khenaidoo | 106c61a | 2021-08-11 18:05:46 -0400 | [diff] [blame] | 1 | // Copyright 2019+ Klaus Post. All rights reserved. |
| 2 | // License information can be found in the LICENSE file. |
| 3 | // Based on work by Yann Collet, released under BSD License. |
| 4 | |
| 5 | package zstd |
| 6 | |
| 7 | import ( |
| 8 | "errors" |
| 9 | "fmt" |
| 10 | "math" |
| 11 | ) |
| 12 | |
| 13 | const ( |
| 14 | // For encoding we only support up to |
| 15 | maxEncTableLog = 8 |
| 16 | maxEncTablesize = 1 << maxTableLog |
| 17 | maxEncTableMask = (1 << maxTableLog) - 1 |
| 18 | minEncTablelog = 5 |
| 19 | maxEncSymbolValue = maxMatchLengthSymbol |
| 20 | ) |
| 21 | |
| 22 | // Scratch provides temporary storage for compression and decompression. |
| 23 | type fseEncoder struct { |
| 24 | symbolLen uint16 // Length of active part of the symbol table. |
| 25 | actualTableLog uint8 // Selected tablelog. |
| 26 | ct cTable // Compression tables. |
| 27 | maxCount int // count of the most probable symbol |
| 28 | zeroBits bool // no bits has prob > 50%. |
| 29 | clearCount bool // clear count |
| 30 | useRLE bool // This encoder is for RLE |
| 31 | preDefined bool // This encoder is predefined. |
| 32 | reUsed bool // Set to know when the encoder has been reused. |
| 33 | rleVal uint8 // RLE Symbol |
| 34 | maxBits uint8 // Maximum output bits after transform. |
| 35 | |
| 36 | // TODO: Technically zstd should be fine with 64 bytes. |
| 37 | count [256]uint32 |
| 38 | norm [256]int16 |
| 39 | } |
| 40 | |
| 41 | // cTable contains tables used for compression. |
| 42 | type cTable struct { |
| 43 | tableSymbol []byte |
| 44 | stateTable []uint16 |
| 45 | symbolTT []symbolTransform |
| 46 | } |
| 47 | |
| 48 | // symbolTransform contains the state transform for a symbol. |
| 49 | type symbolTransform struct { |
| 50 | deltaNbBits uint32 |
| 51 | deltaFindState int16 |
| 52 | outBits uint8 |
| 53 | } |
| 54 | |
| 55 | // String prints values as a human readable string. |
| 56 | func (s symbolTransform) String() string { |
| 57 | return fmt.Sprintf("{deltabits: %08x, findstate:%d outbits:%d}", s.deltaNbBits, s.deltaFindState, s.outBits) |
| 58 | } |
| 59 | |
| 60 | // Histogram allows to populate the histogram and skip that step in the compression, |
| 61 | // It otherwise allows to inspect the histogram when compression is done. |
| 62 | // To indicate that you have populated the histogram call HistogramFinished |
| 63 | // with the value of the highest populated symbol, as well as the number of entries |
| 64 | // in the most populated entry. These are accepted at face value. |
| 65 | // The returned slice will always be length 256. |
| 66 | func (s *fseEncoder) Histogram() []uint32 { |
| 67 | return s.count[:] |
| 68 | } |
| 69 | |
| 70 | // HistogramFinished can be called to indicate that the histogram has been populated. |
| 71 | // maxSymbol is the index of the highest set symbol of the next data segment. |
| 72 | // maxCount is the number of entries in the most populated entry. |
| 73 | // These are accepted at face value. |
| 74 | func (s *fseEncoder) HistogramFinished(maxSymbol uint8, maxCount int) { |
| 75 | s.maxCount = maxCount |
| 76 | s.symbolLen = uint16(maxSymbol) + 1 |
| 77 | s.clearCount = maxCount != 0 |
| 78 | } |
| 79 | |
| 80 | // prepare will prepare and allocate scratch tables used for both compression and decompression. |
| 81 | func (s *fseEncoder) prepare() (*fseEncoder, error) { |
| 82 | if s == nil { |
| 83 | s = &fseEncoder{} |
| 84 | } |
| 85 | s.useRLE = false |
| 86 | if s.clearCount && s.maxCount == 0 { |
| 87 | for i := range s.count { |
| 88 | s.count[i] = 0 |
| 89 | } |
| 90 | s.clearCount = false |
| 91 | } |
| 92 | return s, nil |
| 93 | } |
| 94 | |
| 95 | // allocCtable will allocate tables needed for compression. |
| 96 | // If existing tables a re big enough, they are simply re-used. |
| 97 | func (s *fseEncoder) allocCtable() { |
| 98 | tableSize := 1 << s.actualTableLog |
| 99 | // get tableSymbol that is big enough. |
| 100 | if cap(s.ct.tableSymbol) < tableSize { |
| 101 | s.ct.tableSymbol = make([]byte, tableSize) |
| 102 | } |
| 103 | s.ct.tableSymbol = s.ct.tableSymbol[:tableSize] |
| 104 | |
| 105 | ctSize := tableSize |
| 106 | if cap(s.ct.stateTable) < ctSize { |
| 107 | s.ct.stateTable = make([]uint16, ctSize) |
| 108 | } |
| 109 | s.ct.stateTable = s.ct.stateTable[:ctSize] |
| 110 | |
| 111 | if cap(s.ct.symbolTT) < 256 { |
| 112 | s.ct.symbolTT = make([]symbolTransform, 256) |
| 113 | } |
| 114 | s.ct.symbolTT = s.ct.symbolTT[:256] |
| 115 | } |
| 116 | |
| 117 | // buildCTable will populate the compression table so it is ready to be used. |
| 118 | func (s *fseEncoder) buildCTable() error { |
| 119 | tableSize := uint32(1 << s.actualTableLog) |
| 120 | highThreshold := tableSize - 1 |
| 121 | var cumul [256]int16 |
| 122 | |
| 123 | s.allocCtable() |
| 124 | tableSymbol := s.ct.tableSymbol[:tableSize] |
| 125 | // symbol start positions |
| 126 | { |
| 127 | cumul[0] = 0 |
| 128 | for ui, v := range s.norm[:s.symbolLen-1] { |
| 129 | u := byte(ui) // one less than reference |
| 130 | if v == -1 { |
| 131 | // Low proba symbol |
| 132 | cumul[u+1] = cumul[u] + 1 |
| 133 | tableSymbol[highThreshold] = u |
| 134 | highThreshold-- |
| 135 | } else { |
| 136 | cumul[u+1] = cumul[u] + v |
| 137 | } |
| 138 | } |
| 139 | // Encode last symbol separately to avoid overflowing u |
| 140 | u := int(s.symbolLen - 1) |
| 141 | v := s.norm[s.symbolLen-1] |
| 142 | if v == -1 { |
| 143 | // Low proba symbol |
| 144 | cumul[u+1] = cumul[u] + 1 |
| 145 | tableSymbol[highThreshold] = byte(u) |
| 146 | highThreshold-- |
| 147 | } else { |
| 148 | cumul[u+1] = cumul[u] + v |
| 149 | } |
| 150 | if uint32(cumul[s.symbolLen]) != tableSize { |
| 151 | return fmt.Errorf("internal error: expected cumul[s.symbolLen] (%d) == tableSize (%d)", cumul[s.symbolLen], tableSize) |
| 152 | } |
| 153 | cumul[s.symbolLen] = int16(tableSize) + 1 |
| 154 | } |
| 155 | // Spread symbols |
| 156 | s.zeroBits = false |
| 157 | { |
| 158 | step := tableStep(tableSize) |
| 159 | tableMask := tableSize - 1 |
| 160 | var position uint32 |
| 161 | // if any symbol > largeLimit, we may have 0 bits output. |
| 162 | largeLimit := int16(1 << (s.actualTableLog - 1)) |
| 163 | for ui, v := range s.norm[:s.symbolLen] { |
| 164 | symbol := byte(ui) |
| 165 | if v > largeLimit { |
| 166 | s.zeroBits = true |
| 167 | } |
| 168 | for nbOccurrences := int16(0); nbOccurrences < v; nbOccurrences++ { |
| 169 | tableSymbol[position] = symbol |
| 170 | position = (position + step) & tableMask |
| 171 | for position > highThreshold { |
| 172 | position = (position + step) & tableMask |
| 173 | } /* Low proba area */ |
| 174 | } |
| 175 | } |
| 176 | |
| 177 | // Check if we have gone through all positions |
| 178 | if position != 0 { |
| 179 | return errors.New("position!=0") |
| 180 | } |
| 181 | } |
| 182 | |
| 183 | // Build table |
| 184 | table := s.ct.stateTable |
| 185 | { |
| 186 | tsi := int(tableSize) |
| 187 | for u, v := range tableSymbol { |
| 188 | // TableU16 : sorted by symbol order; gives next state value |
| 189 | table[cumul[v]] = uint16(tsi + u) |
| 190 | cumul[v]++ |
| 191 | } |
| 192 | } |
| 193 | |
| 194 | // Build Symbol Transformation Table |
| 195 | { |
| 196 | total := int16(0) |
| 197 | symbolTT := s.ct.symbolTT[:s.symbolLen] |
| 198 | tableLog := s.actualTableLog |
| 199 | tl := (uint32(tableLog) << 16) - (1 << tableLog) |
| 200 | for i, v := range s.norm[:s.symbolLen] { |
| 201 | switch v { |
| 202 | case 0: |
| 203 | case -1, 1: |
| 204 | symbolTT[i].deltaNbBits = tl |
| 205 | symbolTT[i].deltaFindState = total - 1 |
| 206 | total++ |
| 207 | default: |
| 208 | maxBitsOut := uint32(tableLog) - highBit(uint32(v-1)) |
| 209 | minStatePlus := uint32(v) << maxBitsOut |
| 210 | symbolTT[i].deltaNbBits = (maxBitsOut << 16) - minStatePlus |
| 211 | symbolTT[i].deltaFindState = total - v |
| 212 | total += v |
| 213 | } |
| 214 | } |
| 215 | if total != int16(tableSize) { |
| 216 | return fmt.Errorf("total mismatch %d (got) != %d (want)", total, tableSize) |
| 217 | } |
| 218 | } |
| 219 | return nil |
| 220 | } |
| 221 | |
| 222 | var rtbTable = [...]uint32{0, 473195, 504333, 520860, 550000, 700000, 750000, 830000} |
| 223 | |
| 224 | func (s *fseEncoder) setRLE(val byte) { |
| 225 | s.allocCtable() |
| 226 | s.actualTableLog = 0 |
| 227 | s.ct.stateTable = s.ct.stateTable[:1] |
| 228 | s.ct.symbolTT[val] = symbolTransform{ |
| 229 | deltaFindState: 0, |
| 230 | deltaNbBits: 0, |
| 231 | } |
| 232 | if debug { |
| 233 | println("setRLE: val", val, "symbolTT", s.ct.symbolTT[val]) |
| 234 | } |
| 235 | s.rleVal = val |
| 236 | s.useRLE = true |
| 237 | } |
| 238 | |
| 239 | // setBits will set output bits for the transform. |
| 240 | // if nil is provided, the number of bits is equal to the index. |
| 241 | func (s *fseEncoder) setBits(transform []byte) { |
| 242 | if s.reUsed || s.preDefined { |
| 243 | return |
| 244 | } |
| 245 | if s.useRLE { |
| 246 | if transform == nil { |
| 247 | s.ct.symbolTT[s.rleVal].outBits = s.rleVal |
| 248 | s.maxBits = s.rleVal |
| 249 | return |
| 250 | } |
| 251 | s.maxBits = transform[s.rleVal] |
| 252 | s.ct.symbolTT[s.rleVal].outBits = s.maxBits |
| 253 | return |
| 254 | } |
| 255 | if transform == nil { |
| 256 | for i := range s.ct.symbolTT[:s.symbolLen] { |
| 257 | s.ct.symbolTT[i].outBits = uint8(i) |
| 258 | } |
| 259 | s.maxBits = uint8(s.symbolLen - 1) |
| 260 | return |
| 261 | } |
| 262 | s.maxBits = 0 |
| 263 | for i, v := range transform[:s.symbolLen] { |
| 264 | s.ct.symbolTT[i].outBits = v |
| 265 | if v > s.maxBits { |
| 266 | // We could assume bits always going up, but we play safe. |
| 267 | s.maxBits = v |
| 268 | } |
| 269 | } |
| 270 | } |
| 271 | |
| 272 | // normalizeCount will normalize the count of the symbols so |
| 273 | // the total is equal to the table size. |
| 274 | // If successful, compression tables will also be made ready. |
| 275 | func (s *fseEncoder) normalizeCount(length int) error { |
| 276 | if s.reUsed { |
| 277 | return nil |
| 278 | } |
| 279 | s.optimalTableLog(length) |
| 280 | var ( |
| 281 | tableLog = s.actualTableLog |
| 282 | scale = 62 - uint64(tableLog) |
| 283 | step = (1 << 62) / uint64(length) |
| 284 | vStep = uint64(1) << (scale - 20) |
| 285 | stillToDistribute = int16(1 << tableLog) |
| 286 | largest int |
| 287 | largestP int16 |
| 288 | lowThreshold = (uint32)(length >> tableLog) |
| 289 | ) |
| 290 | if s.maxCount == length { |
| 291 | s.useRLE = true |
| 292 | return nil |
| 293 | } |
| 294 | s.useRLE = false |
| 295 | for i, cnt := range s.count[:s.symbolLen] { |
| 296 | // already handled |
| 297 | // if (count[s] == s.length) return 0; /* rle special case */ |
| 298 | |
| 299 | if cnt == 0 { |
| 300 | s.norm[i] = 0 |
| 301 | continue |
| 302 | } |
| 303 | if cnt <= lowThreshold { |
| 304 | s.norm[i] = -1 |
| 305 | stillToDistribute-- |
| 306 | } else { |
| 307 | proba := (int16)((uint64(cnt) * step) >> scale) |
| 308 | if proba < 8 { |
| 309 | restToBeat := vStep * uint64(rtbTable[proba]) |
| 310 | v := uint64(cnt)*step - (uint64(proba) << scale) |
| 311 | if v > restToBeat { |
| 312 | proba++ |
| 313 | } |
| 314 | } |
| 315 | if proba > largestP { |
| 316 | largestP = proba |
| 317 | largest = i |
| 318 | } |
| 319 | s.norm[i] = proba |
| 320 | stillToDistribute -= proba |
| 321 | } |
| 322 | } |
| 323 | |
| 324 | if -stillToDistribute >= (s.norm[largest] >> 1) { |
| 325 | // corner case, need another normalization method |
| 326 | err := s.normalizeCount2(length) |
| 327 | if err != nil { |
| 328 | return err |
| 329 | } |
| 330 | if debugAsserts { |
| 331 | err = s.validateNorm() |
| 332 | if err != nil { |
| 333 | return err |
| 334 | } |
| 335 | } |
| 336 | return s.buildCTable() |
| 337 | } |
| 338 | s.norm[largest] += stillToDistribute |
| 339 | if debugAsserts { |
| 340 | err := s.validateNorm() |
| 341 | if err != nil { |
| 342 | return err |
| 343 | } |
| 344 | } |
| 345 | return s.buildCTable() |
| 346 | } |
| 347 | |
| 348 | // Secondary normalization method. |
| 349 | // To be used when primary method fails. |
| 350 | func (s *fseEncoder) normalizeCount2(length int) error { |
| 351 | const notYetAssigned = -2 |
| 352 | var ( |
| 353 | distributed uint32 |
| 354 | total = uint32(length) |
| 355 | tableLog = s.actualTableLog |
| 356 | lowThreshold = total >> tableLog |
| 357 | lowOne = (total * 3) >> (tableLog + 1) |
| 358 | ) |
| 359 | for i, cnt := range s.count[:s.symbolLen] { |
| 360 | if cnt == 0 { |
| 361 | s.norm[i] = 0 |
| 362 | continue |
| 363 | } |
| 364 | if cnt <= lowThreshold { |
| 365 | s.norm[i] = -1 |
| 366 | distributed++ |
| 367 | total -= cnt |
| 368 | continue |
| 369 | } |
| 370 | if cnt <= lowOne { |
| 371 | s.norm[i] = 1 |
| 372 | distributed++ |
| 373 | total -= cnt |
| 374 | continue |
| 375 | } |
| 376 | s.norm[i] = notYetAssigned |
| 377 | } |
| 378 | toDistribute := (1 << tableLog) - distributed |
| 379 | |
| 380 | if (total / toDistribute) > lowOne { |
| 381 | // risk of rounding to zero |
| 382 | lowOne = (total * 3) / (toDistribute * 2) |
| 383 | for i, cnt := range s.count[:s.symbolLen] { |
| 384 | if (s.norm[i] == notYetAssigned) && (cnt <= lowOne) { |
| 385 | s.norm[i] = 1 |
| 386 | distributed++ |
| 387 | total -= cnt |
| 388 | continue |
| 389 | } |
| 390 | } |
| 391 | toDistribute = (1 << tableLog) - distributed |
| 392 | } |
| 393 | if distributed == uint32(s.symbolLen)+1 { |
| 394 | // all values are pretty poor; |
| 395 | // probably incompressible data (should have already been detected); |
| 396 | // find max, then give all remaining points to max |
| 397 | var maxV int |
| 398 | var maxC uint32 |
| 399 | for i, cnt := range s.count[:s.symbolLen] { |
| 400 | if cnt > maxC { |
| 401 | maxV = i |
| 402 | maxC = cnt |
| 403 | } |
| 404 | } |
| 405 | s.norm[maxV] += int16(toDistribute) |
| 406 | return nil |
| 407 | } |
| 408 | |
| 409 | if total == 0 { |
| 410 | // all of the symbols were low enough for the lowOne or lowThreshold |
| 411 | for i := uint32(0); toDistribute > 0; i = (i + 1) % (uint32(s.symbolLen)) { |
| 412 | if s.norm[i] > 0 { |
| 413 | toDistribute-- |
| 414 | s.norm[i]++ |
| 415 | } |
| 416 | } |
| 417 | return nil |
| 418 | } |
| 419 | |
| 420 | var ( |
| 421 | vStepLog = 62 - uint64(tableLog) |
| 422 | mid = uint64((1 << (vStepLog - 1)) - 1) |
| 423 | rStep = (((1 << vStepLog) * uint64(toDistribute)) + mid) / uint64(total) // scale on remaining |
| 424 | tmpTotal = mid |
| 425 | ) |
| 426 | for i, cnt := range s.count[:s.symbolLen] { |
| 427 | if s.norm[i] == notYetAssigned { |
| 428 | var ( |
| 429 | end = tmpTotal + uint64(cnt)*rStep |
| 430 | sStart = uint32(tmpTotal >> vStepLog) |
| 431 | sEnd = uint32(end >> vStepLog) |
| 432 | weight = sEnd - sStart |
| 433 | ) |
| 434 | if weight < 1 { |
| 435 | return errors.New("weight < 1") |
| 436 | } |
| 437 | s.norm[i] = int16(weight) |
| 438 | tmpTotal = end |
| 439 | } |
| 440 | } |
| 441 | return nil |
| 442 | } |
| 443 | |
| 444 | // optimalTableLog calculates and sets the optimal tableLog in s.actualTableLog |
| 445 | func (s *fseEncoder) optimalTableLog(length int) { |
| 446 | tableLog := uint8(maxEncTableLog) |
| 447 | minBitsSrc := highBit(uint32(length)) + 1 |
| 448 | minBitsSymbols := highBit(uint32(s.symbolLen-1)) + 2 |
| 449 | minBits := uint8(minBitsSymbols) |
| 450 | if minBitsSrc < minBitsSymbols { |
| 451 | minBits = uint8(minBitsSrc) |
| 452 | } |
| 453 | |
| 454 | maxBitsSrc := uint8(highBit(uint32(length-1))) - 2 |
| 455 | if maxBitsSrc < tableLog { |
| 456 | // Accuracy can be reduced |
| 457 | tableLog = maxBitsSrc |
| 458 | } |
| 459 | if minBits > tableLog { |
| 460 | tableLog = minBits |
| 461 | } |
| 462 | // Need a minimum to safely represent all symbol values |
| 463 | if tableLog < minEncTablelog { |
| 464 | tableLog = minEncTablelog |
| 465 | } |
| 466 | if tableLog > maxEncTableLog { |
| 467 | tableLog = maxEncTableLog |
| 468 | } |
| 469 | s.actualTableLog = tableLog |
| 470 | } |
| 471 | |
| 472 | // validateNorm validates the normalized histogram table. |
| 473 | func (s *fseEncoder) validateNorm() (err error) { |
| 474 | var total int |
| 475 | for _, v := range s.norm[:s.symbolLen] { |
| 476 | if v >= 0 { |
| 477 | total += int(v) |
| 478 | } else { |
| 479 | total -= int(v) |
| 480 | } |
| 481 | } |
| 482 | defer func() { |
| 483 | if err == nil { |
| 484 | return |
| 485 | } |
| 486 | fmt.Printf("selected TableLog: %d, Symbol length: %d\n", s.actualTableLog, s.symbolLen) |
| 487 | for i, v := range s.norm[:s.symbolLen] { |
| 488 | fmt.Printf("%3d: %5d -> %4d \n", i, s.count[i], v) |
| 489 | } |
| 490 | }() |
| 491 | if total != (1 << s.actualTableLog) { |
| 492 | return fmt.Errorf("warning: Total == %d != %d", total, 1<<s.actualTableLog) |
| 493 | } |
| 494 | for i, v := range s.count[s.symbolLen:] { |
| 495 | if v != 0 { |
| 496 | return fmt.Errorf("warning: Found symbol out of range, %d after cut", i) |
| 497 | } |
| 498 | } |
| 499 | return nil |
| 500 | } |
| 501 | |
| 502 | // writeCount will write the normalized histogram count to header. |
| 503 | // This is read back by readNCount. |
| 504 | func (s *fseEncoder) writeCount(out []byte) ([]byte, error) { |
| 505 | if s.useRLE { |
| 506 | return append(out, s.rleVal), nil |
| 507 | } |
| 508 | if s.preDefined || s.reUsed { |
| 509 | // Never write predefined. |
| 510 | return out, nil |
| 511 | } |
| 512 | |
| 513 | var ( |
| 514 | tableLog = s.actualTableLog |
| 515 | tableSize = 1 << tableLog |
| 516 | previous0 bool |
| 517 | charnum uint16 |
| 518 | |
| 519 | // maximum header size plus 2 extra bytes for final output if bitCount == 0. |
| 520 | maxHeaderSize = ((int(s.symbolLen) * int(tableLog)) >> 3) + 3 + 2 |
| 521 | |
| 522 | // Write Table Size |
| 523 | bitStream = uint32(tableLog - minEncTablelog) |
| 524 | bitCount = uint(4) |
| 525 | remaining = int16(tableSize + 1) /* +1 for extra accuracy */ |
| 526 | threshold = int16(tableSize) |
| 527 | nbBits = uint(tableLog + 1) |
| 528 | outP = len(out) |
| 529 | ) |
| 530 | if cap(out) < outP+maxHeaderSize { |
| 531 | out = append(out, make([]byte, maxHeaderSize*3)...) |
| 532 | out = out[:len(out)-maxHeaderSize*3] |
| 533 | } |
| 534 | out = out[:outP+maxHeaderSize] |
| 535 | |
| 536 | // stops at 1 |
| 537 | for remaining > 1 { |
| 538 | if previous0 { |
| 539 | start := charnum |
| 540 | for s.norm[charnum] == 0 { |
| 541 | charnum++ |
| 542 | } |
| 543 | for charnum >= start+24 { |
| 544 | start += 24 |
| 545 | bitStream += uint32(0xFFFF) << bitCount |
| 546 | out[outP] = byte(bitStream) |
| 547 | out[outP+1] = byte(bitStream >> 8) |
| 548 | outP += 2 |
| 549 | bitStream >>= 16 |
| 550 | } |
| 551 | for charnum >= start+3 { |
| 552 | start += 3 |
| 553 | bitStream += 3 << bitCount |
| 554 | bitCount += 2 |
| 555 | } |
| 556 | bitStream += uint32(charnum-start) << bitCount |
| 557 | bitCount += 2 |
| 558 | if bitCount > 16 { |
| 559 | out[outP] = byte(bitStream) |
| 560 | out[outP+1] = byte(bitStream >> 8) |
| 561 | outP += 2 |
| 562 | bitStream >>= 16 |
| 563 | bitCount -= 16 |
| 564 | } |
| 565 | } |
| 566 | |
| 567 | count := s.norm[charnum] |
| 568 | charnum++ |
| 569 | max := (2*threshold - 1) - remaining |
| 570 | if count < 0 { |
| 571 | remaining += count |
| 572 | } else { |
| 573 | remaining -= count |
| 574 | } |
| 575 | count++ // +1 for extra accuracy |
| 576 | if count >= threshold { |
| 577 | count += max // [0..max[ [max..threshold[ (...) [threshold+max 2*threshold[ |
| 578 | } |
| 579 | bitStream += uint32(count) << bitCount |
| 580 | bitCount += nbBits |
| 581 | if count < max { |
| 582 | bitCount-- |
| 583 | } |
| 584 | |
| 585 | previous0 = count == 1 |
| 586 | if remaining < 1 { |
| 587 | return nil, errors.New("internal error: remaining < 1") |
| 588 | } |
| 589 | for remaining < threshold { |
| 590 | nbBits-- |
| 591 | threshold >>= 1 |
| 592 | } |
| 593 | |
| 594 | if bitCount > 16 { |
| 595 | out[outP] = byte(bitStream) |
| 596 | out[outP+1] = byte(bitStream >> 8) |
| 597 | outP += 2 |
| 598 | bitStream >>= 16 |
| 599 | bitCount -= 16 |
| 600 | } |
| 601 | } |
| 602 | |
| 603 | if outP+2 > len(out) { |
| 604 | return nil, fmt.Errorf("internal error: %d > %d, maxheader: %d, sl: %d, tl: %d, normcount: %v", outP+2, len(out), maxHeaderSize, s.symbolLen, int(tableLog), s.norm[:s.symbolLen]) |
| 605 | } |
| 606 | out[outP] = byte(bitStream) |
| 607 | out[outP+1] = byte(bitStream >> 8) |
| 608 | outP += int((bitCount + 7) / 8) |
| 609 | |
| 610 | if charnum > s.symbolLen { |
| 611 | return nil, errors.New("internal error: charnum > s.symbolLen") |
| 612 | } |
| 613 | return out[:outP], nil |
| 614 | } |
| 615 | |
| 616 | // Approximate symbol cost, as fractional value, using fixed-point format (accuracyLog fractional bits) |
| 617 | // note 1 : assume symbolValue is valid (<= maxSymbolValue) |
| 618 | // note 2 : if freq[symbolValue]==0, @return a fake cost of tableLog+1 bits * |
| 619 | func (s *fseEncoder) bitCost(symbolValue uint8, accuracyLog uint32) uint32 { |
| 620 | minNbBits := s.ct.symbolTT[symbolValue].deltaNbBits >> 16 |
| 621 | threshold := (minNbBits + 1) << 16 |
| 622 | if debugAsserts { |
| 623 | if !(s.actualTableLog < 16) { |
| 624 | panic("!s.actualTableLog < 16") |
| 625 | } |
| 626 | // ensure enough room for renormalization double shift |
| 627 | if !(uint8(accuracyLog) < 31-s.actualTableLog) { |
| 628 | panic("!uint8(accuracyLog) < 31-s.actualTableLog") |
| 629 | } |
| 630 | } |
| 631 | tableSize := uint32(1) << s.actualTableLog |
| 632 | deltaFromThreshold := threshold - (s.ct.symbolTT[symbolValue].deltaNbBits + tableSize) |
| 633 | // linear interpolation (very approximate) |
| 634 | normalizedDeltaFromThreshold := (deltaFromThreshold << accuracyLog) >> s.actualTableLog |
| 635 | bitMultiplier := uint32(1) << accuracyLog |
| 636 | if debugAsserts { |
| 637 | if s.ct.symbolTT[symbolValue].deltaNbBits+tableSize > threshold { |
| 638 | panic("s.ct.symbolTT[symbolValue].deltaNbBits+tableSize > threshold") |
| 639 | } |
| 640 | if normalizedDeltaFromThreshold > bitMultiplier { |
| 641 | panic("normalizedDeltaFromThreshold > bitMultiplier") |
| 642 | } |
| 643 | } |
| 644 | return (minNbBits+1)*bitMultiplier - normalizedDeltaFromThreshold |
| 645 | } |
| 646 | |
| 647 | // Returns the cost in bits of encoding the distribution in count using ctable. |
| 648 | // Histogram should only be up to the last non-zero symbol. |
| 649 | // Returns an -1 if ctable cannot represent all the symbols in count. |
| 650 | func (s *fseEncoder) approxSize(hist []uint32) uint32 { |
| 651 | if int(s.symbolLen) < len(hist) { |
| 652 | // More symbols than we have. |
| 653 | return math.MaxUint32 |
| 654 | } |
| 655 | if s.useRLE { |
| 656 | // We will never reuse RLE encoders. |
| 657 | return math.MaxUint32 |
| 658 | } |
| 659 | const kAccuracyLog = 8 |
| 660 | badCost := (uint32(s.actualTableLog) + 1) << kAccuracyLog |
| 661 | var cost uint32 |
| 662 | for i, v := range hist { |
| 663 | if v == 0 { |
| 664 | continue |
| 665 | } |
| 666 | if s.norm[i] == 0 { |
| 667 | return math.MaxUint32 |
| 668 | } |
| 669 | bitCost := s.bitCost(uint8(i), kAccuracyLog) |
| 670 | if bitCost > badCost { |
| 671 | return math.MaxUint32 |
| 672 | } |
| 673 | cost += v * bitCost |
| 674 | } |
| 675 | return cost >> kAccuracyLog |
| 676 | } |
| 677 | |
| 678 | // maxHeaderSize returns the maximum header size in bits. |
| 679 | // This is not exact size, but we want a penalty for new tables anyway. |
| 680 | func (s *fseEncoder) maxHeaderSize() uint32 { |
| 681 | if s.preDefined { |
| 682 | return 0 |
| 683 | } |
| 684 | if s.useRLE { |
| 685 | return 8 |
| 686 | } |
| 687 | return (((uint32(s.symbolLen) * uint32(s.actualTableLog)) >> 3) + 3) * 8 |
| 688 | } |
| 689 | |
| 690 | // cState contains the compression state of a stream. |
| 691 | type cState struct { |
| 692 | bw *bitWriter |
| 693 | stateTable []uint16 |
| 694 | state uint16 |
| 695 | } |
| 696 | |
| 697 | // init will initialize the compression state to the first symbol of the stream. |
| 698 | func (c *cState) init(bw *bitWriter, ct *cTable, first symbolTransform) { |
| 699 | c.bw = bw |
| 700 | c.stateTable = ct.stateTable |
| 701 | if len(c.stateTable) == 1 { |
| 702 | // RLE |
| 703 | c.stateTable[0] = uint16(0) |
| 704 | c.state = 0 |
| 705 | return |
| 706 | } |
| 707 | nbBitsOut := (first.deltaNbBits + (1 << 15)) >> 16 |
| 708 | im := int32((nbBitsOut << 16) - first.deltaNbBits) |
| 709 | lu := (im >> nbBitsOut) + int32(first.deltaFindState) |
| 710 | c.state = c.stateTable[lu] |
| 711 | } |
| 712 | |
| 713 | // encode the output symbol provided and write it to the bitstream. |
| 714 | func (c *cState) encode(symbolTT symbolTransform) { |
| 715 | nbBitsOut := (uint32(c.state) + symbolTT.deltaNbBits) >> 16 |
| 716 | dstState := int32(c.state>>(nbBitsOut&15)) + int32(symbolTT.deltaFindState) |
| 717 | c.bw.addBits16NC(c.state, uint8(nbBitsOut)) |
| 718 | c.state = c.stateTable[dstState] |
| 719 | } |
| 720 | |
| 721 | // flush will write the tablelog to the output and flush the remaining full bytes. |
| 722 | func (c *cState) flush(tableLog uint8) { |
| 723 | c.bw.flush32() |
| 724 | c.bw.addBits16NC(c.state, tableLog) |
| 725 | } |