| // Copyright 2019+ Klaus Post. All rights reserved. |
| // License information can be found in the LICENSE file. |
| // Based on work by Yann Collet, released under BSD License. |
| |
| package zstd |
| |
| import ( |
| "errors" |
| "fmt" |
| "math" |
| ) |
| |
| const ( |
| // For encoding we only support up to |
| maxEncTableLog = 8 |
| maxEncTablesize = 1 << maxTableLog |
| maxEncTableMask = (1 << maxTableLog) - 1 |
| minEncTablelog = 5 |
| maxEncSymbolValue = maxMatchLengthSymbol |
| ) |
| |
| // Scratch provides temporary storage for compression and decompression. |
| type fseEncoder struct { |
| symbolLen uint16 // Length of active part of the symbol table. |
| actualTableLog uint8 // Selected tablelog. |
| ct cTable // Compression tables. |
| maxCount int // count of the most probable symbol |
| zeroBits bool // no bits has prob > 50%. |
| clearCount bool // clear count |
| useRLE bool // This encoder is for RLE |
| preDefined bool // This encoder is predefined. |
| reUsed bool // Set to know when the encoder has been reused. |
| rleVal uint8 // RLE Symbol |
| maxBits uint8 // Maximum output bits after transform. |
| |
| // TODO: Technically zstd should be fine with 64 bytes. |
| count [256]uint32 |
| norm [256]int16 |
| } |
| |
| // cTable contains tables used for compression. |
| type cTable struct { |
| tableSymbol []byte |
| stateTable []uint16 |
| symbolTT []symbolTransform |
| } |
| |
| // symbolTransform contains the state transform for a symbol. |
| type symbolTransform struct { |
| deltaNbBits uint32 |
| deltaFindState int16 |
| outBits uint8 |
| } |
| |
| // String prints values as a human readable string. |
| func (s symbolTransform) String() string { |
| return fmt.Sprintf("{deltabits: %08x, findstate:%d outbits:%d}", s.deltaNbBits, s.deltaFindState, s.outBits) |
| } |
| |
| // Histogram allows to populate the histogram and skip that step in the compression, |
| // It otherwise allows to inspect the histogram when compression is done. |
| // To indicate that you have populated the histogram call HistogramFinished |
| // with the value of the highest populated symbol, as well as the number of entries |
| // in the most populated entry. These are accepted at face value. |
| // The returned slice will always be length 256. |
| func (s *fseEncoder) Histogram() []uint32 { |
| return s.count[:] |
| } |
| |
| // HistogramFinished can be called to indicate that the histogram has been populated. |
| // maxSymbol is the index of the highest set symbol of the next data segment. |
| // maxCount is the number of entries in the most populated entry. |
| // These are accepted at face value. |
| func (s *fseEncoder) HistogramFinished(maxSymbol uint8, maxCount int) { |
| s.maxCount = maxCount |
| s.symbolLen = uint16(maxSymbol) + 1 |
| s.clearCount = maxCount != 0 |
| } |
| |
| // prepare will prepare and allocate scratch tables used for both compression and decompression. |
| func (s *fseEncoder) prepare() (*fseEncoder, error) { |
| if s == nil { |
| s = &fseEncoder{} |
| } |
| s.useRLE = false |
| if s.clearCount && s.maxCount == 0 { |
| for i := range s.count { |
| s.count[i] = 0 |
| } |
| s.clearCount = false |
| } |
| return s, nil |
| } |
| |
| // allocCtable will allocate tables needed for compression. |
| // If existing tables a re big enough, they are simply re-used. |
| func (s *fseEncoder) allocCtable() { |
| tableSize := 1 << s.actualTableLog |
| // get tableSymbol that is big enough. |
| if cap(s.ct.tableSymbol) < tableSize { |
| s.ct.tableSymbol = make([]byte, tableSize) |
| } |
| s.ct.tableSymbol = s.ct.tableSymbol[:tableSize] |
| |
| ctSize := tableSize |
| if cap(s.ct.stateTable) < ctSize { |
| s.ct.stateTable = make([]uint16, ctSize) |
| } |
| s.ct.stateTable = s.ct.stateTable[:ctSize] |
| |
| if cap(s.ct.symbolTT) < 256 { |
| s.ct.symbolTT = make([]symbolTransform, 256) |
| } |
| s.ct.symbolTT = s.ct.symbolTT[:256] |
| } |
| |
| // buildCTable will populate the compression table so it is ready to be used. |
| func (s *fseEncoder) buildCTable() error { |
| tableSize := uint32(1 << s.actualTableLog) |
| highThreshold := tableSize - 1 |
| var cumul [256]int16 |
| |
| s.allocCtable() |
| tableSymbol := s.ct.tableSymbol[:tableSize] |
| // symbol start positions |
| { |
| cumul[0] = 0 |
| for ui, v := range s.norm[:s.symbolLen-1] { |
| u := byte(ui) // one less than reference |
| if v == -1 { |
| // Low proba symbol |
| cumul[u+1] = cumul[u] + 1 |
| tableSymbol[highThreshold] = u |
| highThreshold-- |
| } else { |
| cumul[u+1] = cumul[u] + v |
| } |
| } |
| // Encode last symbol separately to avoid overflowing u |
| u := int(s.symbolLen - 1) |
| v := s.norm[s.symbolLen-1] |
| if v == -1 { |
| // Low proba symbol |
| cumul[u+1] = cumul[u] + 1 |
| tableSymbol[highThreshold] = byte(u) |
| highThreshold-- |
| } else { |
| cumul[u+1] = cumul[u] + v |
| } |
| if uint32(cumul[s.symbolLen]) != tableSize { |
| return fmt.Errorf("internal error: expected cumul[s.symbolLen] (%d) == tableSize (%d)", cumul[s.symbolLen], tableSize) |
| } |
| cumul[s.symbolLen] = int16(tableSize) + 1 |
| } |
| // Spread symbols |
| s.zeroBits = false |
| { |
| step := tableStep(tableSize) |
| tableMask := tableSize - 1 |
| var position uint32 |
| // if any symbol > largeLimit, we may have 0 bits output. |
| largeLimit := int16(1 << (s.actualTableLog - 1)) |
| for ui, v := range s.norm[:s.symbolLen] { |
| symbol := byte(ui) |
| if v > largeLimit { |
| s.zeroBits = true |
| } |
| for nbOccurrences := int16(0); nbOccurrences < v; nbOccurrences++ { |
| tableSymbol[position] = symbol |
| position = (position + step) & tableMask |
| for position > highThreshold { |
| position = (position + step) & tableMask |
| } /* Low proba area */ |
| } |
| } |
| |
| // Check if we have gone through all positions |
| if position != 0 { |
| return errors.New("position!=0") |
| } |
| } |
| |
| // Build table |
| table := s.ct.stateTable |
| { |
| tsi := int(tableSize) |
| for u, v := range tableSymbol { |
| // TableU16 : sorted by symbol order; gives next state value |
| table[cumul[v]] = uint16(tsi + u) |
| cumul[v]++ |
| } |
| } |
| |
| // Build Symbol Transformation Table |
| { |
| total := int16(0) |
| symbolTT := s.ct.symbolTT[:s.symbolLen] |
| tableLog := s.actualTableLog |
| tl := (uint32(tableLog) << 16) - (1 << tableLog) |
| for i, v := range s.norm[:s.symbolLen] { |
| switch v { |
| case 0: |
| case -1, 1: |
| symbolTT[i].deltaNbBits = tl |
| symbolTT[i].deltaFindState = total - 1 |
| total++ |
| default: |
| maxBitsOut := uint32(tableLog) - highBit(uint32(v-1)) |
| minStatePlus := uint32(v) << maxBitsOut |
| symbolTT[i].deltaNbBits = (maxBitsOut << 16) - minStatePlus |
| symbolTT[i].deltaFindState = total - v |
| total += v |
| } |
| } |
| if total != int16(tableSize) { |
| return fmt.Errorf("total mismatch %d (got) != %d (want)", total, tableSize) |
| } |
| } |
| return nil |
| } |
| |
| var rtbTable = [...]uint32{0, 473195, 504333, 520860, 550000, 700000, 750000, 830000} |
| |
| func (s *fseEncoder) setRLE(val byte) { |
| s.allocCtable() |
| s.actualTableLog = 0 |
| s.ct.stateTable = s.ct.stateTable[:1] |
| s.ct.symbolTT[val] = symbolTransform{ |
| deltaFindState: 0, |
| deltaNbBits: 0, |
| } |
| if debug { |
| println("setRLE: val", val, "symbolTT", s.ct.symbolTT[val]) |
| } |
| s.rleVal = val |
| s.useRLE = true |
| } |
| |
| // setBits will set output bits for the transform. |
| // if nil is provided, the number of bits is equal to the index. |
| func (s *fseEncoder) setBits(transform []byte) { |
| if s.reUsed || s.preDefined { |
| return |
| } |
| if s.useRLE { |
| if transform == nil { |
| s.ct.symbolTT[s.rleVal].outBits = s.rleVal |
| s.maxBits = s.rleVal |
| return |
| } |
| s.maxBits = transform[s.rleVal] |
| s.ct.symbolTT[s.rleVal].outBits = s.maxBits |
| return |
| } |
| if transform == nil { |
| for i := range s.ct.symbolTT[:s.symbolLen] { |
| s.ct.symbolTT[i].outBits = uint8(i) |
| } |
| s.maxBits = uint8(s.symbolLen - 1) |
| return |
| } |
| s.maxBits = 0 |
| for i, v := range transform[:s.symbolLen] { |
| s.ct.symbolTT[i].outBits = v |
| if v > s.maxBits { |
| // We could assume bits always going up, but we play safe. |
| s.maxBits = v |
| } |
| } |
| } |
| |
| // normalizeCount will normalize the count of the symbols so |
| // the total is equal to the table size. |
| // If successful, compression tables will also be made ready. |
| func (s *fseEncoder) normalizeCount(length int) error { |
| if s.reUsed { |
| return nil |
| } |
| s.optimalTableLog(length) |
| var ( |
| tableLog = s.actualTableLog |
| scale = 62 - uint64(tableLog) |
| step = (1 << 62) / uint64(length) |
| vStep = uint64(1) << (scale - 20) |
| stillToDistribute = int16(1 << tableLog) |
| largest int |
| largestP int16 |
| lowThreshold = (uint32)(length >> tableLog) |
| ) |
| if s.maxCount == length { |
| s.useRLE = true |
| return nil |
| } |
| s.useRLE = false |
| for i, cnt := range s.count[:s.symbolLen] { |
| // already handled |
| // if (count[s] == s.length) return 0; /* rle special case */ |
| |
| if cnt == 0 { |
| s.norm[i] = 0 |
| continue |
| } |
| if cnt <= lowThreshold { |
| s.norm[i] = -1 |
| stillToDistribute-- |
| } else { |
| proba := (int16)((uint64(cnt) * step) >> scale) |
| if proba < 8 { |
| restToBeat := vStep * uint64(rtbTable[proba]) |
| v := uint64(cnt)*step - (uint64(proba) << scale) |
| if v > restToBeat { |
| proba++ |
| } |
| } |
| if proba > largestP { |
| largestP = proba |
| largest = i |
| } |
| s.norm[i] = proba |
| stillToDistribute -= proba |
| } |
| } |
| |
| if -stillToDistribute >= (s.norm[largest] >> 1) { |
| // corner case, need another normalization method |
| err := s.normalizeCount2(length) |
| if err != nil { |
| return err |
| } |
| if debugAsserts { |
| err = s.validateNorm() |
| if err != nil { |
| return err |
| } |
| } |
| return s.buildCTable() |
| } |
| s.norm[largest] += stillToDistribute |
| if debugAsserts { |
| err := s.validateNorm() |
| if err != nil { |
| return err |
| } |
| } |
| return s.buildCTable() |
| } |
| |
| // Secondary normalization method. |
| // To be used when primary method fails. |
| func (s *fseEncoder) normalizeCount2(length int) error { |
| const notYetAssigned = -2 |
| var ( |
| distributed uint32 |
| total = uint32(length) |
| tableLog = s.actualTableLog |
| lowThreshold = total >> tableLog |
| lowOne = (total * 3) >> (tableLog + 1) |
| ) |
| for i, cnt := range s.count[:s.symbolLen] { |
| if cnt == 0 { |
| s.norm[i] = 0 |
| continue |
| } |
| if cnt <= lowThreshold { |
| s.norm[i] = -1 |
| distributed++ |
| total -= cnt |
| continue |
| } |
| if cnt <= lowOne { |
| s.norm[i] = 1 |
| distributed++ |
| total -= cnt |
| continue |
| } |
| s.norm[i] = notYetAssigned |
| } |
| toDistribute := (1 << tableLog) - distributed |
| |
| if (total / toDistribute) > lowOne { |
| // risk of rounding to zero |
| lowOne = (total * 3) / (toDistribute * 2) |
| for i, cnt := range s.count[:s.symbolLen] { |
| if (s.norm[i] == notYetAssigned) && (cnt <= lowOne) { |
| s.norm[i] = 1 |
| distributed++ |
| total -= cnt |
| continue |
| } |
| } |
| toDistribute = (1 << tableLog) - distributed |
| } |
| if distributed == uint32(s.symbolLen)+1 { |
| // all values are pretty poor; |
| // probably incompressible data (should have already been detected); |
| // find max, then give all remaining points to max |
| var maxV int |
| var maxC uint32 |
| for i, cnt := range s.count[:s.symbolLen] { |
| if cnt > maxC { |
| maxV = i |
| maxC = cnt |
| } |
| } |
| s.norm[maxV] += int16(toDistribute) |
| return nil |
| } |
| |
| if total == 0 { |
| // all of the symbols were low enough for the lowOne or lowThreshold |
| for i := uint32(0); toDistribute > 0; i = (i + 1) % (uint32(s.symbolLen)) { |
| if s.norm[i] > 0 { |
| toDistribute-- |
| s.norm[i]++ |
| } |
| } |
| return nil |
| } |
| |
| var ( |
| vStepLog = 62 - uint64(tableLog) |
| mid = uint64((1 << (vStepLog - 1)) - 1) |
| rStep = (((1 << vStepLog) * uint64(toDistribute)) + mid) / uint64(total) // scale on remaining |
| tmpTotal = mid |
| ) |
| for i, cnt := range s.count[:s.symbolLen] { |
| if s.norm[i] == notYetAssigned { |
| var ( |
| end = tmpTotal + uint64(cnt)*rStep |
| sStart = uint32(tmpTotal >> vStepLog) |
| sEnd = uint32(end >> vStepLog) |
| weight = sEnd - sStart |
| ) |
| if weight < 1 { |
| return errors.New("weight < 1") |
| } |
| s.norm[i] = int16(weight) |
| tmpTotal = end |
| } |
| } |
| return nil |
| } |
| |
| // optimalTableLog calculates and sets the optimal tableLog in s.actualTableLog |
| func (s *fseEncoder) optimalTableLog(length int) { |
| tableLog := uint8(maxEncTableLog) |
| minBitsSrc := highBit(uint32(length)) + 1 |
| minBitsSymbols := highBit(uint32(s.symbolLen-1)) + 2 |
| minBits := uint8(minBitsSymbols) |
| if minBitsSrc < minBitsSymbols { |
| minBits = uint8(minBitsSrc) |
| } |
| |
| maxBitsSrc := uint8(highBit(uint32(length-1))) - 2 |
| if maxBitsSrc < tableLog { |
| // Accuracy can be reduced |
| tableLog = maxBitsSrc |
| } |
| if minBits > tableLog { |
| tableLog = minBits |
| } |
| // Need a minimum to safely represent all symbol values |
| if tableLog < minEncTablelog { |
| tableLog = minEncTablelog |
| } |
| if tableLog > maxEncTableLog { |
| tableLog = maxEncTableLog |
| } |
| s.actualTableLog = tableLog |
| } |
| |
| // validateNorm validates the normalized histogram table. |
| func (s *fseEncoder) validateNorm() (err error) { |
| var total int |
| for _, v := range s.norm[:s.symbolLen] { |
| if v >= 0 { |
| total += int(v) |
| } else { |
| total -= int(v) |
| } |
| } |
| defer func() { |
| if err == nil { |
| return |
| } |
| fmt.Printf("selected TableLog: %d, Symbol length: %d\n", s.actualTableLog, s.symbolLen) |
| for i, v := range s.norm[:s.symbolLen] { |
| fmt.Printf("%3d: %5d -> %4d \n", i, s.count[i], v) |
| } |
| }() |
| if total != (1 << s.actualTableLog) { |
| return fmt.Errorf("warning: Total == %d != %d", total, 1<<s.actualTableLog) |
| } |
| for i, v := range s.count[s.symbolLen:] { |
| if v != 0 { |
| return fmt.Errorf("warning: Found symbol out of range, %d after cut", i) |
| } |
| } |
| return nil |
| } |
| |
| // writeCount will write the normalized histogram count to header. |
| // This is read back by readNCount. |
| func (s *fseEncoder) writeCount(out []byte) ([]byte, error) { |
| if s.useRLE { |
| return append(out, s.rleVal), nil |
| } |
| if s.preDefined || s.reUsed { |
| // Never write predefined. |
| return out, nil |
| } |
| |
| var ( |
| tableLog = s.actualTableLog |
| tableSize = 1 << tableLog |
| previous0 bool |
| charnum uint16 |
| |
| // maximum header size plus 2 extra bytes for final output if bitCount == 0. |
| maxHeaderSize = ((int(s.symbolLen) * int(tableLog)) >> 3) + 3 + 2 |
| |
| // Write Table Size |
| bitStream = uint32(tableLog - minEncTablelog) |
| bitCount = uint(4) |
| remaining = int16(tableSize + 1) /* +1 for extra accuracy */ |
| threshold = int16(tableSize) |
| nbBits = uint(tableLog + 1) |
| outP = len(out) |
| ) |
| if cap(out) < outP+maxHeaderSize { |
| out = append(out, make([]byte, maxHeaderSize*3)...) |
| out = out[:len(out)-maxHeaderSize*3] |
| } |
| out = out[:outP+maxHeaderSize] |
| |
| // stops at 1 |
| for remaining > 1 { |
| if previous0 { |
| start := charnum |
| for s.norm[charnum] == 0 { |
| charnum++ |
| } |
| for charnum >= start+24 { |
| start += 24 |
| bitStream += uint32(0xFFFF) << bitCount |
| out[outP] = byte(bitStream) |
| out[outP+1] = byte(bitStream >> 8) |
| outP += 2 |
| bitStream >>= 16 |
| } |
| for charnum >= start+3 { |
| start += 3 |
| bitStream += 3 << bitCount |
| bitCount += 2 |
| } |
| bitStream += uint32(charnum-start) << bitCount |
| bitCount += 2 |
| if bitCount > 16 { |
| out[outP] = byte(bitStream) |
| out[outP+1] = byte(bitStream >> 8) |
| outP += 2 |
| bitStream >>= 16 |
| bitCount -= 16 |
| } |
| } |
| |
| count := s.norm[charnum] |
| charnum++ |
| max := (2*threshold - 1) - remaining |
| if count < 0 { |
| remaining += count |
| } else { |
| remaining -= count |
| } |
| count++ // +1 for extra accuracy |
| if count >= threshold { |
| count += max // [0..max[ [max..threshold[ (...) [threshold+max 2*threshold[ |
| } |
| bitStream += uint32(count) << bitCount |
| bitCount += nbBits |
| if count < max { |
| bitCount-- |
| } |
| |
| previous0 = count == 1 |
| if remaining < 1 { |
| return nil, errors.New("internal error: remaining < 1") |
| } |
| for remaining < threshold { |
| nbBits-- |
| threshold >>= 1 |
| } |
| |
| if bitCount > 16 { |
| out[outP] = byte(bitStream) |
| out[outP+1] = byte(bitStream >> 8) |
| outP += 2 |
| bitStream >>= 16 |
| bitCount -= 16 |
| } |
| } |
| |
| if outP+2 > len(out) { |
| return nil, fmt.Errorf("internal error: %d > %d, maxheader: %d, sl: %d, tl: %d, normcount: %v", outP+2, len(out), maxHeaderSize, s.symbolLen, int(tableLog), s.norm[:s.symbolLen]) |
| } |
| out[outP] = byte(bitStream) |
| out[outP+1] = byte(bitStream >> 8) |
| outP += int((bitCount + 7) / 8) |
| |
| if charnum > s.symbolLen { |
| return nil, errors.New("internal error: charnum > s.symbolLen") |
| } |
| return out[:outP], nil |
| } |
| |
| // Approximate symbol cost, as fractional value, using fixed-point format (accuracyLog fractional bits) |
| // note 1 : assume symbolValue is valid (<= maxSymbolValue) |
| // note 2 : if freq[symbolValue]==0, @return a fake cost of tableLog+1 bits * |
| func (s *fseEncoder) bitCost(symbolValue uint8, accuracyLog uint32) uint32 { |
| minNbBits := s.ct.symbolTT[symbolValue].deltaNbBits >> 16 |
| threshold := (minNbBits + 1) << 16 |
| if debugAsserts { |
| if !(s.actualTableLog < 16) { |
| panic("!s.actualTableLog < 16") |
| } |
| // ensure enough room for renormalization double shift |
| if !(uint8(accuracyLog) < 31-s.actualTableLog) { |
| panic("!uint8(accuracyLog) < 31-s.actualTableLog") |
| } |
| } |
| tableSize := uint32(1) << s.actualTableLog |
| deltaFromThreshold := threshold - (s.ct.symbolTT[symbolValue].deltaNbBits + tableSize) |
| // linear interpolation (very approximate) |
| normalizedDeltaFromThreshold := (deltaFromThreshold << accuracyLog) >> s.actualTableLog |
| bitMultiplier := uint32(1) << accuracyLog |
| if debugAsserts { |
| if s.ct.symbolTT[symbolValue].deltaNbBits+tableSize > threshold { |
| panic("s.ct.symbolTT[symbolValue].deltaNbBits+tableSize > threshold") |
| } |
| if normalizedDeltaFromThreshold > bitMultiplier { |
| panic("normalizedDeltaFromThreshold > bitMultiplier") |
| } |
| } |
| return (minNbBits+1)*bitMultiplier - normalizedDeltaFromThreshold |
| } |
| |
| // Returns the cost in bits of encoding the distribution in count using ctable. |
| // Histogram should only be up to the last non-zero symbol. |
| // Returns an -1 if ctable cannot represent all the symbols in count. |
| func (s *fseEncoder) approxSize(hist []uint32) uint32 { |
| if int(s.symbolLen) < len(hist) { |
| // More symbols than we have. |
| return math.MaxUint32 |
| } |
| if s.useRLE { |
| // We will never reuse RLE encoders. |
| return math.MaxUint32 |
| } |
| const kAccuracyLog = 8 |
| badCost := (uint32(s.actualTableLog) + 1) << kAccuracyLog |
| var cost uint32 |
| for i, v := range hist { |
| if v == 0 { |
| continue |
| } |
| if s.norm[i] == 0 { |
| return math.MaxUint32 |
| } |
| bitCost := s.bitCost(uint8(i), kAccuracyLog) |
| if bitCost > badCost { |
| return math.MaxUint32 |
| } |
| cost += v * bitCost |
| } |
| return cost >> kAccuracyLog |
| } |
| |
| // maxHeaderSize returns the maximum header size in bits. |
| // This is not exact size, but we want a penalty for new tables anyway. |
| func (s *fseEncoder) maxHeaderSize() uint32 { |
| if s.preDefined { |
| return 0 |
| } |
| if s.useRLE { |
| return 8 |
| } |
| return (((uint32(s.symbolLen) * uint32(s.actualTableLog)) >> 3) + 3) * 8 |
| } |
| |
| // cState contains the compression state of a stream. |
| type cState struct { |
| bw *bitWriter |
| stateTable []uint16 |
| state uint16 |
| } |
| |
| // init will initialize the compression state to the first symbol of the stream. |
| func (c *cState) init(bw *bitWriter, ct *cTable, first symbolTransform) { |
| c.bw = bw |
| c.stateTable = ct.stateTable |
| if len(c.stateTable) == 1 { |
| // RLE |
| c.stateTable[0] = uint16(0) |
| c.state = 0 |
| return |
| } |
| nbBitsOut := (first.deltaNbBits + (1 << 15)) >> 16 |
| im := int32((nbBitsOut << 16) - first.deltaNbBits) |
| lu := (im >> nbBitsOut) + int32(first.deltaFindState) |
| c.state = c.stateTable[lu] |
| } |
| |
| // encode the output symbol provided and write it to the bitstream. |
| func (c *cState) encode(symbolTT symbolTransform) { |
| nbBitsOut := (uint32(c.state) + symbolTT.deltaNbBits) >> 16 |
| dstState := int32(c.state>>(nbBitsOut&15)) + int32(symbolTT.deltaFindState) |
| c.bw.addBits16NC(c.state, uint8(nbBitsOut)) |
| c.state = c.stateTable[dstState] |
| } |
| |
| // flush will write the tablelog to the output and flush the remaining full bytes. |
| func (c *cState) flush(tableLog uint8) { |
| c.bw.flush32() |
| c.bw.addBits16NC(c.state, tableLog) |
| } |