blob: 1c0817aafa6f97a69b81793b282d6c4e3c1de5dc [file] [log] [blame]
khenaidooffe076b2019-01-15 16:08:08 -05001// Copyright (c) 2012-2018 Ugorji Nwoke. All rights reserved.
2// Use of this source code is governed by a MIT license found in the LICENSE file.
3
4package codec
5
6import (
7 "encoding"
8 "errors"
9 "fmt"
10 "io"
11 "reflect"
12 "strconv"
13 "sync"
14 "time"
15)
16
17// Some tagging information for error messages.
18const (
19 msgBadDesc = "unrecognized descriptor byte"
20 msgDecCannotExpandArr = "cannot expand go array from %v to stream length: %v"
21)
22
23const decDefSliceCap = 8
24const decDefChanCap = 64 // should be large, as cap cannot be expanded
25const decScratchByteArrayLen = cacheLineSize - 8
26
27var (
28 errstrOnlyMapOrArrayCanDecodeIntoStruct = "only encoded map or array can be decoded into a struct"
29 errstrCannotDecodeIntoNil = "cannot decode into nil"
30
31 errmsgExpandSliceOverflow = "expand slice: slice overflow"
32 errmsgExpandSliceCannotChange = "expand slice: cannot change"
33
34 errDecoderNotInitialized = errors.New("Decoder not initialized")
35
36 errDecUnreadByteNothingToRead = errors.New("cannot unread - nothing has been read")
37 errDecUnreadByteLastByteNotRead = errors.New("cannot unread - last byte has not been read")
38 errDecUnreadByteUnknown = errors.New("cannot unread - reason unknown")
39)
40
41// decReader abstracts the reading source, allowing implementations that can
42// read from an io.Reader or directly off a byte slice with zero-copying.
43type decReader interface {
44 unreadn1()
45
46 // readx will use the implementation scratch buffer if possible i.e. n < len(scratchbuf), OR
47 // just return a view of the []byte being decoded from.
48 // Ensure you call detachZeroCopyBytes later if this needs to be sent outside codec control.
49 readx(n int) []byte
50 readb([]byte)
51 readn1() uint8
52 numread() int // number of bytes read
53 track()
54 stopTrack() []byte
55
56 // skip will skip any byte that matches, and return the first non-matching byte
57 skip(accept *bitset256) (token byte)
58 // readTo will read any byte that matches, stopping once no-longer matching.
59 readTo(in []byte, accept *bitset256) (out []byte)
60 // readUntil will read, only stopping once it matches the 'stop' byte.
61 readUntil(in []byte, stop byte) (out []byte)
62}
63
64type decDriver interface {
65 // this will check if the next token is a break.
66 CheckBreak() bool
67 // Note: TryDecodeAsNil should be careful not to share any temporary []byte with
68 // the rest of the decDriver. This is because sometimes, we optimize by holding onto
69 // a transient []byte, and ensuring the only other call we make to the decDriver
70 // during that time is maybe a TryDecodeAsNil() call.
71 TryDecodeAsNil() bool
72 // vt is one of: Bytes, String, Nil, Slice or Map. Return unSet if not known.
73 ContainerType() (vt valueType)
74 // IsBuiltinType(rt uintptr) bool
75
76 // DecodeNaked will decode primitives (number, bool, string, []byte) and RawExt.
77 // For maps and arrays, it will not do the decoding in-band, but will signal
78 // the decoder, so that is done later, by setting the decNaked.valueType field.
79 //
80 // Note: Numbers are decoded as int64, uint64, float64 only (no smaller sized number types).
81 // for extensions, DecodeNaked must read the tag and the []byte if it exists.
82 // if the []byte is not read, then kInterfaceNaked will treat it as a Handle
83 // that stores the subsequent value in-band, and complete reading the RawExt.
84 //
85 // extensions should also use readx to decode them, for efficiency.
86 // kInterface will extract the detached byte slice if it has to pass it outside its realm.
87 DecodeNaked()
88
89 // Deprecated: use DecodeInt64 and DecodeUint64 instead
90 // DecodeInt(bitsize uint8) (i int64)
91 // DecodeUint(bitsize uint8) (ui uint64)
92
93 DecodeInt64() (i int64)
94 DecodeUint64() (ui uint64)
95
96 DecodeFloat64() (f float64)
97 DecodeBool() (b bool)
98 // DecodeString can also decode symbols.
99 // It looks redundant as DecodeBytes is available.
100 // However, some codecs (e.g. binc) support symbols and can
101 // return a pre-stored string value, meaning that it can bypass
102 // the cost of []byte->string conversion.
103 DecodeString() (s string)
104 DecodeStringAsBytes() (v []byte)
105
106 // DecodeBytes may be called directly, without going through reflection.
107 // Consequently, it must be designed to handle possible nil.
108 DecodeBytes(bs []byte, zerocopy bool) (bsOut []byte)
109 // DecodeBytes(bs []byte, isstring, zerocopy bool) (bsOut []byte)
110
111 // decodeExt will decode into a *RawExt or into an extension.
112 DecodeExt(v interface{}, xtag uint64, ext Ext) (realxtag uint64)
113 // decodeExt(verifyTag bool, tag byte) (xtag byte, xbs []byte)
114
115 DecodeTime() (t time.Time)
116
117 ReadArrayStart() int
118 ReadArrayElem()
119 ReadArrayEnd()
120 ReadMapStart() int
121 ReadMapElemKey()
122 ReadMapElemValue()
123 ReadMapEnd()
124
125 reset()
126 uncacheRead()
127}
128
129type decDriverNoopContainerReader struct{}
130
131func (x decDriverNoopContainerReader) ReadArrayStart() (v int) { return }
132func (x decDriverNoopContainerReader) ReadArrayElem() {}
133func (x decDriverNoopContainerReader) ReadArrayEnd() {}
134func (x decDriverNoopContainerReader) ReadMapStart() (v int) { return }
135func (x decDriverNoopContainerReader) ReadMapElemKey() {}
136func (x decDriverNoopContainerReader) ReadMapElemValue() {}
137func (x decDriverNoopContainerReader) ReadMapEnd() {}
138func (x decDriverNoopContainerReader) CheckBreak() (v bool) { return }
139
140// func (x decNoSeparator) uncacheRead() {}
141
142// DecodeOptions captures configuration options during decode.
143type DecodeOptions struct {
144 // MapType specifies type to use during schema-less decoding of a map in the stream.
145 // If nil (unset), we default to map[string]interface{} iff json handle and MapStringAsKey=true,
146 // else map[interface{}]interface{}.
147 MapType reflect.Type
148
149 // SliceType specifies type to use during schema-less decoding of an array in the stream.
150 // If nil (unset), we default to []interface{} for all formats.
151 SliceType reflect.Type
152
153 // MaxInitLen defines the maxinum initial length that we "make" a collection
154 // (string, slice, map, chan). If 0 or negative, we default to a sensible value
155 // based on the size of an element in the collection.
156 //
157 // For example, when decoding, a stream may say that it has 2^64 elements.
158 // We should not auto-matically provision a slice of that size, to prevent Out-Of-Memory crash.
159 // Instead, we provision up to MaxInitLen, fill that up, and start appending after that.
160 MaxInitLen int
161
162 // ReaderBufferSize is the size of the buffer used when reading.
163 //
164 // if > 0, we use a smart buffer internally for performance purposes.
165 ReaderBufferSize int
166
167 // If ErrorIfNoField, return an error when decoding a map
168 // from a codec stream into a struct, and no matching struct field is found.
169 ErrorIfNoField bool
170
171 // If ErrorIfNoArrayExpand, return an error when decoding a slice/array that cannot be expanded.
172 // For example, the stream contains an array of 8 items, but you are decoding into a [4]T array,
173 // or you are decoding into a slice of length 4 which is non-addressable (and so cannot be set).
174 ErrorIfNoArrayExpand bool
175
176 // If SignedInteger, use the int64 during schema-less decoding of unsigned values (not uint64).
177 SignedInteger bool
178
179 // MapValueReset controls how we decode into a map value.
180 //
181 // By default, we MAY retrieve the mapping for a key, and then decode into that.
182 // However, especially with big maps, that retrieval may be expensive and unnecessary
183 // if the stream already contains all that is necessary to recreate the value.
184 //
185 // If true, we will never retrieve the previous mapping,
186 // but rather decode into a new value and set that in the map.
187 //
188 // If false, we will retrieve the previous mapping if necessary e.g.
189 // the previous mapping is a pointer, or is a struct or array with pre-set state,
190 // or is an interface.
191 MapValueReset bool
192
193 // SliceElementReset: on decoding a slice, reset the element to a zero value first.
194 //
195 // concern: if the slice already contained some garbage, we will decode into that garbage.
196 SliceElementReset bool
197
198 // InterfaceReset controls how we decode into an interface.
199 //
200 // By default, when we see a field that is an interface{...},
201 // or a map with interface{...} value, we will attempt decoding into the
202 // "contained" value.
203 //
204 // However, this prevents us from reading a string into an interface{}
205 // that formerly contained a number.
206 //
207 // If true, we will decode into a new "blank" value, and set that in the interface.
208 // If false, we will decode into whatever is contained in the interface.
209 InterfaceReset bool
210
211 // InternString controls interning of strings during decoding.
212 //
213 // Some handles, e.g. json, typically will read map keys as strings.
214 // If the set of keys are finite, it may help reduce allocation to
215 // look them up from a map (than to allocate them afresh).
216 //
217 // Note: Handles will be smart when using the intern functionality.
218 // Every string should not be interned.
219 // An excellent use-case for interning is struct field names,
220 // or map keys where key type is string.
221 InternString bool
222
223 // PreferArrayOverSlice controls whether to decode to an array or a slice.
224 //
225 // This only impacts decoding into a nil interface{}.
226 // Consequently, it has no effect on codecgen.
227 //
228 // *Note*: This only applies if using go1.5 and above,
229 // as it requires reflect.ArrayOf support which was absent before go1.5.
230 PreferArrayOverSlice bool
231
232 // DeleteOnNilMapValue controls how to decode a nil value in the stream.
233 //
234 // If true, we will delete the mapping of the key.
235 // Else, just set the mapping to the zero value of the type.
236 DeleteOnNilMapValue bool
237}
238
239// ------------------------------------
240
241type bufioDecReader struct {
242 buf []byte
243 r io.Reader
244
245 c int // cursor
246 n int // num read
247 err error
248
249 tr []byte
250 trb bool
251 b [4]byte
252}
253
254func (z *bufioDecReader) reset(r io.Reader) {
255 z.r, z.c, z.n, z.err, z.trb = r, 0, 0, nil, false
256 if z.tr != nil {
257 z.tr = z.tr[:0]
258 }
259}
260
261func (z *bufioDecReader) Read(p []byte) (n int, err error) {
262 if z.err != nil {
263 return 0, z.err
264 }
265 p0 := p
266 n = copy(p, z.buf[z.c:])
267 z.c += n
268 if z.c == len(z.buf) {
269 z.c = 0
270 }
271 z.n += n
272 if len(p) == n {
273 if z.c == 0 {
274 z.buf = z.buf[:1]
275 z.buf[0] = p[len(p)-1]
276 z.c = 1
277 }
278 if z.trb {
279 z.tr = append(z.tr, p0[:n]...)
280 }
281 return
282 }
283 p = p[n:]
284 var n2 int
285 // if we are here, then z.buf is all read
286 if len(p) > len(z.buf) {
287 n2, err = decReadFull(z.r, p)
288 n += n2
289 z.n += n2
290 z.err = err
291 // don't return EOF if some bytes were read. keep for next time.
292 if n > 0 && err == io.EOF {
293 err = nil
294 }
295 // always keep last byte in z.buf
296 z.buf = z.buf[:1]
297 z.buf[0] = p[len(p)-1]
298 z.c = 1
299 if z.trb {
300 z.tr = append(z.tr, p0[:n]...)
301 }
302 return
303 }
304 // z.c is now 0, and len(p) <= len(z.buf)
305 for len(p) > 0 && z.err == nil {
306 // println("len(p) loop starting ... ")
307 z.c = 0
308 z.buf = z.buf[0:cap(z.buf)]
309 n2, err = z.r.Read(z.buf)
310 if n2 > 0 {
311 if err == io.EOF {
312 err = nil
313 }
314 z.buf = z.buf[:n2]
315 n2 = copy(p, z.buf)
316 z.c = n2
317 n += n2
318 z.n += n2
319 p = p[n2:]
320 }
321 z.err = err
322 // println("... len(p) loop done")
323 }
324 if z.c == 0 {
325 z.buf = z.buf[:1]
326 z.buf[0] = p[len(p)-1]
327 z.c = 1
328 }
329 if z.trb {
330 z.tr = append(z.tr, p0[:n]...)
331 }
332 return
333}
334
335func (z *bufioDecReader) ReadByte() (b byte, err error) {
336 z.b[0] = 0
337 _, err = z.Read(z.b[:1])
338 b = z.b[0]
339 return
340}
341
342func (z *bufioDecReader) UnreadByte() (err error) {
343 if z.err != nil {
344 return z.err
345 }
346 if z.c > 0 {
347 z.c--
348 z.n--
349 if z.trb {
350 z.tr = z.tr[:len(z.tr)-1]
351 }
352 return
353 }
354 return errDecUnreadByteNothingToRead
355}
356
357func (z *bufioDecReader) numread() int {
358 return z.n
359}
360
361func (z *bufioDecReader) readx(n int) (bs []byte) {
362 if n <= 0 || z.err != nil {
363 return
364 }
365 if z.c+n <= len(z.buf) {
366 bs = z.buf[z.c : z.c+n]
367 z.n += n
368 z.c += n
369 if z.trb {
370 z.tr = append(z.tr, bs...)
371 }
372 return
373 }
374 bs = make([]byte, n)
375 _, err := z.Read(bs)
376 if err != nil {
377 panic(err)
378 }
379 return
380}
381
382func (z *bufioDecReader) readb(bs []byte) {
383 _, err := z.Read(bs)
384 if err != nil {
385 panic(err)
386 }
387}
388
389// func (z *bufioDecReader) readn1eof() (b uint8, eof bool) {
390// b, err := z.ReadByte()
391// if err != nil {
392// if err == io.EOF {
393// eof = true
394// } else {
395// panic(err)
396// }
397// }
398// return
399// }
400
401func (z *bufioDecReader) readn1() (b uint8) {
402 b, err := z.ReadByte()
403 if err != nil {
404 panic(err)
405 }
406 return
407}
408
409func (z *bufioDecReader) search(in []byte, accept *bitset256, stop, flag uint8) (token byte, out []byte) {
410 // flag: 1 (skip), 2 (readTo), 4 (readUntil)
411 if flag == 4 {
412 for i := z.c; i < len(z.buf); i++ {
413 if z.buf[i] == stop {
414 token = z.buf[i]
415 z.n = z.n + (i - z.c) - 1
416 i++
417 out = z.buf[z.c:i]
418 if z.trb {
419 z.tr = append(z.tr, z.buf[z.c:i]...)
420 }
421 z.c = i
422 return
423 }
424 }
425 } else {
426 for i := z.c; i < len(z.buf); i++ {
427 if !accept.isset(z.buf[i]) {
428 token = z.buf[i]
429 z.n = z.n + (i - z.c) - 1
430 if flag == 1 {
431 i++
432 } else {
433 out = z.buf[z.c:i]
434 }
435 if z.trb {
436 z.tr = append(z.tr, z.buf[z.c:i]...)
437 }
438 z.c = i
439 return
440 }
441 }
442 }
443 z.n += len(z.buf) - z.c
444 if flag != 1 {
445 out = append(in, z.buf[z.c:]...)
446 }
447 if z.trb {
448 z.tr = append(z.tr, z.buf[z.c:]...)
449 }
450 var n2 int
451 if z.err != nil {
452 return
453 }
454 for {
455 z.c = 0
456 z.buf = z.buf[0:cap(z.buf)]
457 n2, z.err = z.r.Read(z.buf)
458 if n2 > 0 && z.err != nil {
459 z.err = nil
460 }
461 z.buf = z.buf[:n2]
462 if flag == 4 {
463 for i := 0; i < n2; i++ {
464 if z.buf[i] == stop {
465 token = z.buf[i]
466 z.n += i - 1
467 i++
468 out = append(out, z.buf[z.c:i]...)
469 if z.trb {
470 z.tr = append(z.tr, z.buf[z.c:i]...)
471 }
472 z.c = i
473 return
474 }
475 }
476 } else {
477 for i := 0; i < n2; i++ {
478 if !accept.isset(z.buf[i]) {
479 token = z.buf[i]
480 z.n += i - 1
481 if flag == 1 {
482 i++
483 }
484 if flag != 1 {
485 out = append(out, z.buf[z.c:i]...)
486 }
487 if z.trb {
488 z.tr = append(z.tr, z.buf[z.c:i]...)
489 }
490 z.c = i
491 return
492 }
493 }
494 }
495 if flag != 1 {
496 out = append(out, z.buf[:n2]...)
497 }
498 z.n += n2
499 if z.err != nil {
500 return
501 }
502 if z.trb {
503 z.tr = append(z.tr, z.buf[:n2]...)
504 }
505 }
506}
507
508func (z *bufioDecReader) skip(accept *bitset256) (token byte) {
509 token, _ = z.search(nil, accept, 0, 1)
510 return
511}
512
513func (z *bufioDecReader) readTo(in []byte, accept *bitset256) (out []byte) {
514 _, out = z.search(in, accept, 0, 2)
515 return
516}
517
518func (z *bufioDecReader) readUntil(in []byte, stop byte) (out []byte) {
519 _, out = z.search(in, nil, stop, 4)
520 return
521}
522
523func (z *bufioDecReader) unreadn1() {
524 err := z.UnreadByte()
525 if err != nil {
526 panic(err)
527 }
528}
529
530func (z *bufioDecReader) track() {
531 if z.tr != nil {
532 z.tr = z.tr[:0]
533 }
534 z.trb = true
535}
536
537func (z *bufioDecReader) stopTrack() (bs []byte) {
538 z.trb = false
539 return z.tr
540}
541
542// ioDecReader is a decReader that reads off an io.Reader.
543//
544// It also has a fallback implementation of ByteScanner if needed.
545type ioDecReader struct {
546 r io.Reader // the reader passed in
547
548 rr io.Reader
549 br io.ByteScanner
550
551 l byte // last byte
552 ls byte // last byte status. 0: init-canDoNothing, 1: canRead, 2: canUnread
553 trb bool // tracking bytes turned on
554 _ bool
555 b [4]byte // tiny buffer for reading single bytes
556
557 x [scratchByteArrayLen]byte // for: get struct field name, swallow valueTypeBytes, etc
558 n int // num read
559 tr []byte // tracking bytes read
560}
561
562func (z *ioDecReader) reset(r io.Reader) {
563 z.r = r
564 z.rr = r
565 z.l, z.ls, z.n, z.trb = 0, 0, 0, false
566 if z.tr != nil {
567 z.tr = z.tr[:0]
568 }
569 var ok bool
570 if z.br, ok = r.(io.ByteScanner); !ok {
571 z.br = z
572 z.rr = z
573 }
574}
575
576func (z *ioDecReader) Read(p []byte) (n int, err error) {
577 if len(p) == 0 {
578 return
579 }
580 var firstByte bool
581 if z.ls == 1 {
582 z.ls = 2
583 p[0] = z.l
584 if len(p) == 1 {
585 n = 1
586 return
587 }
588 firstByte = true
589 p = p[1:]
590 }
591 n, err = z.r.Read(p)
592 if n > 0 {
593 if err == io.EOF && n == len(p) {
594 err = nil // read was successful, so postpone EOF (till next time)
595 }
596 z.l = p[n-1]
597 z.ls = 2
598 }
599 if firstByte {
600 n++
601 }
602 return
603}
604
605func (z *ioDecReader) ReadByte() (c byte, err error) {
606 n, err := z.Read(z.b[:1])
607 if n == 1 {
608 c = z.b[0]
609 if err == io.EOF {
610 err = nil // read was successful, so postpone EOF (till next time)
611 }
612 }
613 return
614}
615
616func (z *ioDecReader) UnreadByte() (err error) {
617 switch z.ls {
618 case 2:
619 z.ls = 1
620 case 0:
621 err = errDecUnreadByteNothingToRead
622 case 1:
623 err = errDecUnreadByteLastByteNotRead
624 default:
625 err = errDecUnreadByteUnknown
626 }
627 return
628}
629
630func (z *ioDecReader) numread() int {
631 return z.n
632}
633
634func (z *ioDecReader) readx(n int) (bs []byte) {
635 if n <= 0 {
636 return
637 }
638 if n < len(z.x) {
639 bs = z.x[:n]
640 } else {
641 bs = make([]byte, n)
642 }
643 if _, err := decReadFull(z.rr, bs); err != nil {
644 panic(err)
645 }
646 z.n += len(bs)
647 if z.trb {
648 z.tr = append(z.tr, bs...)
649 }
650 return
651}
652
653func (z *ioDecReader) readb(bs []byte) {
654 // if len(bs) == 0 {
655 // return
656 // }
657 if _, err := decReadFull(z.rr, bs); err != nil {
658 panic(err)
659 }
660 z.n += len(bs)
661 if z.trb {
662 z.tr = append(z.tr, bs...)
663 }
664}
665
666func (z *ioDecReader) readn1eof() (b uint8, eof bool) {
667 b, err := z.br.ReadByte()
668 if err == nil {
669 z.n++
670 if z.trb {
671 z.tr = append(z.tr, b)
672 }
673 } else if err == io.EOF {
674 eof = true
675 } else {
676 panic(err)
677 }
678 return
679}
680
681func (z *ioDecReader) readn1() (b uint8) {
682 var err error
683 if b, err = z.br.ReadByte(); err == nil {
684 z.n++
685 if z.trb {
686 z.tr = append(z.tr, b)
687 }
688 return
689 }
690 panic(err)
691}
692
693func (z *ioDecReader) skip(accept *bitset256) (token byte) {
694 for {
695 var eof bool
696 token, eof = z.readn1eof()
697 if eof {
698 return
699 }
700 if accept.isset(token) {
701 continue
702 }
703 return
704 }
705}
706
707func (z *ioDecReader) readTo(in []byte, accept *bitset256) (out []byte) {
708 out = in
709 for {
710 token, eof := z.readn1eof()
711 if eof {
712 return
713 }
714 if accept.isset(token) {
715 out = append(out, token)
716 } else {
717 z.unreadn1()
718 return
719 }
720 }
721}
722
723func (z *ioDecReader) readUntil(in []byte, stop byte) (out []byte) {
724 out = in
725 for {
726 token, eof := z.readn1eof()
727 if eof {
728 panic(io.EOF)
729 }
730 out = append(out, token)
731 if token == stop {
732 return
733 }
734 }
735}
736
737func (z *ioDecReader) unreadn1() {
738 err := z.br.UnreadByte()
739 if err != nil {
740 panic(err)
741 }
742 z.n--
743 if z.trb {
744 if l := len(z.tr) - 1; l >= 0 {
745 z.tr = z.tr[:l]
746 }
747 }
748}
749
750func (z *ioDecReader) track() {
751 if z.tr != nil {
752 z.tr = z.tr[:0]
753 }
754 z.trb = true
755}
756
757func (z *ioDecReader) stopTrack() (bs []byte) {
758 z.trb = false
759 return z.tr
760}
761
762// ------------------------------------
763
764var errBytesDecReaderCannotUnread = errors.New("cannot unread last byte read")
765
766// bytesDecReader is a decReader that reads off a byte slice with zero copying
767type bytesDecReader struct {
768 b []byte // data
769 c int // cursor
770 a int // available
771 t int // track start
772}
773
774func (z *bytesDecReader) reset(in []byte) {
775 z.b = in
776 z.a = len(in)
777 z.c = 0
778 z.t = 0
779}
780
781func (z *bytesDecReader) numread() int {
782 return z.c
783}
784
785func (z *bytesDecReader) unreadn1() {
786 if z.c == 0 || len(z.b) == 0 {
787 panic(errBytesDecReaderCannotUnread)
788 }
789 z.c--
790 z.a++
791 return
792}
793
794func (z *bytesDecReader) readx(n int) (bs []byte) {
795 // slicing from a non-constant start position is more expensive,
796 // as more computation is required to decipher the pointer start position.
797 // However, we do it only once, and it's better than reslicing both z.b and return value.
798
799 if n <= 0 {
800 } else if z.a == 0 {
801 panic(io.EOF)
802 } else if n > z.a {
803 panic(io.ErrUnexpectedEOF)
804 } else {
805 c0 := z.c
806 z.c = c0 + n
807 z.a = z.a - n
808 bs = z.b[c0:z.c]
809 }
810 return
811}
812
813func (z *bytesDecReader) readb(bs []byte) {
814 copy(bs, z.readx(len(bs)))
815}
816
817func (z *bytesDecReader) readn1() (v uint8) {
818 if z.a == 0 {
819 panic(io.EOF)
820 }
821 v = z.b[z.c]
822 z.c++
823 z.a--
824 return
825}
826
827// func (z *bytesDecReader) readn1eof() (v uint8, eof bool) {
828// if z.a == 0 {
829// eof = true
830// return
831// }
832// v = z.b[z.c]
833// z.c++
834// z.a--
835// return
836// }
837
838func (z *bytesDecReader) skip(accept *bitset256) (token byte) {
839 if z.a == 0 {
840 return
841 }
842 blen := len(z.b)
843 for i := z.c; i < blen; i++ {
844 if !accept.isset(z.b[i]) {
845 token = z.b[i]
846 i++
847 z.a -= (i - z.c)
848 z.c = i
849 return
850 }
851 }
852 z.a, z.c = 0, blen
853 return
854}
855
856func (z *bytesDecReader) readTo(_ []byte, accept *bitset256) (out []byte) {
857 if z.a == 0 {
858 return
859 }
860 blen := len(z.b)
861 for i := z.c; i < blen; i++ {
862 if !accept.isset(z.b[i]) {
863 out = z.b[z.c:i]
864 z.a -= (i - z.c)
865 z.c = i
866 return
867 }
868 }
869 out = z.b[z.c:]
870 z.a, z.c = 0, blen
871 return
872}
873
874func (z *bytesDecReader) readUntil(_ []byte, stop byte) (out []byte) {
875 if z.a == 0 {
876 panic(io.EOF)
877 }
878 blen := len(z.b)
879 for i := z.c; i < blen; i++ {
880 if z.b[i] == stop {
881 i++
882 out = z.b[z.c:i]
883 z.a -= (i - z.c)
884 z.c = i
885 return
886 }
887 }
888 z.a, z.c = 0, blen
889 panic(io.EOF)
890}
891
892func (z *bytesDecReader) track() {
893 z.t = z.c
894}
895
896func (z *bytesDecReader) stopTrack() (bs []byte) {
897 return z.b[z.t:z.c]
898}
899
900// ----------------------------------------
901
902// func (d *Decoder) builtin(f *codecFnInfo, rv reflect.Value) {
903// d.d.DecodeBuiltin(f.ti.rtid, rv2i(rv))
904// }
905
906func (d *Decoder) rawExt(f *codecFnInfo, rv reflect.Value) {
907 d.d.DecodeExt(rv2i(rv), 0, nil)
908}
909
910func (d *Decoder) ext(f *codecFnInfo, rv reflect.Value) {
911 d.d.DecodeExt(rv2i(rv), f.xfTag, f.xfFn)
912}
913
914func (d *Decoder) selferUnmarshal(f *codecFnInfo, rv reflect.Value) {
915 rv2i(rv).(Selfer).CodecDecodeSelf(d)
916}
917
918func (d *Decoder) binaryUnmarshal(f *codecFnInfo, rv reflect.Value) {
919 bm := rv2i(rv).(encoding.BinaryUnmarshaler)
920 xbs := d.d.DecodeBytes(nil, true)
921 if fnerr := bm.UnmarshalBinary(xbs); fnerr != nil {
922 panic(fnerr)
923 }
924}
925
926func (d *Decoder) textUnmarshal(f *codecFnInfo, rv reflect.Value) {
927 tm := rv2i(rv).(encoding.TextUnmarshaler)
928 fnerr := tm.UnmarshalText(d.d.DecodeStringAsBytes())
929 if fnerr != nil {
930 panic(fnerr)
931 }
932}
933
934func (d *Decoder) jsonUnmarshal(f *codecFnInfo, rv reflect.Value) {
935 tm := rv2i(rv).(jsonUnmarshaler)
936 // bs := d.d.DecodeBytes(d.b[:], true, true)
937 // grab the bytes to be read, as UnmarshalJSON needs the full JSON so as to unmarshal it itself.
938 fnerr := tm.UnmarshalJSON(d.nextValueBytes())
939 if fnerr != nil {
940 panic(fnerr)
941 }
942}
943
944func (d *Decoder) kErr(f *codecFnInfo, rv reflect.Value) {
945 d.errorf("no decoding function defined for kind %v", rv.Kind())
946}
947
948// var kIntfCtr uint64
949
950func (d *Decoder) kInterfaceNaked(f *codecFnInfo) (rvn reflect.Value) {
951 // nil interface:
952 // use some hieristics to decode it appropriately
953 // based on the detected next value in the stream.
954 n := d.naked()
955 d.d.DecodeNaked()
956 if n.v == valueTypeNil {
957 return
958 }
959 // We cannot decode non-nil stream value into nil interface with methods (e.g. io.Reader).
960 if f.ti.numMeth > 0 {
961 d.errorf("cannot decode non-nil codec value into nil %v (%v methods)", f.ti.rt, f.ti.numMeth)
962 return
963 }
964 // var useRvn bool
965 switch n.v {
966 case valueTypeMap:
967 // if json, default to a map type with string keys
968 mtid := d.mtid
969 if mtid == 0 {
970 if d.jsms {
971 mtid = mapStrIntfTypId
972 } else {
973 mtid = mapIntfIntfTypId
974 }
975 }
976 if mtid == mapIntfIntfTypId {
977 n.initContainers()
978 if n.lm < arrayCacheLen {
979 n.ma[n.lm] = nil
980 rvn = n.rma[n.lm]
981 n.lm++
982 d.decode(&n.ma[n.lm-1])
983 n.lm--
984 } else {
985 var v2 map[interface{}]interface{}
986 d.decode(&v2)
987 rvn = reflect.ValueOf(&v2).Elem()
988 }
989 } else if mtid == mapStrIntfTypId { // for json performance
990 n.initContainers()
991 if n.ln < arrayCacheLen {
992 n.na[n.ln] = nil
993 rvn = n.rna[n.ln]
994 n.ln++
995 d.decode(&n.na[n.ln-1])
996 n.ln--
997 } else {
998 var v2 map[string]interface{}
999 d.decode(&v2)
1000 rvn = reflect.ValueOf(&v2).Elem()
1001 }
1002 } else {
1003 if d.mtr {
1004 rvn = reflect.New(d.h.MapType)
1005 d.decode(rv2i(rvn))
1006 rvn = rvn.Elem()
1007 } else {
1008 rvn = reflect.New(d.h.MapType).Elem()
1009 d.decodeValue(rvn, nil, true)
1010 }
1011 }
1012 case valueTypeArray:
1013 if d.stid == 0 || d.stid == intfSliceTypId {
1014 n.initContainers()
1015 if n.ls < arrayCacheLen {
1016 n.sa[n.ls] = nil
1017 rvn = n.rsa[n.ls]
1018 n.ls++
1019 d.decode(&n.sa[n.ls-1])
1020 n.ls--
1021 } else {
1022 var v2 []interface{}
1023 d.decode(&v2)
1024 rvn = reflect.ValueOf(&v2).Elem()
1025 }
1026 if reflectArrayOfSupported && d.stid == 0 && d.h.PreferArrayOverSlice {
1027 rvn2 := reflect.New(reflectArrayOf(rvn.Len(), intfTyp)).Elem()
1028 reflect.Copy(rvn2, rvn)
1029 rvn = rvn2
1030 }
1031 } else {
1032 if d.str {
1033 rvn = reflect.New(d.h.SliceType)
1034 d.decode(rv2i(rvn))
1035 rvn = rvn.Elem()
1036 } else {
1037 rvn = reflect.New(d.h.SliceType).Elem()
1038 d.decodeValue(rvn, nil, true)
1039 }
1040 }
1041 case valueTypeExt:
1042 var v interface{}
1043 tag, bytes := n.u, n.l // calling decode below might taint the values
1044 if bytes == nil {
1045 n.initContainers()
1046 if n.li < arrayCacheLen {
1047 n.ia[n.li] = nil
1048 n.li++
1049 d.decode(&n.ia[n.li-1])
1050 // v = *(&n.ia[l])
1051 n.li--
1052 v = n.ia[n.li]
1053 n.ia[n.li] = nil
1054 } else {
1055 d.decode(&v)
1056 }
1057 }
1058 bfn := d.h.getExtForTag(tag)
1059 if bfn == nil {
1060 var re RawExt
1061 re.Tag = tag
1062 re.Data = detachZeroCopyBytes(d.bytes, nil, bytes)
1063 re.Value = v
1064 rvn = reflect.ValueOf(&re).Elem()
1065 } else {
1066 rvnA := reflect.New(bfn.rt)
1067 if bytes != nil {
1068 bfn.ext.ReadExt(rv2i(rvnA), bytes)
1069 } else {
1070 bfn.ext.UpdateExt(rv2i(rvnA), v)
1071 }
1072 rvn = rvnA.Elem()
1073 }
1074 case valueTypeNil:
1075 // no-op
1076 case valueTypeInt:
1077 rvn = n.ri
1078 case valueTypeUint:
1079 rvn = n.ru
1080 case valueTypeFloat:
1081 rvn = n.rf
1082 case valueTypeBool:
1083 rvn = n.rb
1084 case valueTypeString, valueTypeSymbol:
1085 rvn = n.rs
1086 case valueTypeBytes:
1087 rvn = n.rl
1088 case valueTypeTime:
1089 rvn = n.rt
1090 default:
1091 panicv.errorf("kInterfaceNaked: unexpected valueType: %d", n.v)
1092 }
1093 return
1094}
1095
1096func (d *Decoder) kInterface(f *codecFnInfo, rv reflect.Value) {
1097 // Note:
1098 // A consequence of how kInterface works, is that
1099 // if an interface already contains something, we try
1100 // to decode into what was there before.
1101 // We do not replace with a generic value (as got from decodeNaked).
1102
1103 // every interface passed here MUST be settable.
1104 var rvn reflect.Value
1105 if rv.IsNil() || d.h.InterfaceReset {
1106 // check if mapping to a type: if so, initialize it and move on
1107 rvn = d.h.intf2impl(f.ti.rtid)
1108 if rvn.IsValid() {
1109 rv.Set(rvn)
1110 } else {
1111 rvn = d.kInterfaceNaked(f)
1112 if rvn.IsValid() {
1113 rv.Set(rvn)
1114 } else if d.h.InterfaceReset {
1115 // reset to zero value based on current type in there.
1116 rv.Set(reflect.Zero(rv.Elem().Type()))
1117 }
1118 return
1119 }
1120 } else {
1121 // now we have a non-nil interface value, meaning it contains a type
1122 rvn = rv.Elem()
1123 }
1124 if d.d.TryDecodeAsNil() {
1125 rv.Set(reflect.Zero(rvn.Type()))
1126 return
1127 }
1128
1129 // Note: interface{} is settable, but underlying type may not be.
1130 // Consequently, we MAY have to create a decodable value out of the underlying value,
1131 // decode into it, and reset the interface itself.
1132 // fmt.Printf(">>>> kInterface: rvn type: %v, rv type: %v\n", rvn.Type(), rv.Type())
1133
1134 rvn2, canDecode := isDecodeable(rvn)
1135 if canDecode {
1136 d.decodeValue(rvn2, nil, true)
1137 return
1138 }
1139
1140 rvn2 = reflect.New(rvn.Type()).Elem()
1141 rvn2.Set(rvn)
1142 d.decodeValue(rvn2, nil, true)
1143 rv.Set(rvn2)
1144}
1145
1146func decStructFieldKey(dd decDriver, keyType valueType, b *[decScratchByteArrayLen]byte) (rvkencname []byte) {
1147 // use if-else-if, not switch (which compiles to binary-search)
1148 // since keyType is typically valueTypeString, branch prediction is pretty good.
1149
1150 if keyType == valueTypeString {
1151 rvkencname = dd.DecodeStringAsBytes()
1152 } else if keyType == valueTypeInt {
1153 rvkencname = strconv.AppendInt(b[:0], dd.DecodeInt64(), 10)
1154 } else if keyType == valueTypeUint {
1155 rvkencname = strconv.AppendUint(b[:0], dd.DecodeUint64(), 10)
1156 } else if keyType == valueTypeFloat {
1157 rvkencname = strconv.AppendFloat(b[:0], dd.DecodeFloat64(), 'f', -1, 64)
1158 } else {
1159 rvkencname = dd.DecodeStringAsBytes()
1160 }
1161 return rvkencname
1162}
1163
1164func (d *Decoder) kStruct(f *codecFnInfo, rv reflect.Value) {
1165 fti := f.ti
1166 dd := d.d
1167 elemsep := d.esep
1168 sfn := structFieldNode{v: rv, update: true}
1169 ctyp := dd.ContainerType()
1170 if ctyp == valueTypeMap {
1171 containerLen := dd.ReadMapStart()
1172 if containerLen == 0 {
1173 dd.ReadMapEnd()
1174 return
1175 }
1176 tisfi := fti.sfiSort
1177 hasLen := containerLen >= 0
1178
1179 var rvkencname []byte
1180 for j := 0; (hasLen && j < containerLen) || !(hasLen || dd.CheckBreak()); j++ {
1181 if elemsep {
1182 dd.ReadMapElemKey()
1183 }
1184 rvkencname = decStructFieldKey(dd, fti.keyType, &d.b)
1185 if elemsep {
1186 dd.ReadMapElemValue()
1187 }
1188 if k := fti.indexForEncName(rvkencname); k > -1 {
1189 si := tisfi[k]
1190 if dd.TryDecodeAsNil() {
1191 si.setToZeroValue(rv)
1192 } else {
1193 d.decodeValue(sfn.field(si), nil, true)
1194 }
1195 } else {
1196 d.structFieldNotFound(-1, stringView(rvkencname))
1197 }
1198 // keepAlive4StringView(rvkencnameB) // not needed, as reference is outside loop
1199 }
1200 dd.ReadMapEnd()
1201 } else if ctyp == valueTypeArray {
1202 containerLen := dd.ReadArrayStart()
1203 if containerLen == 0 {
1204 dd.ReadArrayEnd()
1205 return
1206 }
1207 // Not much gain from doing it two ways for array.
1208 // Arrays are not used as much for structs.
1209 hasLen := containerLen >= 0
1210 for j, si := range fti.sfiSrc {
1211 if (hasLen && j == containerLen) || (!hasLen && dd.CheckBreak()) {
1212 break
1213 }
1214 if elemsep {
1215 dd.ReadArrayElem()
1216 }
1217 if dd.TryDecodeAsNil() {
1218 si.setToZeroValue(rv)
1219 } else {
1220 d.decodeValue(sfn.field(si), nil, true)
1221 }
1222 }
1223 if containerLen > len(fti.sfiSrc) {
1224 // read remaining values and throw away
1225 for j := len(fti.sfiSrc); j < containerLen; j++ {
1226 if elemsep {
1227 dd.ReadArrayElem()
1228 }
1229 d.structFieldNotFound(j, "")
1230 }
1231 }
1232 dd.ReadArrayEnd()
1233 } else {
1234 d.errorstr(errstrOnlyMapOrArrayCanDecodeIntoStruct)
1235 return
1236 }
1237}
1238
1239func (d *Decoder) kSlice(f *codecFnInfo, rv reflect.Value) {
1240 // A slice can be set from a map or array in stream.
1241 // This way, the order can be kept (as order is lost with map).
1242 ti := f.ti
1243 if f.seq == seqTypeChan && ti.chandir&uint8(reflect.SendDir) == 0 {
1244 d.errorf("receive-only channel cannot be decoded")
1245 }
1246 dd := d.d
1247 rtelem0 := ti.elem
1248 ctyp := dd.ContainerType()
1249 if ctyp == valueTypeBytes || ctyp == valueTypeString {
1250 // you can only decode bytes or string in the stream into a slice or array of bytes
1251 if !(ti.rtid == uint8SliceTypId || rtelem0.Kind() == reflect.Uint8) {
1252 d.errorf("bytes/string in stream must decode into slice/array of bytes, not %v", ti.rt)
1253 }
1254 if f.seq == seqTypeChan {
1255 bs2 := dd.DecodeBytes(nil, true)
1256 irv := rv2i(rv)
1257 ch, ok := irv.(chan<- byte)
1258 if !ok {
1259 ch = irv.(chan byte)
1260 }
1261 for _, b := range bs2 {
1262 ch <- b
1263 }
1264 } else {
1265 rvbs := rv.Bytes()
1266 bs2 := dd.DecodeBytes(rvbs, false)
1267 // if rvbs == nil && bs2 != nil || rvbs != nil && bs2 == nil || len(bs2) != len(rvbs) {
1268 if !(len(bs2) > 0 && len(bs2) == len(rvbs) && &bs2[0] == &rvbs[0]) {
1269 if rv.CanSet() {
1270 rv.SetBytes(bs2)
1271 } else if len(rvbs) > 0 && len(bs2) > 0 {
1272 copy(rvbs, bs2)
1273 }
1274 }
1275 }
1276 return
1277 }
1278
1279 // array := f.seq == seqTypeChan
1280
1281 slh, containerLenS := d.decSliceHelperStart() // only expects valueType(Array|Map)
1282
1283 // an array can never return a nil slice. so no need to check f.array here.
1284 if containerLenS == 0 {
1285 if rv.CanSet() {
1286 if f.seq == seqTypeSlice {
1287 if rv.IsNil() {
1288 rv.Set(reflect.MakeSlice(ti.rt, 0, 0))
1289 } else {
1290 rv.SetLen(0)
1291 }
1292 } else if f.seq == seqTypeChan {
1293 if rv.IsNil() {
1294 rv.Set(reflect.MakeChan(ti.rt, 0))
1295 }
1296 }
1297 }
1298 slh.End()
1299 return
1300 }
1301
1302 rtelem0Size := int(rtelem0.Size())
1303 rtElem0Kind := rtelem0.Kind()
1304 rtelem0Mut := !isImmutableKind(rtElem0Kind)
1305 rtelem := rtelem0
1306 rtelemkind := rtelem.Kind()
1307 for rtelemkind == reflect.Ptr {
1308 rtelem = rtelem.Elem()
1309 rtelemkind = rtelem.Kind()
1310 }
1311
1312 var fn *codecFn
1313
1314 var rvCanset = rv.CanSet()
1315 var rvChanged bool
1316 var rv0 = rv
1317 var rv9 reflect.Value
1318
1319 rvlen := rv.Len()
1320 rvcap := rv.Cap()
1321 hasLen := containerLenS > 0
1322 if hasLen && f.seq == seqTypeSlice {
1323 if containerLenS > rvcap {
1324 oldRvlenGtZero := rvlen > 0
1325 rvlen = decInferLen(containerLenS, d.h.MaxInitLen, int(rtelem0.Size()))
1326 if rvlen <= rvcap {
1327 if rvCanset {
1328 rv.SetLen(rvlen)
1329 }
1330 } else if rvCanset {
1331 rv = reflect.MakeSlice(ti.rt, rvlen, rvlen)
1332 rvcap = rvlen
1333 rvChanged = true
1334 } else {
1335 d.errorf("cannot decode into non-settable slice")
1336 }
1337 if rvChanged && oldRvlenGtZero && !isImmutableKind(rtelem0.Kind()) {
1338 reflect.Copy(rv, rv0) // only copy up to length NOT cap i.e. rv0.Slice(0, rvcap)
1339 }
1340 } else if containerLenS != rvlen {
1341 rvlen = containerLenS
1342 if rvCanset {
1343 rv.SetLen(rvlen)
1344 }
1345 // else {
1346 // rv = rv.Slice(0, rvlen)
1347 // rvChanged = true
1348 // d.errorf("cannot decode into non-settable slice")
1349 // }
1350 }
1351 }
1352
1353 // consider creating new element once, and just decoding into it.
1354 var rtelem0Zero reflect.Value
1355 var rtelem0ZeroValid bool
1356 var decodeAsNil bool
1357 var j int
1358 d.cfer()
1359 for ; (hasLen && j < containerLenS) || !(hasLen || dd.CheckBreak()); j++ {
1360 if j == 0 && (f.seq == seqTypeSlice || f.seq == seqTypeChan) && rv.IsNil() {
1361 if hasLen {
1362 rvlen = decInferLen(containerLenS, d.h.MaxInitLen, rtelem0Size)
1363 } else if f.seq == seqTypeSlice {
1364 rvlen = decDefSliceCap
1365 } else {
1366 rvlen = decDefChanCap
1367 }
1368 if rvCanset {
1369 if f.seq == seqTypeSlice {
1370 rv = reflect.MakeSlice(ti.rt, rvlen, rvlen)
1371 rvChanged = true
1372 } else { // chan
1373 // xdebugf(">>>>>> haslen = %v, make chan of type '%v' with length: %v", hasLen, ti.rt, rvlen)
1374 rv = reflect.MakeChan(ti.rt, rvlen)
1375 rvChanged = true
1376 }
1377 } else {
1378 d.errorf("cannot decode into non-settable slice")
1379 }
1380 }
1381 slh.ElemContainerState(j)
1382 decodeAsNil = dd.TryDecodeAsNil()
1383 if f.seq == seqTypeChan {
1384 if decodeAsNil {
1385 rv.Send(reflect.Zero(rtelem0))
1386 continue
1387 }
1388 if rtelem0Mut || !rv9.IsValid() { // || (rtElem0Kind == reflect.Ptr && rv9.IsNil()) {
1389 rv9 = reflect.New(rtelem0).Elem()
1390 }
1391 if fn == nil {
1392 fn = d.cf.get(rtelem, true, true)
1393 }
1394 d.decodeValue(rv9, fn, true)
1395 // xdebugf(">>>> rv9 sent on %v during decode: %v, with len=%v, cap=%v", rv.Type(), rv9, rv.Len(), rv.Cap())
1396 rv.Send(rv9)
1397 } else {
1398 // if indefinite, etc, then expand the slice if necessary
1399 var decodeIntoBlank bool
1400 if j >= rvlen {
1401 if f.seq == seqTypeArray {
1402 d.arrayCannotExpand(rvlen, j+1)
1403 decodeIntoBlank = true
1404 } else { // if f.seq == seqTypeSlice
1405 // rv = reflect.Append(rv, reflect.Zero(rtelem0)) // append logic + varargs
1406 var rvcap2 int
1407 var rvErrmsg2 string
1408 rv9, rvcap2, rvChanged, rvErrmsg2 =
1409 expandSliceRV(rv, ti.rt, rvCanset, rtelem0Size, 1, rvlen, rvcap)
1410 if rvErrmsg2 != "" {
1411 d.errorf(rvErrmsg2)
1412 }
1413 rvlen++
1414 if rvChanged {
1415 rv = rv9
1416 rvcap = rvcap2
1417 }
1418 }
1419 }
1420 if decodeIntoBlank {
1421 if !decodeAsNil {
1422 d.swallow()
1423 }
1424 } else {
1425 rv9 = rv.Index(j)
1426 if d.h.SliceElementReset || decodeAsNil {
1427 if !rtelem0ZeroValid {
1428 rtelem0ZeroValid = true
1429 rtelem0Zero = reflect.Zero(rtelem0)
1430 }
1431 rv9.Set(rtelem0Zero)
1432 }
1433 if decodeAsNil {
1434 continue
1435 }
1436
1437 if fn == nil {
1438 fn = d.cf.get(rtelem, true, true)
1439 }
1440 d.decodeValue(rv9, fn, true)
1441 }
1442 }
1443 }
1444 if f.seq == seqTypeSlice {
1445 if j < rvlen {
1446 if rv.CanSet() {
1447 rv.SetLen(j)
1448 } else if rvCanset {
1449 rv = rv.Slice(0, j)
1450 rvChanged = true
1451 } // else { d.errorf("kSlice: cannot change non-settable slice") }
1452 rvlen = j
1453 } else if j == 0 && rv.IsNil() {
1454 if rvCanset {
1455 rv = reflect.MakeSlice(ti.rt, 0, 0)
1456 rvChanged = true
1457 } // else { d.errorf("kSlice: cannot change non-settable slice") }
1458 }
1459 }
1460 slh.End()
1461
1462 if rvChanged { // infers rvCanset=true, so it can be reset
1463 rv0.Set(rv)
1464 }
1465}
1466
1467// func (d *Decoder) kArray(f *codecFnInfo, rv reflect.Value) {
1468// // d.decodeValueFn(rv.Slice(0, rv.Len()))
1469// f.kSlice(rv.Slice(0, rv.Len()))
1470// }
1471
1472func (d *Decoder) kMap(f *codecFnInfo, rv reflect.Value) {
1473 dd := d.d
1474 containerLen := dd.ReadMapStart()
1475 elemsep := d.esep
1476 ti := f.ti
1477 if rv.IsNil() {
1478 rv.Set(makeMapReflect(ti.rt, containerLen))
1479 }
1480
1481 if containerLen == 0 {
1482 dd.ReadMapEnd()
1483 return
1484 }
1485
1486 ktype, vtype := ti.key, ti.elem
1487 ktypeId := rt2id(ktype)
1488 vtypeKind := vtype.Kind()
1489
1490 var keyFn, valFn *codecFn
1491 var ktypeLo, vtypeLo reflect.Type
1492
1493 for ktypeLo = ktype; ktypeLo.Kind() == reflect.Ptr; ktypeLo = ktypeLo.Elem() {
1494 }
1495
1496 for vtypeLo = vtype; vtypeLo.Kind() == reflect.Ptr; vtypeLo = vtypeLo.Elem() {
1497 }
1498
1499 var mapGet, mapSet bool
1500 rvvImmut := isImmutableKind(vtypeKind)
1501 if !d.h.MapValueReset {
1502 // if pointer, mapGet = true
1503 // if interface, mapGet = true if !DecodeNakedAlways (else false)
1504 // if builtin, mapGet = false
1505 // else mapGet = true
1506 if vtypeKind == reflect.Ptr {
1507 mapGet = true
1508 } else if vtypeKind == reflect.Interface {
1509 if !d.h.InterfaceReset {
1510 mapGet = true
1511 }
1512 } else if !rvvImmut {
1513 mapGet = true
1514 }
1515 }
1516
1517 var rvk, rvkp, rvv, rvz reflect.Value
1518 rvkMut := !isImmutableKind(ktype.Kind()) // if ktype is immutable, then re-use the same rvk.
1519 ktypeIsString := ktypeId == stringTypId
1520 ktypeIsIntf := ktypeId == intfTypId
1521 hasLen := containerLen > 0
1522 var kstrbs []byte
1523 d.cfer()
1524 for j := 0; (hasLen && j < containerLen) || !(hasLen || dd.CheckBreak()); j++ {
1525 if rvkMut || !rvkp.IsValid() {
1526 rvkp = reflect.New(ktype)
1527 rvk = rvkp.Elem()
1528 }
1529 if elemsep {
1530 dd.ReadMapElemKey()
1531 }
1532 if false && dd.TryDecodeAsNil() { // nil cannot be a map key, so disregard this block
1533 // Previously, if a nil key, we just ignored the mapped value and continued.
1534 // However, that makes the result of encoding and then decoding map[intf]intf{nil:nil}
1535 // to be an empty map.
1536 // Instead, we treat a nil key as the zero value of the type.
1537 rvk.Set(reflect.Zero(ktype))
1538 } else if ktypeIsString {
1539 kstrbs = dd.DecodeStringAsBytes()
1540 rvk.SetString(stringView(kstrbs))
1541 // NOTE: if doing an insert, you MUST use a real string (not stringview)
1542 } else {
1543 if keyFn == nil {
1544 keyFn = d.cf.get(ktypeLo, true, true)
1545 }
1546 d.decodeValue(rvk, keyFn, true)
1547 }
1548 // special case if a byte array.
1549 if ktypeIsIntf {
1550 if rvk2 := rvk.Elem(); rvk2.IsValid() {
1551 if rvk2.Type() == uint8SliceTyp {
1552 rvk = reflect.ValueOf(d.string(rvk2.Bytes()))
1553 } else {
1554 rvk = rvk2
1555 }
1556 }
1557 }
1558
1559 if elemsep {
1560 dd.ReadMapElemValue()
1561 }
1562
1563 // Brittle, but OK per TryDecodeAsNil() contract.
1564 // i.e. TryDecodeAsNil never shares slices with other decDriver procedures
1565 if dd.TryDecodeAsNil() {
1566 if ktypeIsString {
1567 rvk.SetString(d.string(kstrbs))
1568 }
1569 if d.h.DeleteOnNilMapValue {
1570 rv.SetMapIndex(rvk, reflect.Value{})
1571 } else {
1572 rv.SetMapIndex(rvk, reflect.Zero(vtype))
1573 }
1574 continue
1575 }
1576
1577 mapSet = true // set to false if u do a get, and its a non-nil pointer
1578 if mapGet {
1579 // mapGet true only in case where kind=Ptr|Interface or kind is otherwise mutable.
1580 rvv = rv.MapIndex(rvk)
1581 if !rvv.IsValid() {
1582 rvv = reflect.New(vtype).Elem()
1583 } else if vtypeKind == reflect.Ptr {
1584 if rvv.IsNil() {
1585 rvv = reflect.New(vtype).Elem()
1586 } else {
1587 mapSet = false
1588 }
1589 } else if vtypeKind == reflect.Interface {
1590 // not addressable, and thus not settable.
1591 // e MUST create a settable/addressable variant
1592 rvv2 := reflect.New(rvv.Type()).Elem()
1593 if !rvv.IsNil() {
1594 rvv2.Set(rvv)
1595 }
1596 rvv = rvv2
1597 }
1598 // else it is ~mutable, and we can just decode into it directly
1599 } else if rvvImmut {
1600 if !rvz.IsValid() {
1601 rvz = reflect.New(vtype).Elem()
1602 }
1603 rvv = rvz
1604 } else {
1605 rvv = reflect.New(vtype).Elem()
1606 }
1607
1608 // We MUST be done with the stringview of the key, before decoding the value
1609 // so that we don't bastardize the reused byte array.
1610 if mapSet && ktypeIsString {
1611 rvk.SetString(d.string(kstrbs))
1612 }
1613 if valFn == nil {
1614 valFn = d.cf.get(vtypeLo, true, true)
1615 }
1616 d.decodeValue(rvv, valFn, true)
1617 // d.decodeValueFn(rvv, valFn)
1618 if mapSet {
1619 rv.SetMapIndex(rvk, rvv)
1620 }
1621 // if ktypeIsString {
1622 // // keepAlive4StringView(kstrbs) // not needed, as reference is outside loop
1623 // }
1624 }
1625
1626 dd.ReadMapEnd()
1627}
1628
1629// decNaked is used to keep track of the primitives decoded.
1630// Without it, we would have to decode each primitive and wrap it
1631// in an interface{}, causing an allocation.
1632// In this model, the primitives are decoded in a "pseudo-atomic" fashion,
1633// so we can rest assured that no other decoding happens while these
1634// primitives are being decoded.
1635//
1636// maps and arrays are not handled by this mechanism.
1637// However, RawExt is, and we accommodate for extensions that decode
1638// RawExt from DecodeNaked, but need to decode the value subsequently.
1639// kInterfaceNaked and swallow, which call DecodeNaked, handle this caveat.
1640//
1641// However, decNaked also keeps some arrays of default maps and slices
1642// used in DecodeNaked. This way, we can get a pointer to it
1643// without causing a new heap allocation.
1644//
1645// kInterfaceNaked will ensure that there is no allocation for the common
1646// uses.
1647
1648type decNakedContainers struct {
1649 // array/stacks for reducing allocation
1650 // keep arrays at the bottom? Chance is that they are not used much.
1651 ia [arrayCacheLen]interface{}
1652 ma [arrayCacheLen]map[interface{}]interface{}
1653 na [arrayCacheLen]map[string]interface{}
1654 sa [arrayCacheLen][]interface{}
1655
1656 // ria [arrayCacheLen]reflect.Value // not needed, as we decode directly into &ia[n]
1657 rma, rna, rsa [arrayCacheLen]reflect.Value // reflect.Value mapping to above
1658}
1659
1660func (n *decNakedContainers) init() {
1661 for i := 0; i < arrayCacheLen; i++ {
1662 // n.ria[i] = reflect.ValueOf(&(n.ia[i])).Elem()
1663 n.rma[i] = reflect.ValueOf(&(n.ma[i])).Elem()
1664 n.rna[i] = reflect.ValueOf(&(n.na[i])).Elem()
1665 n.rsa[i] = reflect.ValueOf(&(n.sa[i])).Elem()
1666 }
1667}
1668
1669type decNaked struct {
1670 // r RawExt // used for RawExt, uint, []byte.
1671
1672 // primitives below
1673 u uint64
1674 i int64
1675 f float64
1676 l []byte
1677 s string
1678
1679 // ---- cpu cache line boundary?
1680 t time.Time
1681 b bool
1682
1683 // state
1684 v valueType
1685 li, lm, ln, ls int8
1686 inited bool
1687
1688 *decNakedContainers
1689
1690 ru, ri, rf, rl, rs, rb, rt reflect.Value // mapping to the primitives above
1691
1692 // _ [6]uint64 // padding // no padding - rt goes into next cache line
1693}
1694
1695func (n *decNaked) init() {
1696 if n.inited {
1697 return
1698 }
1699 n.ru = reflect.ValueOf(&n.u).Elem()
1700 n.ri = reflect.ValueOf(&n.i).Elem()
1701 n.rf = reflect.ValueOf(&n.f).Elem()
1702 n.rl = reflect.ValueOf(&n.l).Elem()
1703 n.rs = reflect.ValueOf(&n.s).Elem()
1704 n.rt = reflect.ValueOf(&n.t).Elem()
1705 n.rb = reflect.ValueOf(&n.b).Elem()
1706
1707 n.inited = true
1708 // n.rr[] = reflect.ValueOf(&n.)
1709}
1710
1711func (n *decNaked) initContainers() {
1712 if n.decNakedContainers == nil {
1713 n.decNakedContainers = new(decNakedContainers)
1714 n.decNakedContainers.init()
1715 }
1716}
1717
1718func (n *decNaked) reset() {
1719 if n == nil {
1720 return
1721 }
1722 n.li, n.lm, n.ln, n.ls = 0, 0, 0, 0
1723}
1724
1725type rtid2rv struct {
1726 rtid uintptr
1727 rv reflect.Value
1728}
1729
1730// --------------
1731
1732type decReaderSwitch struct {
1733 rb bytesDecReader
1734 // ---- cpu cache line boundary?
1735 ri *ioDecReader
1736 mtr, str bool // whether maptype or slicetype are known types
1737
1738 be bool // is binary encoding
1739 bytes bool // is bytes reader
1740 js bool // is json handle
1741 jsms bool // is json handle, and MapKeyAsString
1742 esep bool // has elem separators
1743}
1744
1745// TODO: Uncomment after mid-stack inlining enabled in go 1.11
1746//
1747// func (z *decReaderSwitch) unreadn1() {
1748// if z.bytes {
1749// z.rb.unreadn1()
1750// } else {
1751// z.ri.unreadn1()
1752// }
1753// }
1754// func (z *decReaderSwitch) readx(n int) []byte {
1755// if z.bytes {
1756// return z.rb.readx(n)
1757// }
1758// return z.ri.readx(n)
1759// }
1760// func (z *decReaderSwitch) readb(s []byte) {
1761// if z.bytes {
1762// z.rb.readb(s)
1763// } else {
1764// z.ri.readb(s)
1765// }
1766// }
1767// func (z *decReaderSwitch) readn1() uint8 {
1768// if z.bytes {
1769// return z.rb.readn1()
1770// }
1771// return z.ri.readn1()
1772// }
1773// func (z *decReaderSwitch) numread() int {
1774// if z.bytes {
1775// return z.rb.numread()
1776// }
1777// return z.ri.numread()
1778// }
1779// func (z *decReaderSwitch) track() {
1780// if z.bytes {
1781// z.rb.track()
1782// } else {
1783// z.ri.track()
1784// }
1785// }
1786// func (z *decReaderSwitch) stopTrack() []byte {
1787// if z.bytes {
1788// return z.rb.stopTrack()
1789// }
1790// return z.ri.stopTrack()
1791// }
1792// func (z *decReaderSwitch) skip(accept *bitset256) (token byte) {
1793// if z.bytes {
1794// return z.rb.skip(accept)
1795// }
1796// return z.ri.skip(accept)
1797// }
1798// func (z *decReaderSwitch) readTo(in []byte, accept *bitset256) (out []byte) {
1799// if z.bytes {
1800// return z.rb.readTo(in, accept)
1801// }
1802// return z.ri.readTo(in, accept)
1803// }
1804// func (z *decReaderSwitch) readUntil(in []byte, stop byte) (out []byte) {
1805// if z.bytes {
1806// return z.rb.readUntil(in, stop)
1807// }
1808// return z.ri.readUntil(in, stop)
1809// }
1810
1811// A Decoder reads and decodes an object from an input stream in the codec format.
1812type Decoder struct {
1813 panicHdl
1814 // hopefully, reduce derefencing cost by laying the decReader inside the Decoder.
1815 // Try to put things that go together to fit within a cache line (8 words).
1816
1817 d decDriver
1818 // NOTE: Decoder shouldn't call it's read methods,
1819 // as the handler MAY need to do some coordination.
1820 r decReader
1821 h *BasicHandle
1822 bi *bufioDecReader
1823 // cache the mapTypeId and sliceTypeId for faster comparisons
1824 mtid uintptr
1825 stid uintptr
1826
1827 // ---- cpu cache line boundary?
1828 decReaderSwitch
1829
1830 // ---- cpu cache line boundary?
1831 codecFnPooler
1832 // cr containerStateRecv
1833 n *decNaked
1834 nsp *sync.Pool
1835 err error
1836
1837 // ---- cpu cache line boundary?
1838 b [decScratchByteArrayLen]byte // scratch buffer, used by Decoder and xxxEncDrivers
1839 is map[string]string // used for interning strings
1840
1841 // padding - false sharing help // modify 232 if Decoder struct changes.
1842 // _ [cacheLineSize - 232%cacheLineSize]byte
1843}
1844
1845// NewDecoder returns a Decoder for decoding a stream of bytes from an io.Reader.
1846//
1847// For efficiency, Users are encouraged to pass in a memory buffered reader
1848// (eg bufio.Reader, bytes.Buffer).
1849func NewDecoder(r io.Reader, h Handle) *Decoder {
1850 d := newDecoder(h)
1851 d.Reset(r)
1852 return d
1853}
1854
1855// NewDecoderBytes returns a Decoder which efficiently decodes directly
1856// from a byte slice with zero copying.
1857func NewDecoderBytes(in []byte, h Handle) *Decoder {
1858 d := newDecoder(h)
1859 d.ResetBytes(in)
1860 return d
1861}
1862
1863var defaultDecNaked decNaked
1864
1865func newDecoder(h Handle) *Decoder {
1866 d := &Decoder{h: h.getBasicHandle(), err: errDecoderNotInitialized}
1867 d.hh = h
1868 d.be = h.isBinary()
1869 // NOTE: do not initialize d.n here. It is lazily initialized in d.naked()
1870 var jh *JsonHandle
1871 jh, d.js = h.(*JsonHandle)
1872 if d.js {
1873 d.jsms = jh.MapKeyAsString
1874 }
1875 d.esep = d.hh.hasElemSeparators()
1876 if d.h.InternString {
1877 d.is = make(map[string]string, 32)
1878 }
1879 d.d = h.newDecDriver(d)
1880 // d.cr, _ = d.d.(containerStateRecv)
1881 return d
1882}
1883
1884func (d *Decoder) resetCommon() {
1885 d.n.reset()
1886 d.d.reset()
1887 d.err = nil
1888 // reset all things which were cached from the Handle, but could change
1889 d.mtid, d.stid = 0, 0
1890 d.mtr, d.str = false, false
1891 if d.h.MapType != nil {
1892 d.mtid = rt2id(d.h.MapType)
1893 d.mtr = fastpathAV.index(d.mtid) != -1
1894 }
1895 if d.h.SliceType != nil {
1896 d.stid = rt2id(d.h.SliceType)
1897 d.str = fastpathAV.index(d.stid) != -1
1898 }
1899}
1900
1901// Reset the Decoder with a new Reader to decode from,
1902// clearing all state from last run(s).
1903func (d *Decoder) Reset(r io.Reader) {
1904 if r == nil {
1905 return
1906 }
1907 if d.bi == nil {
1908 d.bi = new(bufioDecReader)
1909 }
1910 d.bytes = false
1911 if d.h.ReaderBufferSize > 0 {
1912 d.bi.buf = make([]byte, 0, d.h.ReaderBufferSize)
1913 d.bi.reset(r)
1914 d.r = d.bi
1915 } else {
1916 // d.ri.x = &d.b
1917 // d.s = d.sa[:0]
1918 if d.ri == nil {
1919 d.ri = new(ioDecReader)
1920 }
1921 d.ri.reset(r)
1922 d.r = d.ri
1923 }
1924 d.resetCommon()
1925}
1926
1927// ResetBytes resets the Decoder with a new []byte to decode from,
1928// clearing all state from last run(s).
1929func (d *Decoder) ResetBytes(in []byte) {
1930 if in == nil {
1931 return
1932 }
1933 d.bytes = true
1934 d.rb.reset(in)
1935 d.r = &d.rb
1936 d.resetCommon()
1937}
1938
1939// naked must be called before each call to .DecodeNaked,
1940// as they will use it.
1941func (d *Decoder) naked() *decNaked {
1942 if d.n == nil {
1943 // consider one of:
1944 // - get from sync.Pool (if GC is frequent, there's no value here)
1945 // - new alloc (safest. only init'ed if it a naked decode will be done)
1946 // - field in Decoder (makes the Decoder struct very big)
1947 // To support using a decoder where a DecodeNaked is not needed,
1948 // we prefer #1 or #2.
1949 // d.n = new(decNaked) // &d.nv // new(decNaked) // grab from a sync.Pool
1950 // d.n.init()
1951 var v interface{}
1952 d.nsp, v = pool.decNaked()
1953 d.n = v.(*decNaked)
1954 }
1955 return d.n
1956}
1957
1958// Decode decodes the stream from reader and stores the result in the
1959// value pointed to by v. v cannot be a nil pointer. v can also be
1960// a reflect.Value of a pointer.
1961//
1962// Note that a pointer to a nil interface is not a nil pointer.
1963// If you do not know what type of stream it is, pass in a pointer to a nil interface.
1964// We will decode and store a value in that nil interface.
1965//
1966// Sample usages:
1967// // Decoding into a non-nil typed value
1968// var f float32
1969// err = codec.NewDecoder(r, handle).Decode(&f)
1970//
1971// // Decoding into nil interface
1972// var v interface{}
1973// dec := codec.NewDecoder(r, handle)
1974// err = dec.Decode(&v)
1975//
1976// When decoding into a nil interface{}, we will decode into an appropriate value based
1977// on the contents of the stream:
1978// - Numbers are decoded as float64, int64 or uint64.
1979// - Other values are decoded appropriately depending on the type:
1980// bool, string, []byte, time.Time, etc
1981// - Extensions are decoded as RawExt (if no ext function registered for the tag)
1982// Configurations exist on the Handle to override defaults
1983// (e.g. for MapType, SliceType and how to decode raw bytes).
1984//
1985// When decoding into a non-nil interface{} value, the mode of encoding is based on the
1986// type of the value. When a value is seen:
1987// - If an extension is registered for it, call that extension function
1988// - If it implements BinaryUnmarshaler, call its UnmarshalBinary(data []byte) error
1989// - Else decode it based on its reflect.Kind
1990//
1991// There are some special rules when decoding into containers (slice/array/map/struct).
1992// Decode will typically use the stream contents to UPDATE the container.
1993// - A map can be decoded from a stream map, by updating matching keys.
1994// - A slice can be decoded from a stream array,
1995// by updating the first n elements, where n is length of the stream.
1996// - A slice can be decoded from a stream map, by decoding as if
1997// it contains a sequence of key-value pairs.
1998// - A struct can be decoded from a stream map, by updating matching fields.
1999// - A struct can be decoded from a stream array,
2000// by updating fields as they occur in the struct (by index).
2001//
2002// When decoding a stream map or array with length of 0 into a nil map or slice,
2003// we reset the destination map or slice to a zero-length value.
2004//
2005// However, when decoding a stream nil, we reset the destination container
2006// to its "zero" value (e.g. nil for slice/map, etc).
2007//
2008// Note: we allow nil values in the stream anywhere except for map keys.
2009// A nil value in the encoded stream where a map key is expected is treated as an error.
2010func (d *Decoder) Decode(v interface{}) (err error) {
2011 defer d.deferred(&err)
2012 d.MustDecode(v)
2013 return
2014}
2015
2016// MustDecode is like Decode, but panics if unable to Decode.
2017// This provides insight to the code location that triggered the error.
2018func (d *Decoder) MustDecode(v interface{}) {
2019 // TODO: Top-level: ensure that v is a pointer and not nil.
2020 if d.err != nil {
2021 panic(d.err)
2022 }
2023 if d.d.TryDecodeAsNil() {
2024 setZero(v)
2025 } else {
2026 d.decode(v)
2027 }
2028 d.alwaysAtEnd()
2029 // xprintf(">>>>>>>> >>>>>>>> num decFns: %v\n", d.cf.sn)
2030}
2031
2032func (d *Decoder) deferred(err1 *error) {
2033 d.alwaysAtEnd()
2034 if recoverPanicToErr {
2035 if x := recover(); x != nil {
2036 panicValToErr(d, x, err1)
2037 panicValToErr(d, x, &d.err)
2038 }
2039 }
2040}
2041
2042func (d *Decoder) alwaysAtEnd() {
2043 if d.n != nil {
2044 // if n != nil, then nsp != nil (they are always set together)
2045 d.nsp.Put(d.n)
2046 d.n, d.nsp = nil, nil
2047 }
2048 d.codecFnPooler.alwaysAtEnd()
2049}
2050
2051// // this is not a smart swallow, as it allocates objects and does unnecessary work.
2052// func (d *Decoder) swallowViaHammer() {
2053// var blank interface{}
2054// d.decodeValueNoFn(reflect.ValueOf(&blank).Elem())
2055// }
2056
2057func (d *Decoder) swallow() {
2058 // smarter decode that just swallows the content
2059 dd := d.d
2060 if dd.TryDecodeAsNil() {
2061 return
2062 }
2063 elemsep := d.esep
2064 switch dd.ContainerType() {
2065 case valueTypeMap:
2066 containerLen := dd.ReadMapStart()
2067 hasLen := containerLen >= 0
2068 for j := 0; (hasLen && j < containerLen) || !(hasLen || dd.CheckBreak()); j++ {
2069 // if clenGtEqualZero {if j >= containerLen {break} } else if dd.CheckBreak() {break}
2070 if elemsep {
2071 dd.ReadMapElemKey()
2072 }
2073 d.swallow()
2074 if elemsep {
2075 dd.ReadMapElemValue()
2076 }
2077 d.swallow()
2078 }
2079 dd.ReadMapEnd()
2080 case valueTypeArray:
2081 containerLen := dd.ReadArrayStart()
2082 hasLen := containerLen >= 0
2083 for j := 0; (hasLen && j < containerLen) || !(hasLen || dd.CheckBreak()); j++ {
2084 if elemsep {
2085 dd.ReadArrayElem()
2086 }
2087 d.swallow()
2088 }
2089 dd.ReadArrayEnd()
2090 case valueTypeBytes:
2091 dd.DecodeBytes(d.b[:], true)
2092 case valueTypeString:
2093 dd.DecodeStringAsBytes()
2094 default:
2095 // these are all primitives, which we can get from decodeNaked
2096 // if RawExt using Value, complete the processing.
2097 n := d.naked()
2098 dd.DecodeNaked()
2099 if n.v == valueTypeExt && n.l == nil {
2100 n.initContainers()
2101 if n.li < arrayCacheLen {
2102 n.ia[n.li] = nil
2103 n.li++
2104 d.decode(&n.ia[n.li-1])
2105 n.ia[n.li-1] = nil
2106 n.li--
2107 } else {
2108 var v2 interface{}
2109 d.decode(&v2)
2110 }
2111 }
2112 }
2113}
2114
2115func setZero(iv interface{}) {
2116 if iv == nil || definitelyNil(iv) {
2117 return
2118 }
2119 var canDecode bool
2120 switch v := iv.(type) {
2121 case *string:
2122 *v = ""
2123 case *bool:
2124 *v = false
2125 case *int:
2126 *v = 0
2127 case *int8:
2128 *v = 0
2129 case *int16:
2130 *v = 0
2131 case *int32:
2132 *v = 0
2133 case *int64:
2134 *v = 0
2135 case *uint:
2136 *v = 0
2137 case *uint8:
2138 *v = 0
2139 case *uint16:
2140 *v = 0
2141 case *uint32:
2142 *v = 0
2143 case *uint64:
2144 *v = 0
2145 case *float32:
2146 *v = 0
2147 case *float64:
2148 *v = 0
2149 case *[]uint8:
2150 *v = nil
2151 case *Raw:
2152 *v = nil
2153 case *time.Time:
2154 *v = time.Time{}
2155 case reflect.Value:
2156 if v, canDecode = isDecodeable(v); canDecode && v.CanSet() {
2157 v.Set(reflect.Zero(v.Type()))
2158 } // TODO: else drain if chan, clear if map, set all to nil if slice???
2159 default:
2160 if !fastpathDecodeSetZeroTypeSwitch(iv) {
2161 v := reflect.ValueOf(iv)
2162 if v, canDecode = isDecodeable(v); canDecode && v.CanSet() {
2163 v.Set(reflect.Zero(v.Type()))
2164 } // TODO: else drain if chan, clear if map, set all to nil if slice???
2165 }
2166 }
2167}
2168
2169func (d *Decoder) decode(iv interface{}) {
2170 // check nil and interfaces explicitly,
2171 // so that type switches just have a run of constant non-interface types.
2172 if iv == nil {
2173 d.errorstr(errstrCannotDecodeIntoNil)
2174 return
2175 }
2176 if v, ok := iv.(Selfer); ok {
2177 v.CodecDecodeSelf(d)
2178 return
2179 }
2180
2181 switch v := iv.(type) {
2182 // case nil:
2183 // case Selfer:
2184
2185 case reflect.Value:
2186 v = d.ensureDecodeable(v)
2187 d.decodeValue(v, nil, true)
2188
2189 case *string:
2190 *v = d.d.DecodeString()
2191 case *bool:
2192 *v = d.d.DecodeBool()
2193 case *int:
2194 *v = int(chkOvf.IntV(d.d.DecodeInt64(), intBitsize))
2195 case *int8:
2196 *v = int8(chkOvf.IntV(d.d.DecodeInt64(), 8))
2197 case *int16:
2198 *v = int16(chkOvf.IntV(d.d.DecodeInt64(), 16))
2199 case *int32:
2200 *v = int32(chkOvf.IntV(d.d.DecodeInt64(), 32))
2201 case *int64:
2202 *v = d.d.DecodeInt64()
2203 case *uint:
2204 *v = uint(chkOvf.UintV(d.d.DecodeUint64(), uintBitsize))
2205 case *uint8:
2206 *v = uint8(chkOvf.UintV(d.d.DecodeUint64(), 8))
2207 case *uint16:
2208 *v = uint16(chkOvf.UintV(d.d.DecodeUint64(), 16))
2209 case *uint32:
2210 *v = uint32(chkOvf.UintV(d.d.DecodeUint64(), 32))
2211 case *uint64:
2212 *v = d.d.DecodeUint64()
2213 case *float32:
2214 f64 := d.d.DecodeFloat64()
2215 if chkOvf.Float32(f64) {
2216 d.errorf("float32 overflow: %v", f64)
2217 }
2218 *v = float32(f64)
2219 case *float64:
2220 *v = d.d.DecodeFloat64()
2221 case *[]uint8:
2222 *v = d.d.DecodeBytes(*v, false)
2223 case []uint8:
2224 b := d.d.DecodeBytes(v, false)
2225 if !(len(b) > 0 && len(b) == len(v) && &b[0] == &v[0]) {
2226 copy(v, b)
2227 }
2228 case *time.Time:
2229 *v = d.d.DecodeTime()
2230 case *Raw:
2231 *v = d.rawBytes()
2232
2233 case *interface{}:
2234 d.decodeValue(reflect.ValueOf(iv).Elem(), nil, true)
2235 // d.decodeValueNotNil(reflect.ValueOf(iv).Elem())
2236
2237 default:
2238 if !fastpathDecodeTypeSwitch(iv, d) {
2239 v := reflect.ValueOf(iv)
2240 v = d.ensureDecodeable(v)
2241 d.decodeValue(v, nil, false)
2242 // d.decodeValueFallback(v)
2243 }
2244 }
2245}
2246
2247func (d *Decoder) decodeValue(rv reflect.Value, fn *codecFn, chkAll bool) {
2248 // If stream is not containing a nil value, then we can deref to the base
2249 // non-pointer value, and decode into that.
2250 var rvp reflect.Value
2251 var rvpValid bool
2252 if rv.Kind() == reflect.Ptr {
2253 rvpValid = true
2254 for {
2255 if rv.IsNil() {
2256 rv.Set(reflect.New(rv.Type().Elem()))
2257 }
2258 rvp = rv
2259 rv = rv.Elem()
2260 if rv.Kind() != reflect.Ptr {
2261 break
2262 }
2263 }
2264 }
2265
2266 if fn == nil {
2267 // always pass checkCodecSelfer=true, in case T or ****T is passed, where *T is a Selfer
2268 fn = d.cfer().get(rv.Type(), chkAll, true) // chkAll, chkAll)
2269 }
2270 if fn.i.addrD {
2271 if rvpValid {
2272 fn.fd(d, &fn.i, rvp)
2273 } else if rv.CanAddr() {
2274 fn.fd(d, &fn.i, rv.Addr())
2275 } else if !fn.i.addrF {
2276 fn.fd(d, &fn.i, rv)
2277 } else {
2278 d.errorf("cannot decode into a non-pointer value")
2279 }
2280 } else {
2281 fn.fd(d, &fn.i, rv)
2282 }
2283 // return rv
2284}
2285
2286func (d *Decoder) structFieldNotFound(index int, rvkencname string) {
2287 // NOTE: rvkencname may be a stringView, so don't pass it to another function.
2288 if d.h.ErrorIfNoField {
2289 if index >= 0 {
2290 d.errorf("no matching struct field found when decoding stream array at index %v", index)
2291 return
2292 } else if rvkencname != "" {
2293 d.errorf("no matching struct field found when decoding stream map with key " + rvkencname)
2294 return
2295 }
2296 }
2297 d.swallow()
2298}
2299
2300func (d *Decoder) arrayCannotExpand(sliceLen, streamLen int) {
2301 if d.h.ErrorIfNoArrayExpand {
2302 d.errorf("cannot expand array len during decode from %v to %v", sliceLen, streamLen)
2303 }
2304}
2305
2306func isDecodeable(rv reflect.Value) (rv2 reflect.Value, canDecode bool) {
2307 switch rv.Kind() {
2308 case reflect.Array:
2309 return rv, true
2310 case reflect.Ptr:
2311 if !rv.IsNil() {
2312 return rv.Elem(), true
2313 }
2314 case reflect.Slice, reflect.Chan, reflect.Map:
2315 if !rv.IsNil() {
2316 return rv, true
2317 }
2318 }
2319 return
2320}
2321
2322func (d *Decoder) ensureDecodeable(rv reflect.Value) (rv2 reflect.Value) {
2323 // decode can take any reflect.Value that is a inherently addressable i.e.
2324 // - array
2325 // - non-nil chan (we will SEND to it)
2326 // - non-nil slice (we will set its elements)
2327 // - non-nil map (we will put into it)
2328 // - non-nil pointer (we can "update" it)
2329 rv2, canDecode := isDecodeable(rv)
2330 if canDecode {
2331 return
2332 }
2333 if !rv.IsValid() {
2334 d.errorstr(errstrCannotDecodeIntoNil)
2335 return
2336 }
2337 if !rv.CanInterface() {
2338 d.errorf("cannot decode into a value without an interface: %v", rv)
2339 return
2340 }
2341 rvi := rv2i(rv)
2342 rvk := rv.Kind()
2343 d.errorf("cannot decode into value of kind: %v, type: %T, %v", rvk, rvi, rvi)
2344 return
2345}
2346
2347// Possibly get an interned version of a string
2348//
2349// This should mostly be used for map keys, where the key type is string.
2350// This is because keys of a map/struct are typically reused across many objects.
2351func (d *Decoder) string(v []byte) (s string) {
2352 if d.is == nil {
2353 return string(v) // don't return stringView, as we need a real string here.
2354 }
2355 s, ok := d.is[string(v)] // no allocation here, per go implementation
2356 if !ok {
2357 s = string(v) // new allocation here
2358 d.is[s] = s
2359 }
2360 return s
2361}
2362
2363// nextValueBytes returns the next value in the stream as a set of bytes.
2364func (d *Decoder) nextValueBytes() (bs []byte) {
2365 d.d.uncacheRead()
2366 d.r.track()
2367 d.swallow()
2368 bs = d.r.stopTrack()
2369 return
2370}
2371
2372func (d *Decoder) rawBytes() []byte {
2373 // ensure that this is not a view into the bytes
2374 // i.e. make new copy always.
2375 bs := d.nextValueBytes()
2376 bs2 := make([]byte, len(bs))
2377 copy(bs2, bs)
2378 return bs2
2379}
2380
2381func (d *Decoder) wrapErrstr(v interface{}, err *error) {
2382 *err = fmt.Errorf("%s decode error [pos %d]: %v", d.hh.Name(), d.r.numread(), v)
2383}
2384
2385// --------------------------------------------------
2386
2387// decSliceHelper assists when decoding into a slice, from a map or an array in the stream.
2388// A slice can be set from a map or array in stream. This supports the MapBySlice interface.
2389type decSliceHelper struct {
2390 d *Decoder
2391 // ct valueType
2392 array bool
2393}
2394
2395func (d *Decoder) decSliceHelperStart() (x decSliceHelper, clen int) {
2396 dd := d.d
2397 ctyp := dd.ContainerType()
2398 switch ctyp {
2399 case valueTypeArray:
2400 x.array = true
2401 clen = dd.ReadArrayStart()
2402 case valueTypeMap:
2403 clen = dd.ReadMapStart() * 2
2404 default:
2405 d.errorf("only encoded map or array can be decoded into a slice (%d)", ctyp)
2406 }
2407 // x.ct = ctyp
2408 x.d = d
2409 return
2410}
2411
2412func (x decSliceHelper) End() {
2413 if x.array {
2414 x.d.d.ReadArrayEnd()
2415 } else {
2416 x.d.d.ReadMapEnd()
2417 }
2418}
2419
2420func (x decSliceHelper) ElemContainerState(index int) {
2421 if x.array {
2422 x.d.d.ReadArrayElem()
2423 } else if index%2 == 0 {
2424 x.d.d.ReadMapElemKey()
2425 } else {
2426 x.d.d.ReadMapElemValue()
2427 }
2428}
2429
2430func decByteSlice(r decReader, clen, maxInitLen int, bs []byte) (bsOut []byte) {
2431 if clen == 0 {
2432 return zeroByteSlice
2433 }
2434 if len(bs) == clen {
2435 bsOut = bs
2436 r.readb(bsOut)
2437 } else if cap(bs) >= clen {
2438 bsOut = bs[:clen]
2439 r.readb(bsOut)
2440 } else {
2441 // bsOut = make([]byte, clen)
2442 len2 := decInferLen(clen, maxInitLen, 1)
2443 bsOut = make([]byte, len2)
2444 r.readb(bsOut)
2445 for len2 < clen {
2446 len3 := decInferLen(clen-len2, maxInitLen, 1)
2447 bs3 := bsOut
2448 bsOut = make([]byte, len2+len3)
2449 copy(bsOut, bs3)
2450 r.readb(bsOut[len2:])
2451 len2 += len3
2452 }
2453 }
2454 return
2455}
2456
2457func detachZeroCopyBytes(isBytesReader bool, dest []byte, in []byte) (out []byte) {
2458 if xlen := len(in); xlen > 0 {
2459 if isBytesReader || xlen <= scratchByteArrayLen {
2460 if cap(dest) >= xlen {
2461 out = dest[:xlen]
2462 } else {
2463 out = make([]byte, xlen)
2464 }
2465 copy(out, in)
2466 return
2467 }
2468 }
2469 return in
2470}
2471
2472// decInferLen will infer a sensible length, given the following:
2473// - clen: length wanted.
2474// - maxlen: max length to be returned.
2475// if <= 0, it is unset, and we infer it based on the unit size
2476// - unit: number of bytes for each element of the collection
2477func decInferLen(clen, maxlen, unit int) (rvlen int) {
2478 // handle when maxlen is not set i.e. <= 0
2479 if clen <= 0 {
2480 return
2481 }
2482 if unit == 0 {
2483 return clen
2484 }
2485 if maxlen <= 0 {
2486 // no maxlen defined. Use maximum of 256K memory, with a floor of 4K items.
2487 // maxlen = 256 * 1024 / unit
2488 // if maxlen < (4 * 1024) {
2489 // maxlen = 4 * 1024
2490 // }
2491 if unit < (256 / 4) {
2492 maxlen = 256 * 1024 / unit
2493 } else {
2494 maxlen = 4 * 1024
2495 }
2496 }
2497 if clen > maxlen {
2498 rvlen = maxlen
2499 } else {
2500 rvlen = clen
2501 }
2502 return
2503}
2504
2505func expandSliceRV(s reflect.Value, st reflect.Type, canChange bool, stElemSize, num, slen, scap int) (
2506 s2 reflect.Value, scap2 int, changed bool, err string) {
2507 l1 := slen + num // new slice length
2508 if l1 < slen {
2509 err = errmsgExpandSliceOverflow
2510 return
2511 }
2512 if l1 <= scap {
2513 if s.CanSet() {
2514 s.SetLen(l1)
2515 } else if canChange {
2516 s2 = s.Slice(0, l1)
2517 scap2 = scap
2518 changed = true
2519 } else {
2520 err = errmsgExpandSliceCannotChange
2521 return
2522 }
2523 return
2524 }
2525 if !canChange {
2526 err = errmsgExpandSliceCannotChange
2527 return
2528 }
2529 scap2 = growCap(scap, stElemSize, num)
2530 s2 = reflect.MakeSlice(st, l1, scap2)
2531 changed = true
2532 reflect.Copy(s2, s)
2533 return
2534}
2535
2536func decReadFull(r io.Reader, bs []byte) (n int, err error) {
2537 var nn int
2538 for n < len(bs) && err == nil {
2539 nn, err = r.Read(bs[n:])
2540 if nn > 0 {
2541 if err == io.EOF {
2542 // leave EOF for next time
2543 err = nil
2544 }
2545 n += nn
2546 }
2547 }
2548
2549 // do not do this - it serves no purpose
2550 // if n != len(bs) && err == io.EOF { err = io.ErrUnexpectedEOF }
2551 return
2552}