaddrCAN) sockaddr() (unsafe.Pointer, _Socklen, error) {
612 if sa.Ifindex < 0 || sa.Ifindex > 0x7fffffff {
613 return nil, 0, EINVAL
614 }
615 sa.raw.Family = AF_CAN
616 sa.raw.Ifindex = int32(sa.Ifindex)
617 rx := (*[4]byte)(unsafe.Pointer(&sa.RxID))
618 for i := 0; i < 4; i++ {
619 sa.raw.Addr[i] = rx[i]
620 }
621 tx := (*[4]byte)(unsafe.Pointer(&sa.TxID))
622 for i := 0; i < 4; i++ {
623 sa.raw.Addr[i+4] = tx[i]
624 }
625 return unsafe.Pointer(&sa.raw), SizeofSockaddrCAN, nil
626}
627
628// SockaddrALG implements the Sockaddr interface for AF_ALG type sockets.
629// SockaddrALG enables userspace access to the Linux kernel's cryptography
630// subsystem. The Type and Name fields specify which type of hash or cipher
631// should be used with a given socket.
632//
633// To create a file descriptor that provides access to a hash or cipher, both
634// Bind and Accept must be used. Once the setup process is complete, input
635// data can be written to the socket, processed by the kernel, and then read
636// back as hash output or ciphertext.
637//
638// Here is an example of using an AF_ALG socket with SHA1 hashing.
639// The initial socket setup process is as follows:
640//
641// // Open a socket to perform SHA1 hashing.
642// fd, _ := unix.Socket(unix.AF_ALG, unix.SOCK_SEQPACKET, 0)
643// addr := &unix.SockaddrALG{Type: "hash", Name: "sha1"}
644// unix.Bind(fd, addr)
645// // Note: unix.Accept does not work at this time; must invoke accept()
646// // manually using unix.Syscall.
647// hashfd, _, _ := unix.Syscall(unix.SYS_ACCEPT, uintptr(fd), 0, 0)
648//
649// Once a file descriptor has been returned from Accept, it may be used to
650// perform SHA1 hashing. The descriptor is not safe for concurrent use, but
651// may be re-used repeatedly with subsequent Write and Read operations.
652//
653// When hashing a small byte slice or string, a single Write and Read may
654// be used:
655//
656// // Assume hashfd is already configured using the setup process.
657// hash := os.NewFile(hashfd, "sha1")
658// // Hash an input string and read the results. Each Write discards
659// // previous hash state. Read always reads the current state.
660// b := make([]byte, 20)
661// for i := 0; i < 2; i++ {
662// io.WriteString(hash, "Hello, world.")
663// hash.Read(b)
664// fmt.Println(hex.EncodeToString(b))
665// }
666// // Output:
667// // 2ae01472317d1935a84797ec1983ae243fc6aa28
668// // 2ae01472317d1935a84797ec1983ae243fc6aa28
669//
670// For hashing larger byte slices, or byte streams such as those read from
671// a file or socket, use Sendto with MSG_MORE to instruct the kernel to update
672// the hash digest instead of creating a new one for a given chunk and finalizing it.
673//
674// // Assume hashfd and addr are already configured using the setup process.
675// hash := os.NewFile(hashfd, "sha1")
676// // Hash the contents of a file.
677// f, _ := os.Open("/tmp/linux-4.10-rc7.tar.xz")
678// b := make([]byte, 4096)
679// for {
680// n, err := f.Read(b)
681// if err == io.EOF {
682// break
683// }
684// unix.Sendto(hashfd, b[:n], unix.MSG_MORE, addr)
685// }
686// hash.Read(b)
687// fmt.Println(hex.EncodeToString(b))
688// // Output: 85cdcad0c06eef66f805ecce353bec9accbeecc5
689//
690// For more information, see: http://www.chronox.de/crypto-API/crypto/userspace-if.html.
691type SockaddrALG struct {
692 Type string
693 Name string
694 Feature uint32
695 Mask uint32
696 raw RawSockaddrALG
697}
698
699func (sa *SockaddrALG) sockaddr() (unsafe.Pointer, _Socklen, error) {
700 // Leave room for NUL byte terminator.
701 if len(sa.Type) > 13 {
702 return nil, 0, EINVAL
703 }
704 if len(sa.Name) > 63 {
705 return nil, 0, EINVAL
706 }
707
708 sa.raw.Family = AF_ALG
709 sa.raw.Feat = sa.Feature
710 sa.raw.Mask = sa.Mask
711
712 typ, err := ByteSliceFromString(sa.Type)
713 if err != nil {
714 return nil, 0, err
715 }
716 name, err := ByteSliceFromString(sa.Name)
717 if err != nil {
718 return nil, 0, err
719 }
720
721 copy(sa.raw.Type[:], typ)
722 copy(sa.raw.Name[:], name)
723
724 return unsafe.Pointer(&sa.raw), SizeofSockaddrALG, nil
725}
726
727// SockaddrVM implements the Sockaddr interface for AF_VSOCK type sockets.
728// SockaddrVM provides access to Linux VM sockets: a mechanism that enables
729// bidirectional communication between a hypervisor and its guest virtual
730// machines.
731type SockaddrVM struct {
732 // CID and Port specify a context ID and port address for a VM socket.
733 // Guests have a unique CID, and hosts may have a well-known CID of:
734 // - VMADDR_CID_HYPERVISOR: refers to the hypervisor process.
735 // - VMADDR_CID_HOST: refers to other processes on the host.
736 CID uint32
737 Port uint32
738 raw RawSockaddrVM
739}
740
741func (sa *SockaddrVM) sockaddr() (unsafe.Pointer, _Socklen, error) {
742 sa.raw.Family = AF_VSOCK
743 sa.raw.Port = sa.Port
744 sa.raw.Cid = sa.CID
745
746 return unsafe.Pointer(&sa.raw), SizeofSockaddrVM, nil
747}
748
749type SockaddrXDP struct {
750 Flags uint16
751 Ifindex uint32
752 QueueID uint32
753 SharedUmemFD uint32
754 raw RawSockaddrXDP
755}
756
757func (sa *SockaddrXDP) sockaddr() (unsafe.Pointer, _Socklen, error) {
758 sa.raw.Family = AF_XDP
759 sa.raw.Flags = sa.Flags
760 sa.raw.Ifindex = sa.Ifindex
761 sa.raw.Queue_id = sa.QueueID
762 sa.raw.Shared_umem_fd = sa.SharedUmemFD
763
764 return unsafe.Pointer(&sa.raw), SizeofSockaddrXDP, nil
765}
766
767// This constant mirrors the #define of PX_PROTO_OE in
768// linux/if_pppox.h. We're defining this by hand here instead of
769// autogenerating through mkerrors.sh because including
770// linux/if_pppox.h causes some declaration conflicts with other
771// includes (linux/if_pppox.h includes linux/in.h, which conflicts
772// with netinet/in.h). Given that we only need a single zero constant
773// out of that file, it's cleaner to just define it by hand here.
774const px_proto_oe = 0
775
776type SockaddrPPPoE struct {
777 SID uint16
Scott Baker8461e152019-10-01 14:44:30 -0700778 Remote []byte
khenaidooac637102019-01-14 15:44:34 -0500779 Dev string
780 raw RawSockaddrPPPoX
781}
782
783func (sa *SockaddrPPPoE) sockaddr() (unsafe.Pointer, _Socklen, error) {
784 if len(sa.Remote) != 6 {
785 return nil, 0, EINVAL
786 }
787 if len(sa.Dev) > IFNAMSIZ-1 {
788 return nil, 0, EINVAL
789 }
790
791 *(*uint16)(unsafe.Pointer(&sa.raw[0])) = AF_PPPOX
792 // This next field is in host-endian byte order. We can't use the
793 // same unsafe pointer cast as above, because this value is not
794 // 32-bit aligned and some architectures don't allow unaligned
795 // access.
796 //
797 // However, the value of px_proto_oe is 0, so we can use
798 // encoding/binary helpers to write the bytes without worrying
799 // about the ordering.
800 binary.BigEndian.PutUint32(sa.raw[2:6], px_proto_oe)
801 // This field is deliberately big-endian, unlike the previous
802 // one. The kernel expects SID to be in network byte order.
803 binary.BigEndian.PutUint16(sa.raw[6:8], sa.SID)
804 copy(sa.raw[8:14], sa.Remote)
805 for i := 14; i < 14+IFNAMSIZ; i++ {
806 sa.raw[i] = 0
807 }
808 copy(sa.raw[14:], sa.Dev)
809 return unsafe.Pointer(&sa.raw), SizeofSockaddrPPPoX, nil
810}
811
Scott Baker8461e152019-10-01 14:44:30 -0700812// SockaddrTIPC implements the Sockaddr interface for AF_TIPC type sockets.
813// For more information on TIPC, see: http://tipc.sourceforge.net/.
814type SockaddrTIPC struct {
815 // Scope is the publication scopes when binding service/service range.
816 // Should be set to TIPC_CLUSTER_SCOPE or TIPC_NODE_SCOPE.
817 Scope int
818
819 // Addr is the type of address used to manipulate a socket. Addr must be
820 // one of:
821 // - *TIPCSocketAddr: "id" variant in the C addr union
822 // - *TIPCServiceRange: "nameseq" variant in the C addr union
823 // - *TIPCServiceName: "name" variant in the C addr union
824 //
825 // If nil, EINVAL will be returned when the structure is used.
826 Addr TIPCAddr
827
828 raw RawSockaddrTIPC
829}
830
831// TIPCAddr is implemented by types that can be used as an address for
832// SockaddrTIPC. It is only implemented by *TIPCSocketAddr, *TIPCServiceRange,
833// and *TIPCServiceName.
834type TIPCAddr interface {
835 tipcAddrtype() uint8
836 tipcAddr() [12]byte
837}
838
839func (sa *TIPCSocketAddr) tipcAddr() [12]byte {
840 var out [12]byte
841 copy(out[:], (*(*[unsafe.Sizeof(TIPCSocketAddr{})]byte)(unsafe.Pointer(sa)))[:])
842 return out
843}
844
845func (sa *TIPCSocketAddr) tipcAddrtype() uint8 { return TIPC_SOCKET_ADDR }
846
847func (sa *TIPCServiceRange) tipcAddr() [12]byte {
848 var out [12]byte
849 copy(out[:], (*(*[unsafe.Sizeof(TIPCServiceRange{})]byte)(unsafe.Pointer(sa)))[:])
850 return out
851}
852
853func (sa *TIPCServiceRange) tipcAddrtype() uint8 { return TIPC_SERVICE_RANGE }
854
855func (sa *TIPCServiceName) tipcAddr() [12]byte {
856 var out [12]byte
857 copy(out[:], (*(*[unsafe.Sizeof(TIPCServiceName{})]byte)(unsafe.Pointer(sa)))[:])
858 return out
859}
860
861func (sa *TIPCServiceName) tipcAddrtype() uint8 { return TIPC_SERVICE_ADDR }
862
863func (sa *SockaddrTIPC) sockaddr() (unsafe.Pointer, _Socklen, error) {
864 if sa.Addr == nil {
865 return nil, 0, EINVAL
866 }
867
868 sa.raw.Family = AF_TIPC
869 sa.raw.Scope = int8(sa.Scope)
870 sa.raw.Addrtype = sa.Addr.tipcAddrtype()
871 sa.raw.Addr = sa.Addr.tipcAddr()
872
873 return unsafe.Pointer(&sa.raw), SizeofSockaddrTIPC, nil
874}
875
Andrea Campanella3614a922021-02-25 12:40:42 +0100876// SockaddrL2TPIP implements the Sockaddr interface for IPPROTO_L2TP/AF_INET sockets.
877type SockaddrL2TPIP struct {
878 Addr [4]byte
879 ConnId uint32
880 raw RawSockaddrL2TPIP
881}
882
883func (sa *SockaddrL2TPIP) sockaddr() (unsafe.Pointer, _Socklen, error) {
884 sa.raw.Family = AF_INET
885 sa.raw.Conn_id = sa.ConnId
886 for i := 0; i < len(sa.Addr); i++ {
887 sa.raw.Addr[i] = sa.Addr[i]
888 }
889 return unsafe.Pointer(&sa.raw), SizeofSockaddrL2TPIP, nil
890}
891
892// SockaddrL2TPIP6 implements the Sockaddr interface for IPPROTO_L2TP/AF_INET6 sockets.
893type SockaddrL2TPIP6 struct {
894 Addr [16]byte
895 ZoneId uint32
896 ConnId uint32
897 raw RawSockaddrL2TPIP6
898}
899
900func (sa *SockaddrL2TPIP6) sockaddr() (unsafe.Pointer, _Socklen, error) {
901 sa.raw.Family = AF_INET6
902 sa.raw.Conn_id = sa.ConnId
903 sa.raw.Scope_id = sa.ZoneId
904 for i := 0; i < len(sa.Addr); i++ {
905 sa.raw.Addr[i] = sa.Addr[i]
906 }
907 return unsafe.Pointer(&sa.raw), SizeofSockaddrL2TPIP6, nil
908}
909
910// SockaddrIUCV implements the Sockaddr interface for AF_IUCV sockets.
911type SockaddrIUCV struct {
912 UserID string
913 Name string
914 raw RawSockaddrIUCV
915}
916
917func (sa *SockaddrIUCV) sockaddr() (unsafe.Pointer, _Socklen, error) {
918 sa.raw.Family = AF_IUCV
919 // These are EBCDIC encoded by the kernel, but we still need to pad them
920 // with blanks. Initializing with blanks allows the caller to feed in either
921 // a padded or an unpadded string.
922 for i := 0; i < 8; i++ {
923 sa.raw.Nodeid[i] = ' '
924 sa.raw.User_id[i] = ' '
925 sa.raw.Name[i] = ' '
926 }
927 if len(sa.UserID) > 8 || len(sa.Name) > 8 {
928 return nil, 0, EINVAL
929 }
930 for i, b := range []byte(sa.UserID[:]) {
931 sa.raw.User_id[i] = int8(b)
932 }
933 for i, b := range []byte(sa.Name[:]) {
934 sa.raw.Name[i] = int8(b)
935 }
936 return unsafe.Pointer(&sa.raw), SizeofSockaddrIUCV, nil
937}
938
khenaidooac637102019-01-14 15:44:34 -0500939func anyToSockaddr(fd int, rsa *RawSockaddrAny) (Sockaddr, error) {
940 switch rsa.Addr.Family {
941 case AF_NETLINK:
942 pp := (*RawSockaddrNetlink)(unsafe.Pointer(rsa))
943 sa := new(SockaddrNetlink)
944 sa.Family = pp.Family
945 sa.Pad = pp.Pad
946 sa.Pid = pp.Pid
947 sa.Groups = pp.Groups
948 return sa, nil
949
950 case AF_PACKET:
951 pp := (*RawSockaddrLinklayer)(unsafe.Pointer(rsa))
952 sa := new(SockaddrLinklayer)
953 sa.Protocol = pp.Protocol
954 sa.Ifindex = int(pp.Ifindex)
955 sa.Hatype = pp.Hatype
956 sa.Pkttype = pp.Pkttype
957 sa.Halen = pp.Halen
958 for i := 0; i < len(sa.Addr); i++ {
959 sa.Addr[i] = pp.Addr[i]
960 }
961 return sa, nil
962
963 case AF_UNIX:
964 pp := (*RawSockaddrUnix)(unsafe.Pointer(rsa))
965 sa := new(SockaddrUnix)
966 if pp.Path[0] == 0 {
967 // "Abstract" Unix domain socket.
968 // Rewrite leading NUL as @ for textual display.
969 // (This is the standard convention.)
970 // Not friendly to overwrite in place,
971 // but the callers below don't care.
972 pp.Path[0] = '@'
973 }
974
975 // Assume path ends at NUL.
976 // This is not technically the Linux semantics for
977 // abstract Unix domain sockets--they are supposed
978 // to be uninterpreted fixed-size binary blobs--but
979 // everyone uses this convention.
980 n := 0
981 for n < len(pp.Path) && pp.Path[n] != 0 {
982 n++
983 }
Andrea Campanella3614a922021-02-25 12:40:42 +0100984 bytes := (*[len(pp.Path)]byte)(unsafe.Pointer(&pp.Path[0]))[0:n]
khenaidooac637102019-01-14 15:44:34 -0500985 sa.Name = string(bytes)
986 return sa, nil
987
988 case AF_INET:
Andrea Campanella3614a922021-02-25 12:40:42 +0100989 proto, err := GetsockoptInt(fd, SOL_SOCKET, SO_PROTOCOL)
990 if err != nil {
991 return nil, err
khenaidooac637102019-01-14 15:44:34 -0500992 }
Andrea Campanella3614a922021-02-25 12:40:42 +0100993
994 switch proto {
995 case IPPROTO_L2TP:
996 pp := (*RawSockaddrL2TPIP)(unsafe.Pointer(rsa))
997 sa := new(SockaddrL2TPIP)
998 sa.ConnId = pp.Conn_id
999 for i := 0; i < len(sa.Addr); i++ {
1000 sa.Addr[i] = pp.Addr[i]
1001 }
1002 return sa, nil
1003 default:
1004 pp := (*RawSockaddrInet4)(unsafe.Pointer(rsa))
1005 sa := new(SockaddrInet4)
1006 p := (*[2]byte)(unsafe.Pointer(&pp.Port))
1007 sa.Port = int(p[0])<<8 + int(p[1])
1008 for i := 0; i < len(sa.Addr); i++ {
1009 sa.Addr[i] = pp.Addr[i]
1010 }
1011 return sa, nil
1012 }
khenaidooac637102019-01-14 15:44:34 -05001013
1014 case AF_INET6:
Andrea Campanella3614a922021-02-25 12:40:42 +01001015 proto, err := GetsockoptInt(fd, SOL_SOCKET, SO_PROTOCOL)
1016 if err != nil {
1017 return nil, err
khenaidooac637102019-01-14 15:44:34 -05001018 }
Andrea Campanella3614a922021-02-25 12:40:42 +01001019
1020 switch proto {
1021 case IPPROTO_L2TP:
1022 pp := (*RawSockaddrL2TPIP6)(unsafe.Pointer(rsa))
1023 sa := new(SockaddrL2TPIP6)
1024 sa.ConnId = pp.Conn_id
1025 sa.ZoneId = pp.Scope_id
1026 for i := 0; i < len(sa.Addr); i++ {
1027 sa.Addr[i] = pp.Addr[i]
1028 }
1029 return sa, nil
1030 default:
1031 pp := (*RawSockaddrInet6)(unsafe.Pointer(rsa))
1032 sa := new(SockaddrInet6)
1033 p := (*[2]byte)(unsafe.Pointer(&pp.Port))
1034 sa.Port = int(p[0])<<8 + int(p[1])
1035 sa.ZoneId = pp.Scope_id
1036 for i := 0; i < len(sa.Addr); i++ {
1037 sa.Addr[i] = pp.Addr[i]
1038 }
1039 return sa, nil
1040 }
khenaidooac637102019-01-14 15:44:34 -05001041
1042 case AF_VSOCK:
1043 pp := (*RawSockaddrVM)(unsafe.Pointer(rsa))
1044 sa := &SockaddrVM{
1045 CID: pp.Cid,
1046 Port: pp.Port,
1047 }
1048 return sa, nil
1049 case AF_BLUETOOTH:
1050 proto, err := GetsockoptInt(fd, SOL_SOCKET, SO_PROTOCOL)
1051 if err != nil {
1052 return nil, err
1053 }
1054 // only BTPROTO_L2CAP and BTPROTO_RFCOMM can accept connections
1055 switch proto {
1056 case BTPROTO_L2CAP:
1057 pp := (*RawSockaddrL2)(unsafe.Pointer(rsa))
1058 sa := &SockaddrL2{
1059 PSM: pp.Psm,
1060 CID: pp.Cid,
1061 Addr: pp.Bdaddr,
1062 AddrType: pp.Bdaddr_type,
1063 }
1064 return sa, nil
1065 case BTPROTO_RFCOMM:
1066 pp := (*RawSockaddrRFCOMM)(unsafe.Pointer(rsa))
1067 sa := &SockaddrRFCOMM{
1068 Channel: pp.Channel,
1069 Addr: pp.Bdaddr,
1070 }
1071 return sa, nil
1072 }
1073 case AF_XDP:
1074 pp := (*RawSockaddrXDP)(unsafe.Pointer(rsa))
1075 sa := &SockaddrXDP{
1076 Flags: pp.Flags,
1077 Ifindex: pp.Ifindex,
1078 QueueID: pp.Queue_id,
1079 SharedUmemFD: pp.Shared_umem_fd,
1080 }
1081 return sa, nil
1082 case AF_PPPOX:
1083 pp := (*RawSockaddrPPPoX)(unsafe.Pointer(rsa))
1084 if binary.BigEndian.Uint32(pp[2:6]) != px_proto_oe {
1085 return nil, EINVAL
1086 }
1087 sa := &SockaddrPPPoE{
1088 SID: binary.BigEndian.Uint16(pp[6:8]),
Scott Baker8461e152019-10-01 14:44:30 -07001089 Remote: pp[8:14],
khenaidooac637102019-01-14 15:44:34 -05001090 }
1091 for i := 14; i < 14+IFNAMSIZ; i++ {
1092 if pp[i] == 0 {
1093 sa.Dev = string(pp[14:i])
1094 break
1095 }
1096 }
1097 return sa, nil
Scott Baker8461e152019-10-01 14:44:30 -07001098 case AF_TIPC:
1099 pp := (*RawSockaddrTIPC)(unsafe.Pointer(rsa))
1100
1101 sa := &SockaddrTIPC{
1102 Scope: int(pp.Scope),
1103 }
1104
1105 // Determine which union variant is present in pp.Addr by checking
1106 // pp.Addrtype.
1107 switch pp.Addrtype {
1108 case TIPC_SERVICE_RANGE:
1109 sa.Addr = (*TIPCServiceRange)(unsafe.Pointer(&pp.Addr))
1110 case TIPC_SERVICE_ADDR:
1111 sa.Addr = (*TIPCServiceName)(unsafe.Pointer(&pp.Addr))
1112 case TIPC_SOCKET_ADDR:
1113 sa.Addr = (*TIPCSocketAddr)(unsafe.Pointer(&pp.Addr))
1114 default:
1115 return nil, EINVAL
1116 }
1117
1118 return sa, nil
Andrea Campanella3614a922021-02-25 12:40:42 +01001119 case AF_IUCV:
1120 pp := (*RawSockaddrIUCV)(unsafe.Pointer(rsa))
1121
1122 var user [8]byte
1123 var name [8]byte
1124
1125 for i := 0; i < 8; i++ {
1126 user[i] = byte(pp.User_id[i])
1127 name[i] = byte(pp.Name[i])
1128 }
1129
1130 sa := &SockaddrIUCV{
1131 UserID: string(user[:]),
1132 Name: string(name[:]),
1133 }
1134 return sa, nil
1135
1136 case AF_CAN:
1137 pp := (*RawSockaddrCAN)(unsafe.Pointer(rsa))
1138 sa := &SockaddrCAN{
1139 Ifindex: int(pp.Ifindex),
1140 }
1141 rx := (*[4]byte)(unsafe.Pointer(&sa.RxID))
1142 for i := 0; i < 4; i++ {
1143 rx[i] = pp.Addr[i]
1144 }
1145 tx := (*[4]byte)(unsafe.Pointer(&sa.TxID))
1146 for i := 0; i < 4; i++ {
1147 tx[i] = pp.Addr[i+4]
1148 }
1149 return sa, nil
1150
khenaidooac637102019-01-14 15:44:34 -05001151 }
1152 return nil, EAFNOSUPPORT
1153}
1154
1155func Accept(fd int) (nfd int, sa Sockaddr, err error) {
1156 var rsa RawSockaddrAny
1157 var len _Socklen = SizeofSockaddrAny
1158 nfd, err = accept(fd, &rsa, &len)
1159 if err != nil {
1160 return
1161 }
1162 sa, err = anyToSockaddr(fd, &rsa)
1163 if err != nil {
1164 Close(nfd)
1165 nfd = 0
1166 }
1167 return
1168}
1169
1170func Accept4(fd int, flags int) (nfd int, sa Sockaddr, err error) {
1171 var rsa RawSockaddrAny
1172 var len _Socklen = SizeofSockaddrAny
1173 nfd, err = accept4(fd, &rsa, &len, flags)
1174 if err != nil {
1175 return
1176 }
1177 if len > SizeofSockaddrAny {
1178 panic("RawSockaddrAny too small")
1179 }
1180 sa, err = anyToSockaddr(fd, &rsa)
1181 if err != nil {
1182 Close(nfd)
1183 nfd = 0
1184 }
1185 return
1186}
1187
1188func Getsockname(fd int) (sa Sockaddr, err error) {
1189 var rsa RawSockaddrAny
1190 var len _Socklen = SizeofSockaddrAny
1191 if err = getsockname(fd, &rsa, &len); err != nil {
1192 return
1193 }
1194 return anyToSockaddr(fd, &rsa)
1195}
1196
1197func GetsockoptIPMreqn(fd, level, opt int) (*IPMreqn, error) {
1198 var value IPMreqn
1199 vallen := _Socklen(SizeofIPMreqn)
1200 err := getsockopt(fd, level, opt, unsafe.Pointer(&value), &vallen)
1201 return &value, err
1202}
1203
1204func GetsockoptUcred(fd, level, opt int) (*Ucred, error) {
1205 var value Ucred
1206 vallen := _Socklen(SizeofUcred)
1207 err := getsockopt(fd, level, opt, unsafe.Pointer(&value), &vallen)
1208 return &value, err
1209}
1210
1211func GetsockoptTCPInfo(fd, level, opt int) (*TCPInfo, error) {
1212 var value TCPInfo
1213 vallen := _Socklen(SizeofTCPInfo)
1214 err := getsockopt(fd, level, opt, unsafe.Pointer(&value), &vallen)
1215 return &value, err
1216}
1217
1218// GetsockoptString returns the string value of the socket option opt for the
1219// socket associated with fd at the given socket level.
1220func GetsockoptString(fd, level, opt int) (string, error) {
1221 buf := make([]byte, 256)
1222 vallen := _Socklen(len(buf))
1223 err := getsockopt(fd, level, opt, unsafe.Pointer(&buf[0]), &vallen)
1224 if err != nil {
1225 if err == ERANGE {
1226 buf = make([]byte, vallen)
1227 err = getsockopt(fd, level, opt, unsafe.Pointer(&buf[0]), &vallen)
1228 }
1229 if err != nil {
1230 return "", err
1231 }
1232 }
1233 return string(buf[:vallen-1]), nil
1234}
1235
William Kurkiandaa6bb22019-03-07 12:26:28 -05001236func GetsockoptTpacketStats(fd, level, opt int) (*TpacketStats, error) {
1237 var value TpacketStats
1238 vallen := _Socklen(SizeofTpacketStats)
1239 err := getsockopt(fd, level, opt, unsafe.Pointer(&value), &vallen)
1240 return &value, err
1241}
1242
1243func GetsockoptTpacketStatsV3(fd, level, opt int) (*TpacketStatsV3, error) {
1244 var value TpacketStatsV3
1245 vallen := _Socklen(SizeofTpacketStatsV3)
1246 err := getsockopt(fd, level, opt, unsafe.Pointer(&value), &vallen)
1247 return &value, err
1248}
1249
khenaidooac637102019-01-14 15:44:34 -05001250func SetsockoptIPMreqn(fd, level, opt int, mreq *IPMreqn) (err error) {
1251 return setsockopt(fd, level, opt, unsafe.Pointer(mreq), unsafe.Sizeof(*mreq))
1252}
1253
William Kurkiandaa6bb22019-03-07 12:26:28 -05001254func SetsockoptPacketMreq(fd, level, opt int, mreq *PacketMreq) error {
1255 return setsockopt(fd, level, opt, unsafe.Pointer(mreq), unsafe.Sizeof(*mreq))
1256}
1257
Stephane Barbarie260a5632019-02-26 16:12:49 -05001258// SetsockoptSockFprog attaches a classic BPF or an extended BPF program to a
1259// socket to filter incoming packets. See 'man 7 socket' for usage information.
1260func SetsockoptSockFprog(fd, level, opt int, fprog *SockFprog) error {
1261 return setsockopt(fd, level, opt, unsafe.Pointer(fprog), unsafe.Sizeof(*fprog))
1262}
1263
1264func SetsockoptCanRawFilter(fd, level, opt int, filter []CanFilter) error {
1265 var p unsafe.Pointer
1266 if len(filter) > 0 {
1267 p = unsafe.Pointer(&filter[0])
1268 }
1269 return setsockopt(fd, level, opt, p, uintptr(len(filter)*SizeofCanFilter))
1270}
1271
William Kurkiandaa6bb22019-03-07 12:26:28 -05001272func SetsockoptTpacketReq(fd, level, opt int, tp *TpacketReq) error {
1273 return setsockopt(fd, level, opt, unsafe.Pointer(tp), unsafe.Sizeof(*tp))
1274}
1275
1276func SetsockoptTpacketReq3(fd, level, opt int, tp *TpacketReq3) error {
1277 return setsockopt(fd, level, opt, unsafe.Pointer(tp), unsafe.Sizeof(*tp))
1278}
1279
khenaidooac637102019-01-14 15:44:34 -05001280// Keyctl Commands (http://man7.org/linux/man-pages/man2/keyctl.2.html)
1281
1282// KeyctlInt calls keyctl commands in which each argument is an int.
1283// These commands are KEYCTL_REVOKE, KEYCTL_CHOWN, KEYCTL_CLEAR, KEYCTL_LINK,
1284// KEYCTL_UNLINK, KEYCTL_NEGATE, KEYCTL_SET_REQKEY_KEYRING, KEYCTL_SET_TIMEOUT,
1285// KEYCTL_ASSUME_AUTHORITY, KEYCTL_SESSION_TO_PARENT, KEYCTL_REJECT,
1286// KEYCTL_INVALIDATE, and KEYCTL_GET_PERSISTENT.
1287//sys KeyctlInt(cmd int, arg2 int, arg3 int, arg4 int, arg5 int) (ret int, err error) = SYS_KEYCTL
1288
1289// KeyctlBuffer calls keyctl commands in which the third and fourth
1290// arguments are a buffer and its length, respectively.
1291// These commands are KEYCTL_UPDATE, KEYCTL_READ, and KEYCTL_INSTANTIATE.
1292//sys KeyctlBuffer(cmd int, arg2 int, buf []byte, arg5 int) (ret int, err error) = SYS_KEYCTL
1293
1294// KeyctlString calls keyctl commands which return a string.
1295// These commands are KEYCTL_DESCRIBE and KEYCTL_GET_SECURITY.
1296func KeyctlString(cmd int, id int) (string, error) {
1297 // We must loop as the string data may change in between the syscalls.
1298 // We could allocate a large buffer here to reduce the chance that the
1299 // syscall needs to be called twice; however, this is unnecessary as
1300 // the performance loss is negligible.
1301 var buffer []byte
1302 for {
1303 // Try to fill the buffer with data
1304 length, err := KeyctlBuffer(cmd, id, buffer, 0)
1305 if err != nil {
1306 return "", err
1307 }
1308
1309 // Check if the data was written
1310 if length <= len(buffer) {
1311 // Exclude the null terminator
1312 return string(buffer[:length-1]), nil
1313 }
1314
1315 // Make a bigger buffer if needed
1316 buffer = make([]byte, length)
1317 }
1318}
1319
1320// Keyctl commands with special signatures.
1321
1322// KeyctlGetKeyringID implements the KEYCTL_GET_KEYRING_ID command.
1323// See the full documentation at:
1324// http://man7.org/linux/man-pages/man3/keyctl_get_keyring_ID.3.html
1325func KeyctlGetKeyringID(id int, create bool) (ringid int, err error) {
1326 createInt := 0
1327 if create {
1328 createInt = 1
1329 }
1330 return KeyctlInt(KEYCTL_GET_KEYRING_ID, id, createInt, 0, 0)
1331}
1332
1333// KeyctlSetperm implements the KEYCTL_SETPERM command. The perm value is the
1334// key handle permission mask as described in the "keyctl setperm" section of
1335// http://man7.org/linux/man-pages/man1/keyctl.1.html.
1336// See the full documentation at:
1337// http://man7.org/linux/man-pages/man3/keyctl_setperm.3.html
1338func KeyctlSetperm(id int, perm uint32) error {
1339 _, err := KeyctlInt(KEYCTL_SETPERM, id, int(perm), 0, 0)
1340 return err
1341}
1342
1343//sys keyctlJoin(cmd int, arg2 string) (ret int, err error) = SYS_KEYCTL
1344
1345// KeyctlJoinSessionKeyring implements the KEYCTL_JOIN_SESSION_KEYRING command.
1346// See the full documentation at:
1347// http://man7.org/linux/man-pages/man3/keyctl_join_session_keyring.3.html
1348func KeyctlJoinSessionKeyring(name string) (ringid int, err error) {
1349 return keyctlJoin(KEYCTL_JOIN_SESSION_KEYRING, name)
1350}
1351
1352//sys keyctlSearch(cmd int, arg2 int, arg3 string, arg4 string, arg5 int) (ret int, err error) = SYS_KEYCTL
1353
1354// KeyctlSearch implements the KEYCTL_SEARCH command.
1355// See the full documentation at:
1356// http://man7.org/linux/man-pages/man3/keyctl_search.3.html
1357func KeyctlSearch(ringid int, keyType, description string, destRingid int) (id int, err error) {
1358 return keyctlSearch(KEYCTL_SEARCH, ringid, keyType, description, destRingid)
1359}
1360
1361//sys keyctlIOV(cmd int, arg2 int, payload []Iovec, arg5 int) (err error) = SYS_KEYCTL
1362
1363// KeyctlInstantiateIOV implements the KEYCTL_INSTANTIATE_IOV command. This
1364// command is similar to KEYCTL_INSTANTIATE, except that the payload is a slice
1365// of Iovec (each of which represents a buffer) instead of a single buffer.
1366// See the full documentation at:
1367// http://man7.org/linux/man-pages/man3/keyctl_instantiate_iov.3.html
1368func KeyctlInstantiateIOV(id int, payload []Iovec, ringid int) error {
1369 return keyctlIOV(KEYCTL_INSTANTIATE_IOV, id, payload, ringid)
1370}
1371
1372//sys keyctlDH(cmd int, arg2 *KeyctlDHParams, buf []byte) (ret int, err error) = SYS_KEYCTL
1373
1374// KeyctlDHCompute implements the KEYCTL_DH_COMPUTE command. This command
1375// computes a Diffie-Hellman shared secret based on the provide params. The
1376// secret is written to the provided buffer and the returned size is the number
1377// of bytes written (returning an error if there is insufficient space in the
1378// buffer). If a nil buffer is passed in, this function returns the minimum
1379// buffer length needed to store the appropriate data. Note that this differs
1380// from KEYCTL_READ's behavior which always returns the requested payload size.
1381// See the full documentation at:
1382// http://man7.org/linux/man-pages/man3/keyctl_dh_compute.3.html
1383func KeyctlDHCompute(params *KeyctlDHParams, buffer []byte) (size int, err error) {
1384 return keyctlDH(KEYCTL_DH_COMPUTE, params, buffer)
1385}
1386
Scott Baker8461e152019-10-01 14:44:30 -07001387// KeyctlRestrictKeyring implements the KEYCTL_RESTRICT_KEYRING command. This
1388// command limits the set of keys that can be linked to the keyring, regardless
1389// of keyring permissions. The command requires the "setattr" permission.
1390//
1391// When called with an empty keyType the command locks the keyring, preventing
1392// any further keys from being linked to the keyring.
1393//
1394// The "asymmetric" keyType defines restrictions requiring key payloads to be
1395// DER encoded X.509 certificates signed by keys in another keyring. Restrictions
1396// for "asymmetric" include "builtin_trusted", "builtin_and_secondary_trusted",
1397// "key_or_keyring:<key>", and "key_or_keyring:<key>:chain".
1398//
1399// As of Linux 4.12, only the "asymmetric" keyType defines type-specific
1400// restrictions.
1401//
1402// See the full documentation at:
1403// http://man7.org/linux/man-pages/man3/keyctl_restrict_keyring.3.html
1404// http://man7.org/linux/man-pages/man2/keyctl.2.html
1405func KeyctlRestrictKeyring(ringid int, keyType string, restriction string) error {
1406 if keyType == "" {
1407 return keyctlRestrictKeyring(KEYCTL_RESTRICT_KEYRING, ringid)
1408 }
1409 return keyctlRestrictKeyringByType(KEYCTL_RESTRICT_KEYRING, ringid, keyType, restriction)
1410}
1411
1412//sys keyctlRestrictKeyringByType(cmd int, arg2 int, keyType string, restriction string) (err error) = SYS_KEYCTL
1413//sys keyctlRestrictKeyring(cmd int, arg2 int) (err error) = SYS_KEYCTL
1414
khenaidooac637102019-01-14 15:44:34 -05001415func Recvmsg(fd int, p, oob []byte, flags int) (n, oobn int, recvflags int, from Sockaddr, err error) {
1416 var msg Msghdr
1417 var rsa RawSockaddrAny
1418 msg.Name = (*byte)(unsafe.Pointer(&rsa))
1419 msg.Namelen = uint32(SizeofSockaddrAny)
1420 var iov Iovec
1421 if len(p) > 0 {
1422 iov.Base = &p[0]
1423 iov.SetLen(len(p))
1424 }
1425 var dummy byte
1426 if len(oob) > 0 {
1427 if len(p) == 0 {
1428 var sockType int
1429 sockType, err = GetsockoptInt(fd, SOL_SOCKET, SO_TYPE)
1430 if err != nil {
1431 return
1432 }
1433 // receive at least one normal byte
1434 if sockType != SOCK_DGRAM {
1435 iov.Base = &dummy
1436 iov.SetLen(1)
1437 }
1438 }
1439 msg.Control = &oob[0]
1440 msg.SetControllen(len(oob))
1441 }
1442 msg.Iov = &iov
1443 msg.Iovlen = 1
1444 if n, err = recvmsg(fd, &msg, flags); err != nil {
1445 return
1446 }
1447 oobn = int(msg.Controllen)
1448 recvflags = int(msg.Flags)
1449 // source address is only specified if the socket is unconnected
1450 if rsa.Addr.Family != AF_UNSPEC {
1451 from, err = anyToSockaddr(fd, &rsa)
1452 }
1453 return
1454}
1455
1456func Sendmsg(fd int, p, oob []byte, to Sockaddr, flags int) (err error) {
1457 _, err = SendmsgN(fd, p, oob, to, flags)
1458 return
1459}
1460
1461func SendmsgN(fd int, p, oob []byte, to Sockaddr, flags int) (n int, err error) {
1462 var ptr unsafe.Pointer
1463 var salen _Socklen
1464 if to != nil {
1465 var err error
1466 ptr, salen, err = to.sockaddr()
1467 if err != nil {
1468 return 0, err
1469 }
1470 }
1471 var msg Msghdr
1472 msg.Name = (*byte)(ptr)
1473 msg.Namelen = uint32(salen)
1474 var iov Iovec
1475 if len(p) > 0 {
1476 iov.Base = &p[0]
1477 iov.SetLen(len(p))
1478 }
1479 var dummy byte
1480 if len(oob) > 0 {
1481 if len(p) == 0 {
1482 var sockType int
1483 sockType, err = GetsockoptInt(fd, SOL_SOCKET, SO_TYPE)
1484 if err != nil {
1485 return 0, err
1486 }
1487 // send at least one normal byte
1488 if sockType != SOCK_DGRAM {
1489 iov.Base = &dummy
1490 iov.SetLen(1)
1491 }
1492 }
1493 msg.Control = &oob[0]
1494 msg.SetControllen(len(oob))
1495 }
1496 msg.Iov = &iov
1497 msg.Iovlen = 1
1498 if n, err = sendmsg(fd, &msg, flags); err != nil {
1499 return 0, err
1500 }
1501 if len(oob) > 0 && len(p) == 0 {
1502 n = 0
1503 }
1504 return n, nil
1505}
1506
1507// BindToDevice binds the socket associated with fd to device.
1508func BindToDevice(fd int, device string) (err error) {
1509 return SetsockoptString(fd, SOL_SOCKET, SO_BINDTODEVICE, device)
1510}
1511
1512//sys ptrace(request int, pid int, addr uintptr, data uintptr) (err error)
1513
1514func ptracePeek(req int, pid int, addr uintptr, out []byte) (count int, err error) {
1515 // The peek requests are machine-size oriented, so we wrap it
1516 // to retrieve arbitrary-length data.
1517
1518 // The ptrace syscall differs from glibc's ptrace.
1519 // Peeks returns the word in *data, not as the return value.
1520
1521 var buf [SizeofPtr]byte
1522
1523 // Leading edge. PEEKTEXT/PEEKDATA don't require aligned
1524 // access (PEEKUSER warns that it might), but if we don't
1525 // align our reads, we might straddle an unmapped page
1526 // boundary and not get the bytes leading up to the page
1527 // boundary.
1528 n := 0
1529 if addr%SizeofPtr != 0 {
1530 err = ptrace(req, pid, addr-addr%SizeofPtr, uintptr(unsafe.Pointer(&buf[0])))
1531 if err != nil {
1532 return 0, err
1533 }
1534 n += copy(out, buf[addr%SizeofPtr:])
1535 out = out[n:]
1536 }
1537
1538 // Remainder.
1539 for len(out) > 0 {
1540 // We use an internal buffer to guarantee alignment.
1541 // It's not documented if this is necessary, but we're paranoid.
1542 err = ptrace(req, pid, addr+uintptr(n), uintptr(unsafe.Pointer(&buf[0])))
1543 if err != nil {
1544 return n, err
1545 }
1546 copied := copy(out, buf[0:])
1547 n += copied
1548 out = out[copied:]
1549 }
1550
1551 return n, nil
1552}
1553
1554func PtracePeekText(pid int, addr uintptr, out []byte) (count int, err error) {
1555 return ptracePeek(PTRACE_PEEKTEXT, pid, addr, out)
1556}
1557
1558func PtracePeekData(pid int, addr uintptr, out []byte) (count int, err error) {
1559 return ptracePeek(PTRACE_PEEKDATA, pid, addr, out)
1560}
1561
1562func PtracePeekUser(pid int, addr uintptr, out []byte) (count int, err error) {
1563 return ptracePeek(PTRACE_PEEKUSR, pid, addr, out)
1564}
1565
1566func ptracePoke(pokeReq int, peekReq int, pid int, addr uintptr, data []byte) (count int, err error) {
1567 // As for ptracePeek, we need to align our accesses to deal
1568 // with the possibility of straddling an invalid page.
1569
1570 // Leading edge.
1571 n := 0
1572 if addr%SizeofPtr != 0 {
1573 var buf [SizeofPtr]byte
1574 err = ptrace(peekReq, pid, addr-addr%SizeofPtr, uintptr(unsafe.Pointer(&buf[0])))
1575 if err != nil {
1576 return 0, err
1577 }
1578 n += copy(buf[addr%SizeofPtr:], data)
1579 word := *((*uintptr)(unsafe.Pointer(&buf[0])))
1580 err = ptrace(pokeReq, pid, addr-addr%SizeofPtr, word)
1581 if err != nil {
1582 return 0, err
1583 }
1584 data = data[n:]
1585 }
1586
1587 // Interior.
1588 for len(data) > SizeofPtr {
1589 word := *((*uintptr)(unsafe.Pointer(&data[0])))
1590 err = ptrace(pokeReq, pid, addr+uintptr(n), word)
1591 if err != nil {
1592 return n, err
1593 }
1594 n += SizeofPtr
1595 data = data[SizeofPtr:]
1596 }
1597
1598 // Trailing edge.
1599 if len(data) > 0 {
1600 var buf [SizeofPtr]byte
1601 err = ptrace(peekReq, pid, addr+uintptr(n), uintptr(unsafe.Pointer(&buf[0])))
1602 if err != nil {
1603 return n, err
1604 }
1605 copy(buf[0:], data)
1606 word := *((*uintptr)(unsafe.Pointer(&buf[0])))
1607 err = ptrace(pokeReq, pid, addr+uintptr(n), word)
1608 if err != nil {
1609 return n, err
1610 }
1611 n += len(data)
1612 }
1613
1614 return n, nil
1615}
1616
1617func PtracePokeText(pid int, addr uintptr, data []byte) (count int, err error) {
1618 return ptracePoke(PTRACE_POKETEXT, PTRACE_PEEKTEXT, pid, addr, data)
1619}
1620
1621func PtracePokeData(pid int, addr uintptr, data []byte) (count int, err error) {
1622 return ptracePoke(PTRACE_POKEDATA, PTRACE_PEEKDATA, pid, addr, data)
1623}
1624
1625func PtracePokeUser(pid int, addr uintptr, data []byte) (count int, err error) {
1626 return ptracePoke(PTRACE_POKEUSR, PTRACE_PEEKUSR, pid, addr, data)
1627}
1628
1629func PtraceGetRegs(pid int, regsout *PtraceRegs) (err error) {
1630 return ptrace(PTRACE_GETREGS, pid, 0, uintptr(unsafe.Pointer(regsout)))
1631}
1632
1633func PtraceSetRegs(pid int, regs *PtraceRegs) (err error) {
1634 return ptrace(PTRACE_SETREGS, pid, 0, uintptr(unsafe.Pointer(regs)))
1635}
1636
1637func PtraceSetOptions(pid int, options int) (err error) {
1638 return ptrace(PTRACE_SETOPTIONS, pid, 0, uintptr(options))
1639}
1640
1641func PtraceGetEventMsg(pid int) (msg uint, err error) {
1642 var data _C_long
1643 err = ptrace(PTRACE_GETEVENTMSG, pid, 0, uintptr(unsafe.Pointer(&data)))
1644 msg = uint(data)
1645 return
1646}
1647
1648func PtraceCont(pid int, signal int) (err error) {
1649 return ptrace(PTRACE_CONT, pid, 0, uintptr(signal))
1650}
1651
1652func PtraceSyscall(pid int, signal int) (err error) {
1653 return ptrace(PTRACE_SYSCALL, pid, 0, uintptr(signal))
1654}
1655
1656func PtraceSingleStep(pid int) (err error) { return ptrace(PTRACE_SINGLESTEP, pid, 0, 0) }
1657
Andrea Campanella3614a922021-02-25 12:40:42 +01001658func PtraceInterrupt(pid int) (err error) { return ptrace(PTRACE_INTERRUPT, pid, 0, 0) }
1659
khenaidooac637102019-01-14 15:44:34 -05001660func PtraceAttach(pid int) (err error) { return ptrace(PTRACE_ATTACH, pid, 0, 0) }
1661
Andrea Campanella3614a922021-02-25 12:40:42 +01001662func PtraceSeize(pid int) (err error) { return ptrace(PTRACE_SEIZE, pid, 0, 0) }
1663
khenaidooac637102019-01-14 15:44:34 -05001664func PtraceDetach(pid int) (err error) { return ptrace(PTRACE_DETACH, pid, 0, 0) }
1665
1666//sys reboot(magic1 uint, magic2 uint, cmd int, arg string) (err error)
1667
1668func Reboot(cmd int) (err error) {
1669 return reboot(LINUX_REBOOT_MAGIC1, LINUX_REBOOT_MAGIC2, cmd, "")
1670}
1671
Scott Baker8461e152019-10-01 14:44:30 -07001672func direntIno(buf []byte) (uint64, bool) {
1673 return readInt(buf, unsafe.Offsetof(Dirent{}.Ino), unsafe.Sizeof(Dirent{}.Ino))
1674}
1675
1676func direntReclen(buf []byte) (uint64, bool) {
1677 return readInt(buf, unsafe.Offsetof(Dirent{}.Reclen), unsafe.Sizeof(Dirent{}.Reclen))
1678}
1679
1680func direntNamlen(buf []byte) (uint64, bool) {
1681 reclen, ok := direntReclen(buf)
1682 if !ok {
1683 return 0, false
1684 }
1685 return reclen - uint64(unsafe.Offsetof(Dirent{}.Name)), true
khenaidooac637102019-01-14 15:44:34 -05001686}
1687
1688//sys mount(source string, target string, fstype string, flags uintptr, data *byte) (err error)
1689
1690func Mount(source string, target string, fstype string, flags uintptr, data string) (err error) {
1691 // Certain file systems get rather angry and EINVAL if you give
1692 // them an empty string of data, rather than NULL.
1693 if data == "" {
1694 return mount(source, target, fstype, flags, nil)
1695 }
1696 datap, err := BytePtrFromString(data)
1697 if err != nil {
1698 return err
1699 }
1700 return mount(source, target, fstype, flags, datap)
1701}
1702
1703func Sendfile(outfd int, infd int, offset *int64, count int) (written int, err error) {
1704 if raceenabled {
1705 raceReleaseMerge(unsafe.Pointer(&ioSync))
1706 }
1707 return sendfile(outfd, infd, offset, count)
1708}
1709
1710// Sendto
1711// Recvfrom
1712// Socketpair
1713
1714/*
1715 * Direct access
1716 */
1717//sys Acct(path string) (err error)
1718//sys AddKey(keyType string, description string, payload []byte, ringid int) (id int, err error)
1719//sys Adjtimex(buf *Timex) (state int, err error)
Andrea Campanella3614a922021-02-25 12:40:42 +01001720//sysnb Capget(hdr *CapUserHeader, data *CapUserData) (err error)
1721//sysnb Capset(hdr *CapUserHeader, data *CapUserData) (err error)
khenaidooac637102019-01-14 15:44:34 -05001722//sys Chdir(path string) (err error)
1723//sys Chroot(path string) (err error)
1724//sys ClockGetres(clockid int32, res *Timespec) (err error)
1725//sys ClockGettime(clockid int32, time *Timespec) (err error)
1726//sys ClockNanosleep(clockid int32, flags int, request *Timespec, remain *Timespec) (err error)
1727//sys Close(fd int) (err error)
1728//sys CopyFileRange(rfd int, roff *int64, wfd int, woff *int64, len int, flags int) (n int, err error)
1729//sys DeleteModule(name string, flags int) (err error)
1730//sys Dup(oldfd int) (fd int, err error)
Andrea Campanella3614a922021-02-25 12:40:42 +01001731
1732func Dup2(oldfd, newfd int) error {
1733 // Android O and newer blocks dup2; riscv and arm64 don't implement dup2.
1734 if runtime.GOOS == "android" || runtime.GOARCH == "riscv64" || runtime.GOARCH == "arm64" {
1735 return Dup3(oldfd, newfd, 0)
1736 }
1737 return dup2(oldfd, newfd)
1738}
1739
khenaidooac637102019-01-14 15:44:34 -05001740//sys Dup3(oldfd int, newfd int, flags int) (err error)
1741//sysnb EpollCreate1(flag int) (fd int, err error)
1742//sysnb EpollCtl(epfd int, op int, fd int, event *EpollEvent) (err error)
1743//sys Eventfd(initval uint, flags int) (fd int, err error) = SYS_EVENTFD2
1744//sys Exit(code int) = SYS_EXIT_GROUP
1745//sys Fallocate(fd int, mode uint32, off int64, len int64) (err error)
1746//sys Fchdir(fd int) (err error)
1747//sys Fchmod(fd int, mode uint32) (err error)
1748//sys Fchownat(dirfd int, path string, uid int, gid int, flags int) (err error)
khenaidooac637102019-01-14 15:44:34 -05001749//sys Fdatasync(fd int) (err error)
1750//sys Fgetxattr(fd int, attr string, dest []byte) (sz int, err error)
1751//sys FinitModule(fd int, params string, flags int) (err error)
1752//sys Flistxattr(fd int, dest []byte) (sz int, err error)
1753//sys Flock(fd int, how int) (err error)
1754//sys Fremovexattr(fd int, attr string) (err error)
1755//sys Fsetxattr(fd int, attr string, dest []byte, flags int) (err error)
1756//sys Fsync(fd int) (err error)
1757//sys Getdents(fd int, buf []byte) (n int, err error) = SYS_GETDENTS64
1758//sysnb Getpgid(pid int) (pgid int, err error)
1759
1760func Getpgrp() (pid int) {
1761 pid, _ = Getpgid(0)
1762 return
1763}
1764
1765//sysnb Getpid() (pid int)
1766//sysnb Getppid() (ppid int)
1767//sys Getpriority(which int, who int) (prio int, err error)
1768//sys Getrandom(buf []byte, flags int) (n int, err error)
1769//sysnb Getrusage(who int, rusage *Rusage) (err error)
1770//sysnb Getsid(pid int) (sid int, err error)
1771//sysnb Gettid() (tid int)
1772//sys Getxattr(path string, attr string, dest []byte) (sz int, err error)
1773//sys InitModule(moduleImage []byte, params string) (err error)
1774//sys InotifyAddWatch(fd int, pathname string, mask uint32) (watchdesc int, err error)
1775//sysnb InotifyInit1(flags int) (fd int, err error)
1776//sysnb InotifyRmWatch(fd int, watchdesc uint32) (success int, err error)
1777//sysnb Kill(pid int, sig syscall.Signal) (err error)
1778//sys Klogctl(typ int, buf []byte) (n int, err error) = SYS_SYSLOG
1779//sys Lgetxattr(path string, attr string, dest []byte) (sz int, err error)
1780//sys Listxattr(path string, dest []byte) (sz int, err error)
1781//sys Llistxattr(path string, dest []byte) (sz int, err error)
1782//sys Lremovexattr(path string, attr string) (err error)
1783//sys Lsetxattr(path string, attr string, data []byte, flags int) (err error)
1784//sys MemfdCreate(name string, flags int) (fd int, err error)
1785//sys Mkdirat(dirfd int, path string, mode uint32) (err error)
1786//sys Mknodat(dirfd int, path string, mode uint32, dev int) (err error)
1787//sys Nanosleep(time *Timespec, leftover *Timespec) (err error)
1788//sys PerfEventOpen(attr *PerfEventAttr, pid int, cpu int, groupFd int, flags int) (fd int, err error)
1789//sys PivotRoot(newroot string, putold string) (err error) = SYS_PIVOT_ROOT
1790//sysnb prlimit(pid int, resource int, newlimit *Rlimit, old *Rlimit) (err error) = SYS_PRLIMIT64
1791//sys Prctl(option int, arg2 uintptr, arg3 uintptr, arg4 uintptr, arg5 uintptr) (err error)
1792//sys Pselect(nfd int, r *FdSet, w *FdSet, e *FdSet, timeout *Timespec, sigmask *Sigset_t) (n int, err error) = SYS_PSELECT6
1793//sys read(fd int, p []byte) (n int, err error)
1794//sys Removexattr(path string, attr string) (err error)
khenaidooac637102019-01-14 15:44:34 -05001795//sys Renameat2(olddirfd int, oldpath string, newdirfd int, newpath string, flags uint) (err error)
1796//sys RequestKey(keyType string, description string, callback string, destRingid int) (id int, err error)
1797//sys Setdomainname(p []byte) (err error)
1798//sys Sethostname(p []byte) (err error)
1799//sysnb Setpgid(pid int, pgid int) (err error)
1800//sysnb Setsid() (pid int, err error)
1801//sysnb Settimeofday(tv *Timeval) (err error)
1802//sys Setns(fd int, nstype int) (err error)
1803
Andrea Campanella3614a922021-02-25 12:40:42 +01001804// PrctlRetInt performs a prctl operation specified by option and further
1805// optional arguments arg2 through arg5 depending on option. It returns a
1806// non-negative integer that is returned by the prctl syscall.
1807func PrctlRetInt(option int, arg2 uintptr, arg3 uintptr, arg4 uintptr, arg5 uintptr) (int, error) {
1808 ret, _, err := Syscall6(SYS_PRCTL, uintptr(option), uintptr(arg2), uintptr(arg3), uintptr(arg4), uintptr(arg5), 0)
1809 if err != 0 {
1810 return 0, err
1811 }
1812 return int(ret), nil
1813}
1814
khenaidooac637102019-01-14 15:44:34 -05001815// issue 1435.
1816// On linux Setuid and Setgid only affects the current thread, not the process.
1817// This does not match what most callers expect so we must return an error
1818// here rather than letting the caller think that the call succeeded.
1819
1820func Setuid(uid int) (err error) {
1821 return EOPNOTSUPP
1822}
1823
1824func Setgid(uid int) (err error) {
1825 return EOPNOTSUPP
1826}
1827
Andrea Campanella3614a922021-02-25 12:40:42 +01001828// SetfsgidRetGid sets fsgid for current thread and returns previous fsgid set.
1829// setfsgid(2) will return a non-nil error only if its caller lacks CAP_SETUID capability.
1830// If the call fails due to other reasons, current fsgid will be returned.
1831func SetfsgidRetGid(gid int) (int, error) {
1832 return setfsgid(gid)
1833}
1834
1835// SetfsuidRetUid sets fsuid for current thread and returns previous fsuid set.
1836// setfsgid(2) will return a non-nil error only if its caller lacks CAP_SETUID capability
1837// If the call fails due to other reasons, current fsuid will be returned.
1838func SetfsuidRetUid(uid int) (int, error) {
1839 return setfsuid(uid)
1840}
1841
1842func Setfsgid(gid int) error {
1843 _, err := setfsgid(gid)
1844 return err
1845}
1846
1847func Setfsuid(uid int) error {
1848 _, err := setfsuid(uid)
1849 return err
1850}
1851
Scott Baker8461e152019-10-01 14:44:30 -07001852func Signalfd(fd int, sigmask *Sigset_t, flags int) (newfd int, err error) {
1853 return signalfd(fd, sigmask, _C__NSIG/8, flags)
1854}
1855
khenaidooac637102019-01-14 15:44:34 -05001856//sys Setpriority(which int, who int, prio int) (err error)
1857//sys Setxattr(path string, attr string, data []byte, flags int) (err error)
Scott Baker8461e152019-10-01 14:44:30 -07001858//sys signalfd(fd int, sigmask *Sigset_t, maskSize uintptr, flags int) (newfd int, err error) = SYS_SIGNALFD4
khenaidooac637102019-01-14 15:44:34 -05001859//sys Statx(dirfd int, path string, flags int, mask int, stat *Statx_t) (err error)
1860//sys Sync()
1861//sys Syncfs(fd int) (err error)
1862//sysnb Sysinfo(info *Sysinfo_t) (err error)
1863//sys Tee(rfd int, wfd int, len int, flags int) (n int64, err error)
Andrea Campanella3614a922021-02-25 12:40:42 +01001864//sysnb TimerfdCreate(clockid int, flags int) (fd int, err error)
1865//sysnb TimerfdGettime(fd int, currValue *ItimerSpec) (err error)
1866//sysnb TimerfdSettime(fd int, flags int, newValue *ItimerSpec, oldValue *ItimerSpec) (err error)
khenaidooac637102019-01-14 15:44:34 -05001867//sysnb Tgkill(tgid int, tid int, sig syscall.Signal) (err error)
1868//sysnb Times(tms *Tms) (ticks uintptr, err error)
1869//sysnb Umask(mask int) (oldmask int)
1870//sysnb Uname(buf *Utsname) (err error)
1871//sys Unmount(target string, flags int) (err error) = SYS_UMOUNT2
1872//sys Unshare(flags int) (err error)
1873//sys write(fd int, p []byte) (n int, err error)
1874//sys exitThread(code int) (err error) = SYS_EXIT
1875//sys readlen(fd int, p *byte, np int) (n int, err error) = SYS_READ
1876//sys writelen(fd int, p *byte, np int) (n int, err error) = SYS_WRITE
Andrea Campanella3614a922021-02-25 12:40:42 +01001877//sys readv(fd int, iovs []Iovec) (n int, err error) = SYS_READV
1878//sys writev(fd int, iovs []Iovec) (n int, err error) = SYS_WRITEV
1879//sys preadv(fd int, iovs []Iovec, offs_l uintptr, offs_h uintptr) (n int, err error) = SYS_PREADV
1880//sys pwritev(fd int, iovs []Iovec, offs_l uintptr, offs_h uintptr) (n int, err error) = SYS_PWRITEV
1881//sys preadv2(fd int, iovs []Iovec, offs_l uintptr, offs_h uintptr, flags int) (n int, err error) = SYS_PREADV2
1882//sys pwritev2(fd int, iovs []Iovec, offs_l uintptr, offs_h uintptr, flags int) (n int, err error) = SYS_PWRITEV2
1883
1884func bytes2iovec(bs [][]byte) []Iovec {
1885 iovecs := make([]Iovec, len(bs))
1886 for i, b := range bs {
1887 iovecs[i].SetLen(len(b))
1888 if len(b) > 0 {
1889 iovecs[i].Base = &b[0]
1890 } else {
1891 iovecs[i].Base = (*byte)(unsafe.Pointer(&_zero))
1892 }
1893 }
1894 return iovecs
1895}
1896
1897// offs2lohi splits offs into its lower and upper unsigned long. On 64-bit
1898// systems, hi will always be 0. On 32-bit systems, offs will be split in half.
1899// preadv/pwritev chose this calling convention so they don't need to add a
1900// padding-register for alignment on ARM.
1901func offs2lohi(offs int64) (lo, hi uintptr) {
1902 return uintptr(offs), uintptr(uint64(offs) >> SizeofLong)
1903}
1904
1905func Readv(fd int, iovs [][]byte) (n int, err error) {
1906 iovecs := bytes2iovec(iovs)
1907 n, err = readv(fd, iovecs)
1908 readvRacedetect(iovecs, n, err)
1909 return n, err
1910}
1911
1912func Preadv(fd int, iovs [][]byte, offset int64) (n int, err error) {
1913 iovecs := bytes2iovec(iovs)
1914 lo, hi := offs2lohi(offset)
1915 n, err = preadv(fd, iovecs, lo, hi)
1916 readvRacedetect(iovecs, n, err)
1917 return n, err
1918}
1919
1920func Preadv2(fd int, iovs [][]byte, offset int64, flags int) (n int, err error) {
1921 iovecs := bytes2iovec(iovs)
1922 lo, hi := offs2lohi(offset)
1923 n, err = preadv2(fd, iovecs, lo, hi, flags)
1924 readvRacedetect(iovecs, n, err)
1925 return n, err
1926}
1927
1928func readvRacedetect(iovecs []Iovec, n int, err error) {
1929 if !raceenabled {
1930 return
1931 }
1932 for i := 0; n > 0 && i < len(iovecs); i++ {
1933 m := int(iovecs[i].Len)
1934 if m > n {
1935 m = n
1936 }
1937 n -= m
1938 if m > 0 {
1939 raceWriteRange(unsafe.Pointer(iovecs[i].Base), m)
1940 }
1941 }
1942 if err == nil {
1943 raceAcquire(unsafe.Pointer(&ioSync))
1944 }
1945}
1946
1947func Writev(fd int, iovs [][]byte) (n int, err error) {
1948 iovecs := bytes2iovec(iovs)
1949 if raceenabled {
1950 raceReleaseMerge(unsafe.Pointer(&ioSync))
1951 }
1952 n, err = writev(fd, iovecs)
1953 writevRacedetect(iovecs, n)
1954 return n, err
1955}
1956
1957func Pwritev(fd int, iovs [][]byte, offset int64) (n int, err error) {
1958 iovecs := bytes2iovec(iovs)
1959 if raceenabled {
1960 raceReleaseMerge(unsafe.Pointer(&ioSync))
1961 }
1962 lo, hi := offs2lohi(offset)
1963 n, err = pwritev(fd, iovecs, lo, hi)
1964 writevRacedetect(iovecs, n)
1965 return n, err
1966}
1967
1968func Pwritev2(fd int, iovs [][]byte, offset int64, flags int) (n int, err error) {
1969 iovecs := bytes2iovec(iovs)
1970 if raceenabled {
1971 raceReleaseMerge(unsafe.Pointer(&ioSync))
1972 }
1973 lo, hi := offs2lohi(offset)
1974 n, err = pwritev2(fd, iovecs, lo, hi, flags)
1975 writevRacedetect(iovecs, n)
1976 return n, err
1977}
1978
1979func writevRacedetect(iovecs []Iovec, n int) {
1980 if !raceenabled {
1981 return
1982 }
1983 for i := 0; n > 0 && i < len(iovecs); i++ {
1984 m := int(iovecs[i].Len)
1985 if m > n {
1986 m = n
1987 }
1988 n -= m
1989 if m > 0 {
1990 raceReadRange(unsafe.Pointer(iovecs[i].Base), m)
1991 }
1992 }
1993}
khenaidooac637102019-01-14 15:44:34 -05001994
1995// mmap varies by architecture; see syscall_linux_*.go.
1996//sys munmap(addr uintptr, length uintptr) (err error)
1997
1998var mapper = &mmapper{
1999 active: make(map[*byte][]byte),
2000 mmap: mmap,
2001 munmap: munmap,
2002}
2003
2004func Mmap(fd int, offset int64, length int, prot int, flags int) (data []byte, err error) {
2005 return mapper.Mmap(fd, offset, length, prot, flags)
2006}
2007
2008func Munmap(b []byte) (err error) {
2009 return mapper.Munmap(b)
2010}
2011
2012//sys Madvise(b []byte, advice int) (err error)
2013//sys Mprotect(b []byte, prot int) (err error)
2014//sys Mlock(b []byte) (err error)
2015//sys Mlockall(flags int) (err error)
2016//sys Msync(b []byte, flags int) (err error)
2017//sys Munlock(b []byte) (err error)
2018//sys Munlockall() (err error)
2019
2020// Vmsplice splices user pages from a slice of Iovecs into a pipe specified by fd,
2021// using the specified flags.
2022func Vmsplice(fd int, iovs []Iovec, flags int) (int, error) {
2023 var p unsafe.Pointer
2024 if len(iovs) > 0 {
2025 p = unsafe.Pointer(&iovs[0])
2026 }
2027
2028 n, _, errno := Syscall6(SYS_VMSPLICE, uintptr(fd), uintptr(p), uintptr(len(iovs)), uintptr(flags), 0, 0)
2029 if errno != 0 {
2030 return 0, syscall.Errno(errno)
2031 }
2032
2033 return int(n), nil
2034}
2035
Andrea Campanella3614a922021-02-25 12:40:42 +01002036func isGroupMember(gid int) bool {
2037 groups, err := Getgroups()
2038 if err != nil {
2039 return false
2040 }
2041
2042 for _, g := range groups {
2043 if g == gid {
2044 return true
2045 }
2046 }
2047 return false
2048}
2049
khenaidooac637102019-01-14 15:44:34 -05002050//sys faccessat(dirfd int, path string, mode uint32) (err error)
Andrea Campanella3614a922021-02-25 12:40:42 +01002051//sys Faccessat2(dirfd int, path string, mode uint32, flags int) (err error)
khenaidooac637102019-01-14 15:44:34 -05002052
2053func Faccessat(dirfd int, path string, mode uint32, flags int) (err error) {
Andrea Campanella3614a922021-02-25 12:40:42 +01002054 if flags == 0 {
2055 return faccessat(dirfd, path, mode)
2056 }
2057
2058 if err := Faccessat2(dirfd, path, mode, flags); err != ENOSYS && err != EPERM {
2059 return err
khenaidooac637102019-01-14 15:44:34 -05002060 }
2061
2062 // The Linux kernel faccessat system call does not take any flags.
2063 // The glibc faccessat implements the flags itself; see
2064 // https://sourceware.org/git/?p=glibc.git;a=blob;f=sysdeps/unix/sysv/linux/faccessat.c;hb=HEAD
2065 // Because people naturally expect syscall.Faccessat to act
2066 // like C faccessat, we do the same.
2067
Andrea Campanella3614a922021-02-25 12:40:42 +01002068 if flags & ^(AT_SYMLINK_NOFOLLOW|AT_EACCESS) != 0 {
2069 return EINVAL
khenaidooac637102019-01-14 15:44:34 -05002070 }
2071
2072 var st Stat_t
2073 if err := Fstatat(dirfd, path, &st, flags&AT_SYMLINK_NOFOLLOW); err != nil {
2074 return err
2075 }
2076
2077 mode &= 7
2078 if mode == 0 {
2079 return nil
2080 }
2081
2082 var uid int
2083 if flags&AT_EACCESS != 0 {
2084 uid = Geteuid()
2085 } else {
2086 uid = Getuid()
2087 }
2088
2089 if uid == 0 {
2090 if mode&1 == 0 {
2091 // Root can read and write any file.
2092 return nil
2093 }
2094 if st.Mode&0111 != 0 {
2095 // Root can execute any file that anybody can execute.
2096 return nil
2097 }
2098 return EACCES
2099 }
2100
2101 var fmode uint32
2102 if uint32(uid) == st.Uid {
2103 fmode = (st.Mode >> 6) & 7
2104 } else {
2105 var gid int
2106 if flags&AT_EACCESS != 0 {
2107 gid = Getegid()
2108 } else {
2109 gid = Getgid()
2110 }
2111
Andrea Campanella3614a922021-02-25 12:40:42 +01002112 if uint32(gid) == st.Gid || isGroupMember(gid) {
khenaidooac637102019-01-14 15:44:34 -05002113 fmode = (st.Mode >> 3) & 7
2114 } else {
2115 fmode = st.Mode & 7
2116 }
2117 }
2118
2119 if fmode&mode == mode {
2120 return nil
2121 }
2122
2123 return EACCES
2124}
2125
Scott Baker8461e152019-10-01 14:44:30 -07002126//sys nameToHandleAt(dirFD int, pathname string, fh *fileHandle, mountID *_C_int, flags int) (err error) = SYS_NAME_TO_HANDLE_AT
2127//sys openByHandleAt(mountFD int, fh *fileHandle, flags int) (fd int, err error) = SYS_OPEN_BY_HANDLE_AT
2128
2129// fileHandle is the argument to nameToHandleAt and openByHandleAt. We
2130// originally tried to generate it via unix/linux/types.go with "type
2131// fileHandle C.struct_file_handle" but that generated empty structs
2132// for mips64 and mips64le. Instead, hard code it for now (it's the
2133// same everywhere else) until the mips64 generator issue is fixed.
2134type fileHandle struct {
2135 Bytes uint32
2136 Type int32
2137}
2138
2139// FileHandle represents the C struct file_handle used by
2140// name_to_handle_at (see NameToHandleAt) and open_by_handle_at (see
2141// OpenByHandleAt).
2142type FileHandle struct {
2143 *fileHandle
2144}
2145
2146// NewFileHandle constructs a FileHandle.
2147func NewFileHandle(handleType int32, handle []byte) FileHandle {
2148 const hdrSize = unsafe.Sizeof(fileHandle{})
2149 buf := make([]byte, hdrSize+uintptr(len(handle)))
2150 copy(buf[hdrSize:], handle)
2151 fh := (*fileHandle)(unsafe.Pointer(&buf[0]))
2152 fh.Type = handleType
2153 fh.Bytes = uint32(len(handle))
2154 return FileHandle{fh}
2155}
2156
2157func (fh *FileHandle) Size() int { return int(fh.fileHandle.Bytes) }
2158func (fh *FileHandle) Type() int32 { return fh.fileHandle.Type }
2159func (fh *FileHandle) Bytes() []byte {
2160 n := fh.Size()
2161 if n == 0 {
2162 return nil
2163 }
2164 return (*[1 << 30]byte)(unsafe.Pointer(uintptr(unsafe.Pointer(&fh.fileHandle.Type)) + 4))[:n:n]
2165}
2166
2167// NameToHandleAt wraps the name_to_handle_at system call; it obtains
2168// a handle for a path name.
2169func NameToHandleAt(dirfd int, path string, flags int) (handle FileHandle, mountID int, err error) {
2170 var mid _C_int
2171 // Try first with a small buffer, assuming the handle will
2172 // only be 32 bytes.
2173 size := uint32(32 + unsafe.Sizeof(fileHandle{}))
2174 didResize := false
2175 for {
2176 buf := make([]byte, size)
2177 fh := (*fileHandle)(unsafe.Pointer(&buf[0]))
2178 fh.Bytes = size - uint32(unsafe.Sizeof(fileHandle{}))
2179 err = nameToHandleAt(dirfd, path, fh, &mid, flags)
2180 if err == EOVERFLOW {
2181 if didResize {
2182 // We shouldn't need to resize more than once
2183 return
2184 }
2185 didResize = true
2186 size = fh.Bytes + uint32(unsafe.Sizeof(fileHandle{}))
2187 continue
2188 }
2189 if err != nil {
2190 return
2191 }
2192 return FileHandle{fh}, int(mid), nil
2193 }
2194}
2195
2196// OpenByHandleAt wraps the open_by_handle_at system call; it opens a
2197// file via a handle as previously returned by NameToHandleAt.
2198func OpenByHandleAt(mountFD int, handle FileHandle, flags int) (fd int, err error) {
2199 return openByHandleAt(mountFD, handle.fileHandle, flags)
2200}
2201
Andrea Campanella3614a922021-02-25 12:40:42 +01002202// Klogset wraps the sys_syslog system call; it sets console_loglevel to
2203// the value specified by arg and passes a dummy pointer to bufp.
2204func Klogset(typ int, arg int) (err error) {
2205 var p unsafe.Pointer
2206 _, _, errno := Syscall(SYS_SYSLOG, uintptr(typ), uintptr(p), uintptr(arg))
2207 if errno != 0 {
2208 return errnoErr(errno)
2209 }
2210 return nil
2211}
2212
2213// RemoteIovec is Iovec with the pointer replaced with an integer.
2214// It is used for ProcessVMReadv and ProcessVMWritev, where the pointer
2215// refers to a location in a different process' address space, which
2216// would confuse the Go garbage collector.
2217type RemoteIovec struct {
2218 Base uintptr
2219 Len int
2220}
2221
2222//sys ProcessVMReadv(pid int, localIov []Iovec, remoteIov []RemoteIovec, flags uint) (n int, err error) = SYS_PROCESS_VM_READV
2223//sys ProcessVMWritev(pid int, localIov []Iovec, remoteIov []RemoteIovec, flags uint) (n int, err error) = SYS_PROCESS_VM_WRITEV
2224
khenaidooac637102019-01-14 15:44:34 -05002225/*
2226 * Unimplemented
2227 */
2228// AfsSyscall
2229// Alarm
2230// ArchPrctl
2231// Brk
khenaidooac637102019-01-14 15:44:34 -05002232// ClockNanosleep
2233// ClockSettime
2234// Clone
2235// EpollCtlOld
2236// EpollPwait
2237// EpollWaitOld
2238// Execve
2239// Fork
2240// Futex
2241// GetKernelSyms
2242// GetMempolicy
2243// GetRobustList
2244// GetThreadArea
2245// Getitimer
2246// Getpmsg
2247// IoCancel
2248// IoDestroy
2249// IoGetevents
2250// IoSetup
2251// IoSubmit
2252// IoprioGet
2253// IoprioSet
2254// KexecLoad
2255// LookupDcookie
2256// Mbind
2257// MigratePages
2258// Mincore
2259// ModifyLdt
2260// Mount
2261// MovePages
2262// MqGetsetattr
2263// MqNotify
2264// MqOpen
2265// MqTimedreceive
2266// MqTimedsend
2267// MqUnlink
2268// Mremap
2269// Msgctl
2270// Msgget
2271// Msgrcv
2272// Msgsnd
2273// Nfsservctl
2274// Personality
2275// Pselect6
2276// Ptrace
2277// Putpmsg
2278// Quotactl
2279// Readahead
2280// Readv
2281// RemapFilePages
2282// RestartSyscall
2283// RtSigaction
2284// RtSigpending
2285// RtSigprocmask
2286// RtSigqueueinfo
2287// RtSigreturn
2288// RtSigsuspend
2289// RtSigtimedwait
2290// SchedGetPriorityMax
2291// SchedGetPriorityMin
2292// SchedGetparam
2293// SchedGetscheduler
2294// SchedRrGetInterval
2295// SchedSetparam
2296// SchedYield
2297// Security
2298// Semctl
2299// Semget
2300// Semop
2301// Semtimedop
2302// SetMempolicy
2303// SetRobustList
2304// SetThreadArea
2305// SetTidAddress
2306// Shmat
2307// Shmctl
2308// Shmdt
2309// Shmget
2310// Sigaltstack
khenaidooac637102019-01-14 15:44:34 -05002311// Swapoff
2312// Swapon
2313// Sysfs
2314// TimerCreate
2315// TimerDelete
2316// TimerGetoverrun
2317// TimerGettime
2318// TimerSettime
khenaidooac637102019-01-14 15:44:34 -05002319// Tkill (obsolete)
2320// Tuxcall
2321// Umount2
2322// Uselib
2323// Utimensat
2324// Vfork
2325// Vhangup
2326// Vserver
2327// Waitid
2328// _Sysctl