blob: 41b91fdfba33e364279f9640ad8ce381c368cdba [file] [log] [blame]
khenaidooac637102019-01-14 15:44:34 -05001// Copyright 2009 The Go Authors. All rights reserved.
2// Use of this source code is governed by a BSD-style
3// license that can be found in the LICENSE file.
4
5// Linux system calls.
6// This file is compiled as ordinary Go code,
7// but it is also input to mksyscall,
8// which parses the //sys lines and generates system call stubs.
9// Note that sometimes we use a lowercase //sys name and
10// wrap it in our own nicer implementation.
11
12package unix
13
14import (
15 "encoding/binary"
Stephane Barbarie260a5632019-02-26 16:12:49 -050016 "runtime"
khenaidooac637102019-01-14 15:44:34 -050017 "syscall"
18 "unsafe"
19)
20
21/*
22 * Wrapped
23 */
24
25func Access(path string, mode uint32) (err error) {
26 return Faccessat(AT_FDCWD, path, mode, 0)
27}
28
29func Chmod(path string, mode uint32) (err error) {
30 return Fchmodat(AT_FDCWD, path, mode, 0)
31}
32
33func Chown(path string, uid int, gid int) (err error) {
34 return Fchownat(AT_FDCWD, path, uid, gid, 0)
35}
36
37func Creat(path string, mode uint32) (fd int, err error) {
38 return Open(path, O_CREAT|O_WRONLY|O_TRUNC, mode)
39}
40
William Kurkiandaa6bb22019-03-07 12:26:28 -050041//sys FanotifyInit(flags uint, event_f_flags uint) (fd int, err error)
42//sys fanotifyMark(fd int, flags uint, mask uint64, dirFd int, pathname *byte) (err error)
43
44func FanotifyMark(fd int, flags uint, mask uint64, dirFd int, pathname string) (err error) {
45 if pathname == "" {
46 return fanotifyMark(fd, flags, mask, dirFd, nil)
47 }
48 p, err := BytePtrFromString(pathname)
49 if err != nil {
50 return err
51 }
52 return fanotifyMark(fd, flags, mask, dirFd, p)
53}
54
khenaidooac637102019-01-14 15:44:34 -050055//sys fchmodat(dirfd int, path string, mode uint32) (err error)
56
57func Fchmodat(dirfd int, path string, mode uint32, flags int) (err error) {
58 // Linux fchmodat doesn't support the flags parameter. Mimick glibc's behavior
59 // and check the flags. Otherwise the mode would be applied to the symlink
60 // destination which is not what the user expects.
61 if flags&^AT_SYMLINK_NOFOLLOW != 0 {
62 return EINVAL
63 } else if flags&AT_SYMLINK_NOFOLLOW != 0 {
64 return EOPNOTSUPP
65 }
66 return fchmodat(dirfd, path, mode)
67}
68
69//sys ioctl(fd int, req uint, arg uintptr) (err error)
70
71// ioctl itself should not be exposed directly, but additional get/set
72// functions for specific types are permissible.
khenaidood948f772021-08-11 17:49:24 -040073// These are defined in ioctl.go and ioctl_linux.go.
Andrea Campanella3614a922021-02-25 12:40:42 +010074
khenaidooac637102019-01-14 15:44:34 -050075//sys Linkat(olddirfd int, oldpath string, newdirfd int, newpath string, flags int) (err error)
76
77func Link(oldpath string, newpath string) (err error) {
78 return Linkat(AT_FDCWD, oldpath, AT_FDCWD, newpath, 0)
79}
80
81func Mkdir(path string, mode uint32) (err error) {
82 return Mkdirat(AT_FDCWD, path, mode)
83}
84
85func Mknod(path string, mode uint32, dev int) (err error) {
86 return Mknodat(AT_FDCWD, path, mode, dev)
87}
88
89func Open(path string, mode int, perm uint32) (fd int, err error) {
90 return openat(AT_FDCWD, path, mode|O_LARGEFILE, perm)
91}
92
93//sys openat(dirfd int, path string, flags int, mode uint32) (fd int, err error)
94
95func Openat(dirfd int, path string, flags int, mode uint32) (fd int, err error) {
96 return openat(dirfd, path, flags|O_LARGEFILE, mode)
97}
98
Andrea Campanella3614a922021-02-25 12:40:42 +010099//sys openat2(dirfd int, path string, open_how *OpenHow, size int) (fd int, err error)
100
101func Openat2(dirfd int, path string, how *OpenHow) (fd int, err error) {
102 return openat2(dirfd, path, how, SizeofOpenHow)
103}
104
khenaidooac637102019-01-14 15:44:34 -0500105//sys ppoll(fds *PollFd, nfds int, timeout *Timespec, sigmask *Sigset_t) (n int, err error)
106
107func Ppoll(fds []PollFd, timeout *Timespec, sigmask *Sigset_t) (n int, err error) {
108 if len(fds) == 0 {
109 return ppoll(nil, 0, timeout, sigmask)
110 }
111 return ppoll(&fds[0], len(fds), timeout, sigmask)
112}
113
114//sys Readlinkat(dirfd int, path string, buf []byte) (n int, err error)
115
116func Readlink(path string, buf []byte) (n int, err error) {
117 return Readlinkat(AT_FDCWD, path, buf)
118}
119
120func Rename(oldpath string, newpath string) (err error) {
121 return Renameat(AT_FDCWD, oldpath, AT_FDCWD, newpath)
122}
123
124func Rmdir(path string) error {
125 return Unlinkat(AT_FDCWD, path, AT_REMOVEDIR)
126}
127
128//sys Symlinkat(oldpath string, newdirfd int, newpath string) (err error)
129
130func Symlink(oldpath string, newpath string) (err error) {
131 return Symlinkat(oldpath, AT_FDCWD, newpath)
132}
133
134func Unlink(path string) error {
135 return Unlinkat(AT_FDCWD, path, 0)
136}
137
138//sys Unlinkat(dirfd int, path string, flags int) (err error)
139
140func Utimes(path string, tv []Timeval) error {
141 if tv == nil {
142 err := utimensat(AT_FDCWD, path, nil, 0)
143 if err != ENOSYS {
144 return err
145 }
146 return utimes(path, nil)
147 }
148 if len(tv) != 2 {
149 return EINVAL
150 }
151 var ts [2]Timespec
152 ts[0] = NsecToTimespec(TimevalToNsec(tv[0]))
153 ts[1] = NsecToTimespec(TimevalToNsec(tv[1]))
154 err := utimensat(AT_FDCWD, path, (*[2]Timespec)(unsafe.Pointer(&ts[0])), 0)
155 if err != ENOSYS {
156 return err
157 }
158 return utimes(path, (*[2]Timeval)(unsafe.Pointer(&tv[0])))
159}
160
161//sys utimensat(dirfd int, path string, times *[2]Timespec, flags int) (err error)
162
163func UtimesNano(path string, ts []Timespec) error {
164 if ts == nil {
165 err := utimensat(AT_FDCWD, path, nil, 0)
166 if err != ENOSYS {
167 return err
168 }
169 return utimes(path, nil)
170 }
171 if len(ts) != 2 {
172 return EINVAL
173 }
174 err := utimensat(AT_FDCWD, path, (*[2]Timespec)(unsafe.Pointer(&ts[0])), 0)
175 if err != ENOSYS {
176 return err
177 }
178 // If the utimensat syscall isn't available (utimensat was added to Linux
179 // in 2.6.22, Released, 8 July 2007) then fall back to utimes
180 var tv [2]Timeval
181 for i := 0; i < 2; i++ {
182 tv[i] = NsecToTimeval(TimespecToNsec(ts[i]))
183 }
184 return utimes(path, (*[2]Timeval)(unsafe.Pointer(&tv[0])))
185}
186
187func UtimesNanoAt(dirfd int, path string, ts []Timespec, flags int) error {
188 if ts == nil {
189 return utimensat(dirfd, path, nil, flags)
190 }
191 if len(ts) != 2 {
192 return EINVAL
193 }
194 return utimensat(dirfd, path, (*[2]Timespec)(unsafe.Pointer(&ts[0])), flags)
195}
196
197func Futimesat(dirfd int, path string, tv []Timeval) error {
198 if tv == nil {
199 return futimesat(dirfd, path, nil)
200 }
201 if len(tv) != 2 {
202 return EINVAL
203 }
204 return futimesat(dirfd, path, (*[2]Timeval)(unsafe.Pointer(&tv[0])))
205}
206
207func Futimes(fd int, tv []Timeval) (err error) {
208 // Believe it or not, this is the best we can do on Linux
209 // (and is what glibc does).
210 return Utimes("/proc/self/fd/"+itoa(fd), tv)
211}
212
213const ImplementsGetwd = true
214
215//sys Getcwd(buf []byte) (n int, err error)
216
217func Getwd() (wd string, err error) {
218 var buf [PathMax]byte
219 n, err := Getcwd(buf[0:])
220 if err != nil {
221 return "", err
222 }
223 // Getcwd returns the number of bytes written to buf, including the NUL.
224 if n < 1 || n > len(buf) || buf[n-1] != 0 {
225 return "", EINVAL
226 }
227 return string(buf[0 : n-1]), nil
228}
229
230func Getgroups() (gids []int, err error) {
231 n, err := getgroups(0, nil)
232 if err != nil {
233 return nil, err
234 }
235 if n == 0 {
236 return nil, nil
237 }
238
239 // Sanity check group count. Max is 1<<16 on Linux.
240 if n < 0 || n > 1<<20 {
241 return nil, EINVAL
242 }
243
244 a := make([]_Gid_t, n)
245 n, err = getgroups(n, &a[0])
246 if err != nil {
247 return nil, err
248 }
249 gids = make([]int, n)
250 for i, v := range a[0:n] {
251 gids[i] = int(v)
252 }
253 return
254}
255
256func Setgroups(gids []int) (err error) {
257 if len(gids) == 0 {
258 return setgroups(0, nil)
259 }
260
261 a := make([]_Gid_t, len(gids))
262 for i, v := range gids {
263 a[i] = _Gid_t(v)
264 }
265 return setgroups(len(a), &a[0])
266}
267
268type WaitStatus uint32
269
270// Wait status is 7 bits at bottom, either 0 (exited),
271// 0x7F (stopped), or a signal number that caused an exit.
272// The 0x80 bit is whether there was a core dump.
273// An extra number (exit code, signal causing a stop)
274// is in the high bits. At least that's the idea.
275// There are various irregularities. For example, the
276// "continued" status is 0xFFFF, distinguishing itself
277// from stopped via the core dump bit.
278
279const (
280 mask = 0x7F
281 core = 0x80
282 exited = 0x00
283 stopped = 0x7F
284 shift = 8
285)
286
287func (w WaitStatus) Exited() bool { return w&mask == exited }
288
289func (w WaitStatus) Signaled() bool { return w&mask != stopped && w&mask != exited }
290
291func (w WaitStatus) Stopped() bool { return w&0xFF == stopped }
292
293func (w WaitStatus) Continued() bool { return w == 0xFFFF }
294
295func (w WaitStatus) CoreDump() bool { return w.Signaled() && w&core != 0 }
296
297func (w WaitStatus) ExitStatus() int {
298 if !w.Exited() {
299 return -1
300 }
301 return int(w>>shift) & 0xFF
302}
303
304func (w WaitStatus) Signal() syscall.Signal {
305 if !w.Signaled() {
306 return -1
307 }
308 return syscall.Signal(w & mask)
309}
310
311func (w WaitStatus) StopSignal() syscall.Signal {
312 if !w.Stopped() {
313 return -1
314 }
315 return syscall.Signal(w>>shift) & 0xFF
316}
317
318func (w WaitStatus) TrapCause() int {
319 if w.StopSignal() != SIGTRAP {
320 return -1
321 }
322 return int(w>>shift) >> 8
323}
324
325//sys wait4(pid int, wstatus *_C_int, options int, rusage *Rusage) (wpid int, err error)
326
327func Wait4(pid int, wstatus *WaitStatus, options int, rusage *Rusage) (wpid int, err error) {
328 var status _C_int
329 wpid, err = wait4(pid, &status, options, rusage)
330 if wstatus != nil {
331 *wstatus = WaitStatus(status)
332 }
333 return
334}
335
336func Mkfifo(path string, mode uint32) error {
337 return Mknod(path, mode|S_IFIFO, 0)
338}
339
340func Mkfifoat(dirfd int, path string, mode uint32) error {
341 return Mknodat(dirfd, path, mode|S_IFIFO, 0)
342}
343
344func (sa *SockaddrInet4) sockaddr() (unsafe.Pointer, _Socklen, error) {
345 if sa.Port < 0 || sa.Port > 0xFFFF {
346 return nil, 0, EINVAL
347 }
348 sa.raw.Family = AF_INET
349 p := (*[2]byte)(unsafe.Pointer(&sa.raw.Port))
350 p[0] = byte(sa.Port >> 8)
351 p[1] = byte(sa.Port)
352 for i := 0; i < len(sa.Addr); i++ {
353 sa.raw.Addr[i] = sa.Addr[i]
354 }
355 return unsafe.Pointer(&sa.raw), SizeofSockaddrInet4, nil
356}
357
358func (sa *SockaddrInet6) sockaddr() (unsafe.Pointer, _Socklen, error) {
359 if sa.Port < 0 || sa.Port > 0xFFFF {
360 return nil, 0, EINVAL
361 }
362 sa.raw.Family = AF_INET6
363 p := (*[2]byte)(unsafe.Pointer(&sa.raw.Port))
364 p[0] = byte(sa.Port >> 8)
365 p[1] = byte(sa.Port)
366 sa.raw.Scope_id = sa.ZoneId
367 for i := 0; i < len(sa.Addr); i++ {
368 sa.raw.Addr[i] = sa.Addr[i]
369 }
370 return unsafe.Pointer(&sa.raw), SizeofSockaddrInet6, nil
371}
372
373func (sa *SockaddrUnix) sockaddr() (unsafe.Pointer, _Socklen, error) {
374 name := sa.Name
375 n := len(name)
376 if n >= len(sa.raw.Path) {
377 return nil, 0, EINVAL
378 }
379 sa.raw.Family = AF_UNIX
380 for i := 0; i < n; i++ {
381 sa.raw.Path[i] = int8(name[i])
382 }
383 // length is family (uint16), name, NUL.
384 sl := _Socklen(2)
385 if n > 0 {
386 sl += _Socklen(n) + 1
387 }
388 if sa.raw.Path[0] == '@' {
389 sa.raw.Path[0] = 0
390 // Don't count trailing NUL for abstract address.
391 sl--
392 }
393
394 return unsafe.Pointer(&sa.raw), sl, nil
395}
396
397// SockaddrLinklayer implements the Sockaddr interface for AF_PACKET type sockets.
398type SockaddrLinklayer struct {
399 Protocol uint16
400 Ifindex int
401 Hatype uint16
402 Pkttype uint8
403 Halen uint8
404 Addr [8]byte
405 raw RawSockaddrLinklayer
406}
407
408func (sa *SockaddrLinklayer) sockaddr() (unsafe.Pointer, _Socklen, error) {
409 if sa.Ifindex < 0 || sa.Ifindex > 0x7fffffff {
410 return nil, 0, EINVAL
411 }
412 sa.raw.Family = AF_PACKET
413 sa.raw.Protocol = sa.Protocol
414 sa.raw.Ifindex = int32(sa.Ifindex)
415 sa.raw.Hatype = sa.Hatype
416 sa.raw.Pkttype = sa.Pkttype
417 sa.raw.Halen = sa.Halen
418 for i := 0; i < len(sa.Addr); i++ {
419 sa.raw.Addr[i] = sa.Addr[i]
420 }
421 return unsafe.Pointer(&sa.raw), SizeofSockaddrLinklayer, nil
422}
423
424// SockaddrNetlink implements the Sockaddr interface for AF_NETLINK type sockets.
425type SockaddrNetlink struct {
426 Family uint16
427 Pad uint16
428 Pid uint32
429 Groups uint32
430 raw RawSockaddrNetlink
431}
432
433func (sa *SockaddrNetlink) sockaddr() (unsafe.Pointer, _Socklen, error) {
434 sa.raw.Family = AF_NETLINK
435 sa.raw.Pad = sa.Pad
436 sa.raw.Pid = sa.Pid
437 sa.raw.Groups = sa.Groups
438 return unsafe.Pointer(&sa.raw), SizeofSockaddrNetlink, nil
439}
440
441// SockaddrHCI implements the Sockaddr interface for AF_BLUETOOTH type sockets
442// using the HCI protocol.
443type SockaddrHCI struct {
444 Dev uint16
445 Channel uint16
446 raw RawSockaddrHCI
447}
448
449func (sa *SockaddrHCI) sockaddr() (unsafe.Pointer, _Socklen, error) {
450 sa.raw.Family = AF_BLUETOOTH
451 sa.raw.Dev = sa.Dev
452 sa.raw.Channel = sa.Channel
453 return unsafe.Pointer(&sa.raw), SizeofSockaddrHCI, nil
454}
455
456// SockaddrL2 implements the Sockaddr interface for AF_BLUETOOTH type sockets
457// using the L2CAP protocol.
458type SockaddrL2 struct {
459 PSM uint16
460 CID uint16
461 Addr [6]uint8
462 AddrType uint8
463 raw RawSockaddrL2
464}
465
466func (sa *SockaddrL2) sockaddr() (unsafe.Pointer, _Socklen, error) {
467 sa.raw.Family = AF_BLUETOOTH
468 psm := (*[2]byte)(unsafe.Pointer(&sa.raw.Psm))
469 psm[0] = byte(sa.PSM)
470 psm[1] = byte(sa.PSM >> 8)
471 for i := 0; i < len(sa.Addr); i++ {
472 sa.raw.Bdaddr[i] = sa.Addr[len(sa.Addr)-1-i]
473 }
474 cid := (*[2]byte)(unsafe.Pointer(&sa.raw.Cid))
475 cid[0] = byte(sa.CID)
476 cid[1] = byte(sa.CID >> 8)
477 sa.raw.Bdaddr_type = sa.AddrType
478 return unsafe.Pointer(&sa.raw), SizeofSockaddrL2, nil
479}
480
481// SockaddrRFCOMM implements the Sockaddr interface for AF_BLUETOOTH type sockets
482// using the RFCOMM protocol.
483//
484// Server example:
485//
486// fd, _ := Socket(AF_BLUETOOTH, SOCK_STREAM, BTPROTO_RFCOMM)
487// _ = unix.Bind(fd, &unix.SockaddrRFCOMM{
488// Channel: 1,
489// Addr: [6]uint8{0, 0, 0, 0, 0, 0}, // BDADDR_ANY or 00:00:00:00:00:00
490// })
491// _ = Listen(fd, 1)
492// nfd, sa, _ := Accept(fd)
493// fmt.Printf("conn addr=%v fd=%d", sa.(*unix.SockaddrRFCOMM).Addr, nfd)
494// Read(nfd, buf)
495//
496// Client example:
497//
498// fd, _ := Socket(AF_BLUETOOTH, SOCK_STREAM, BTPROTO_RFCOMM)
499// _ = Connect(fd, &SockaddrRFCOMM{
500// Channel: 1,
501// Addr: [6]byte{0x11, 0x22, 0x33, 0xaa, 0xbb, 0xcc}, // CC:BB:AA:33:22:11
502// })
503// Write(fd, []byte(`hello`))
504type SockaddrRFCOMM struct {
505 // Addr represents a bluetooth address, byte ordering is little-endian.
506 Addr [6]uint8
507
508 // Channel is a designated bluetooth channel, only 1-30 are available for use.
509 // Since Linux 2.6.7 and further zero value is the first available channel.
510 Channel uint8
511
512 raw RawSockaddrRFCOMM
513}
514
515func (sa *SockaddrRFCOMM) sockaddr() (unsafe.Pointer, _Socklen, error) {
516 sa.raw.Family = AF_BLUETOOTH
517 sa.raw.Channel = sa.Channel
518 sa.raw.Bdaddr = sa.Addr
519 return unsafe.Pointer(&sa.raw), SizeofSockaddrRFCOMM, nil
520}
521
522// SockaddrCAN implements the Sockaddr interface for AF_CAN type sockets.
523// The RxID and TxID fields are used for transport protocol addressing in
524// (CAN_TP16, CAN_TP20, CAN_MCNET, and CAN_ISOTP), they can be left with
525// zero values for CAN_RAW and CAN_BCM sockets as they have no meaning.
526//
527// The SockaddrCAN struct must be bound to the socket file descriptor
528// using Bind before the CAN socket can be used.
529//
530// // Read one raw CAN frame
531// fd, _ := Socket(AF_CAN, SOCK_RAW, CAN_RAW)
532// addr := &SockaddrCAN{Ifindex: index}
533// Bind(fd, addr)
534// frame := make([]byte, 16)
535// Read(fd, frame)
536//
537// The full SocketCAN documentation can be found in the linux kernel
538// archives at: https://www.kernel.org/doc/Documentation/networking/can.txt
539type SockaddrCAN struct {
540 Ifindex int
541 RxID uint32
542 TxID uint32
543 raw RawSockaddrCAN
544}
545
546func (sa *SockaddrCAN) sockaddr() (unsafe.Pointer, _Socklen, error) {
547 if sa.Ifindex < 0 || sa.Ifindex > 0x7fffffff {
548 return nil, 0, EINVAL
549 }
550 sa.raw.Family = AF_CAN
551 sa.raw.Ifindex = int32(sa.Ifindex)
552 rx := (*[4]byte)(unsafe.Pointer(&sa.RxID))
553 for i := 0; i < 4; i++ {
554 sa.raw.Addr[i] = rx[i]
555 }
556 tx := (*[4]byte)(unsafe.Pointer(&sa.TxID))
557 for i := 0; i < 4; i++ {
558 sa.raw.Addr[i+4] = tx[i]
559 }
560 return unsafe.Pointer(&sa.raw), SizeofSockaddrCAN, nil
561}
562
khenaidood948f772021-08-11 17:49:24 -0400563// SockaddrCANJ1939 implements the Sockaddr interface for AF_CAN using J1939
564// protocol (https://en.wikipedia.org/wiki/SAE_J1939). For more information
565// on the purposes of the fields, check the official linux kernel documentation
566// available here: https://www.kernel.org/doc/Documentation/networking/j1939.rst
567type SockaddrCANJ1939 struct {
568 Ifindex int
569 Name uint64
570 PGN uint32
571 Addr uint8
572 raw RawSockaddrCAN
573}
574
575func (sa *SockaddrCANJ1939) sockaddr() (unsafe.Pointer, _Socklen, error) {
576 if sa.Ifindex < 0 || sa.Ifindex > 0x7fffffff {
577 return nil, 0, EINVAL
578 }
579 sa.raw.Family = AF_CAN
580 sa.raw.Ifindex = int32(sa.Ifindex)
581 n := (*[8]byte)(unsafe.Pointer(&sa.Name))
582 for i := 0; i < 8; i++ {
583 sa.raw.Addr[i] = n[i]
584 }
585 p := (*[4]byte)(unsafe.Pointer(&sa.PGN))
586 for i := 0; i < 4; i++ {
587 sa.raw.Addr[i+8] = p[i]
588 }
589 sa.raw.Addr[12] = sa.Addr
590 return unsafe.Pointer(&sa.raw), SizeofSockaddrCAN, nil
591}
592
khenaidooac637102019-01-14 15:44:34 -0500593// SockaddrALG implements the Sockaddr interface for AF_ALG type sockets.
594// SockaddrALG enables userspace access to the Linux kernel's cryptography
595// subsystem. The Type and Name fields specify which type of hash or cipher
596// should be used with a given socket.
597//
598// To create a file descriptor that provides access to a hash or cipher, both
599// Bind and Accept must be used. Once the setup process is complete, input
600// data can be written to the socket, processed by the kernel, and then read
601// back as hash output or ciphertext.
602//
603// Here is an example of using an AF_ALG socket with SHA1 hashing.
604// The initial socket setup process is as follows:
605//
606// // Open a socket to perform SHA1 hashing.
607// fd, _ := unix.Socket(unix.AF_ALG, unix.SOCK_SEQPACKET, 0)
608// addr := &unix.SockaddrALG{Type: "hash", Name: "sha1"}
609// unix.Bind(fd, addr)
610// // Note: unix.Accept does not work at this time; must invoke accept()
611// // manually using unix.Syscall.
612// hashfd, _, _ := unix.Syscall(unix.SYS_ACCEPT, uintptr(fd), 0, 0)
613//
614// Once a file descriptor has been returned from Accept, it may be used to
615// perform SHA1 hashing. The descriptor is not safe for concurrent use, but
616// may be re-used repeatedly with subsequent Write and Read operations.
617//
618// When hashing a small byte slice or string, a single Write and Read may
619// be used:
620//
621// // Assume hashfd is already configured using the setup process.
622// hash := os.NewFile(hashfd, "sha1")
623// // Hash an input string and read the results. Each Write discards
624// // previous hash state. Read always reads the current state.
625// b := make([]byte, 20)
626// for i := 0; i < 2; i++ {
627// io.WriteString(hash, "Hello, world.")
628// hash.Read(b)
629// fmt.Println(hex.EncodeToString(b))
630// }
631// // Output:
632// // 2ae01472317d1935a84797ec1983ae243fc6aa28
633// // 2ae01472317d1935a84797ec1983ae243fc6aa28
634//
635// For hashing larger byte slices, or byte streams such as those read from
636// a file or socket, use Sendto with MSG_MORE to instruct the kernel to update
637// the hash digest instead of creating a new one for a given chunk and finalizing it.
638//
639// // Assume hashfd and addr are already configured using the setup process.
640// hash := os.NewFile(hashfd, "sha1")
641// // Hash the contents of a file.
642// f, _ := os.Open("/tmp/linux-4.10-rc7.tar.xz")
643// b := make([]byte, 4096)
644// for {
645// n, err := f.Read(b)
646// if err == io.EOF {
647// break
648// }
649// unix.Sendto(hashfd, b[:n], unix.MSG_MORE, addr)
650// }
651// hash.Read(b)
652// fmt.Println(hex.EncodeToString(b))
653// // Output: 85cdcad0c06eef66f805ecce353bec9accbeecc5
654//
655// For more information, see: http://www.chronox.de/crypto-API/crypto/userspace-if.html.
656type SockaddrALG struct {
657 Type string
658 Name string
659 Feature uint32
660 Mask uint32
661 raw RawSockaddrALG
662}
663
664func (sa *SockaddrALG) sockaddr() (unsafe.Pointer, _Socklen, error) {
665 // Leave room for NUL byte terminator.
666 if len(sa.Type) > 13 {
667 return nil, 0, EINVAL
668 }
669 if len(sa.Name) > 63 {
670 return nil, 0, EINVAL
671 }
672
673 sa.raw.Family = AF_ALG
674 sa.raw.Feat = sa.Feature
675 sa.raw.Mask = sa.Mask
676
677 typ, err := ByteSliceFromString(sa.Type)
678 if err != nil {
679 return nil, 0, err
680 }
681 name, err := ByteSliceFromString(sa.Name)
682 if err != nil {
683 return nil, 0, err
684 }
685
686 copy(sa.raw.Type[:], typ)
687 copy(sa.raw.Name[:], name)
688
689 return unsafe.Pointer(&sa.raw), SizeofSockaddrALG, nil
690}
691
692// SockaddrVM implements the Sockaddr interface for AF_VSOCK type sockets.
693// SockaddrVM provides access to Linux VM sockets: a mechanism that enables
694// bidirectional communication between a hypervisor and its guest virtual
695// machines.
696type SockaddrVM struct {
697 // CID and Port specify a context ID and port address for a VM socket.
698 // Guests have a unique CID, and hosts may have a well-known CID of:
699 // - VMADDR_CID_HYPERVISOR: refers to the hypervisor process.
khenaidood948f772021-08-11 17:49:24 -0400700 // - VMADDR_CID_LOCAL: refers to local communication (loopback).
khenaidooac637102019-01-14 15:44:34 -0500701 // - VMADDR_CID_HOST: refers to other processes on the host.
khenaidood948f772021-08-11 17:49:24 -0400702 CID uint32
703 Port uint32
704 Flags uint8
705 raw RawSockaddrVM
khenaidooac637102019-01-14 15:44:34 -0500706}
707
708func (sa *SockaddrVM) sockaddr() (unsafe.Pointer, _Socklen, error) {
709 sa.raw.Family = AF_VSOCK
710 sa.raw.Port = sa.Port
711 sa.raw.Cid = sa.CID
khenaidood948f772021-08-11 17:49:24 -0400712 sa.raw.Flags = sa.Flags
khenaidooac637102019-01-14 15:44:34 -0500713
714 return unsafe.Pointer(&sa.raw), SizeofSockaddrVM, nil
715}
716
717type SockaddrXDP struct {
718 Flags uint16
719 Ifindex uint32
720 QueueID uint32
721 SharedUmemFD uint32
722 raw RawSockaddrXDP
723}
724
725func (sa *SockaddrXDP) sockaddr() (unsafe.Pointer, _Socklen, error) {
726 sa.raw.Family = AF_XDP
727 sa.raw.Flags = sa.Flags
728 sa.raw.Ifindex = sa.Ifindex
729 sa.raw.Queue_id = sa.QueueID
730 sa.raw.Shared_umem_fd = sa.SharedUmemFD
731
732 return unsafe.Pointer(&sa.raw), SizeofSockaddrXDP, nil
733}
734
735// This constant mirrors the #define of PX_PROTO_OE in
736// linux/if_pppox.h. We're defining this by hand here instead of
737// autogenerating through mkerrors.sh because including
738// linux/if_pppox.h causes some declaration conflicts with other
739// includes (linux/if_pppox.h includes linux/in.h, which conflicts
740// with netinet/in.h). Given that we only need a single zero constant
741// out of that file, it's cleaner to just define it by hand here.
742const px_proto_oe = 0
743
744type SockaddrPPPoE struct {
745 SID uint16
Scott Baker8461e152019-10-01 14:44:30 -0700746 Remote []byte
khenaidooac637102019-01-14 15:44:34 -0500747 Dev string
748 raw RawSockaddrPPPoX
749}
750
751func (sa *SockaddrPPPoE) sockaddr() (unsafe.Pointer, _Socklen, error) {
752 if len(sa.Remote) != 6 {
753 return nil, 0, EINVAL
754 }
755 if len(sa.Dev) > IFNAMSIZ-1 {
756 return nil, 0, EINVAL
757 }
758
759 *(*uint16)(unsafe.Pointer(&sa.raw[0])) = AF_PPPOX
760 // This next field is in host-endian byte order. We can't use the
761 // same unsafe pointer cast as above, because this value is not
762 // 32-bit aligned and some architectures don't allow unaligned
763 // access.
764 //
765 // However, the value of px_proto_oe is 0, so we can use
766 // encoding/binary helpers to write the bytes without worrying
767 // about the ordering.
768 binary.BigEndian.PutUint32(sa.raw[2:6], px_proto_oe)
769 // This field is deliberately big-endian, unlike the previous
770 // one. The kernel expects SID to be in network byte order.
771 binary.BigEndian.PutUint16(sa.raw[6:8], sa.SID)
772 copy(sa.raw[8:14], sa.Remote)
773 for i := 14; i < 14+IFNAMSIZ; i++ {
774 sa.raw[i] = 0
775 }
776 copy(sa.raw[14:], sa.Dev)
777 return unsafe.Pointer(&sa.raw), SizeofSockaddrPPPoX, nil
778}
779
Scott Baker8461e152019-10-01 14:44:30 -0700780// SockaddrTIPC implements the Sockaddr interface for AF_TIPC type sockets.
781// For more information on TIPC, see: http://tipc.sourceforge.net/.
782type SockaddrTIPC struct {
783 // Scope is the publication scopes when binding service/service range.
784 // Should be set to TIPC_CLUSTER_SCOPE or TIPC_NODE_SCOPE.
785 Scope int
786
787 // Addr is the type of address used to manipulate a socket. Addr must be
788 // one of:
789 // - *TIPCSocketAddr: "id" variant in the C addr union
790 // - *TIPCServiceRange: "nameseq" variant in the C addr union
791 // - *TIPCServiceName: "name" variant in the C addr union
792 //
793 // If nil, EINVAL will be returned when the structure is used.
794 Addr TIPCAddr
795
796 raw RawSockaddrTIPC
797}
798
799// TIPCAddr is implemented by types that can be used as an address for
800// SockaddrTIPC. It is only implemented by *TIPCSocketAddr, *TIPCServiceRange,
801// and *TIPCServiceName.
802type TIPCAddr interface {
803 tipcAddrtype() uint8
804 tipcAddr() [12]byte
805}
806
807func (sa *TIPCSocketAddr) tipcAddr() [12]byte {
808 var out [12]byte
809 copy(out[:], (*(*[unsafe.Sizeof(TIPCSocketAddr{})]byte)(unsafe.Pointer(sa)))[:])
810 return out
811}
812
813func (sa *TIPCSocketAddr) tipcAddrtype() uint8 { return TIPC_SOCKET_ADDR }
814
815func (sa *TIPCServiceRange) tipcAddr() [12]byte {
816 var out [12]byte
817 copy(out[:], (*(*[unsafe.Sizeof(TIPCServiceRange{})]byte)(unsafe.Pointer(sa)))[:])
818 return out
819}
820
821func (sa *TIPCServiceRange) tipcAddrtype() uint8 { return TIPC_SERVICE_RANGE }
822
823func (sa *TIPCServiceName) tipcAddr() [12]byte {
824 var out [12]byte
825 copy(out[:], (*(*[unsafe.Sizeof(TIPCServiceName{})]byte)(unsafe.Pointer(sa)))[:])
826 return out
827}
828
829func (sa *TIPCServiceName) tipcAddrtype() uint8 { return TIPC_SERVICE_ADDR }
830
831func (sa *SockaddrTIPC) sockaddr() (unsafe.Pointer, _Socklen, error) {
832 if sa.Addr == nil {
833 return nil, 0, EINVAL
834 }
835
836 sa.raw.Family = AF_TIPC
837 sa.raw.Scope = int8(sa.Scope)
838 sa.raw.Addrtype = sa.Addr.tipcAddrtype()
839 sa.raw.Addr = sa.Addr.tipcAddr()
840
841 return unsafe.Pointer(&sa.raw), SizeofSockaddrTIPC, nil
842}
843
Andrea Campanella3614a922021-02-25 12:40:42 +0100844// SockaddrL2TPIP implements the Sockaddr interface for IPPROTO_L2TP/AF_INET sockets.
845type SockaddrL2TPIP struct {
846 Addr [4]byte
847 ConnId uint32
848 raw RawSockaddrL2TPIP
849}
850
851func (sa *SockaddrL2TPIP) sockaddr() (unsafe.Pointer, _Socklen, error) {
852 sa.raw.Family = AF_INET
853 sa.raw.Conn_id = sa.ConnId
854 for i := 0; i < len(sa.Addr); i++ {
855 sa.raw.Addr[i] = sa.Addr[i]
856 }
857 return unsafe.Pointer(&sa.raw), SizeofSockaddrL2TPIP, nil
858}
859
860// SockaddrL2TPIP6 implements the Sockaddr interface for IPPROTO_L2TP/AF_INET6 sockets.
861type SockaddrL2TPIP6 struct {
862 Addr [16]byte
863 ZoneId uint32
864 ConnId uint32
865 raw RawSockaddrL2TPIP6
866}
867
868func (sa *SockaddrL2TPIP6) sockaddr() (unsafe.Pointer, _Socklen, error) {
869 sa.raw.Family = AF_INET6
870 sa.raw.Conn_id = sa.ConnId
871 sa.raw.Scope_id = sa.ZoneId
872 for i := 0; i < len(sa.Addr); i++ {
873 sa.raw.Addr[i] = sa.Addr[i]
874 }
875 return unsafe.Pointer(&sa.raw), SizeofSockaddrL2TPIP6, nil
876}
877
878// SockaddrIUCV implements the Sockaddr interface for AF_IUCV sockets.
879type SockaddrIUCV struct {
880 UserID string
881 Name string
882 raw RawSockaddrIUCV
883}
884
885func (sa *SockaddrIUCV) sockaddr() (unsafe.Pointer, _Socklen, error) {
886 sa.raw.Family = AF_IUCV
887 // These are EBCDIC encoded by the kernel, but we still need to pad them
888 // with blanks. Initializing with blanks allows the caller to feed in either
889 // a padded or an unpadded string.
890 for i := 0; i < 8; i++ {
891 sa.raw.Nodeid[i] = ' '
892 sa.raw.User_id[i] = ' '
893 sa.raw.Name[i] = ' '
894 }
895 if len(sa.UserID) > 8 || len(sa.Name) > 8 {
896 return nil, 0, EINVAL
897 }
898 for i, b := range []byte(sa.UserID[:]) {
899 sa.raw.User_id[i] = int8(b)
900 }
901 for i, b := range []byte(sa.Name[:]) {
902 sa.raw.Name[i] = int8(b)
903 }
904 return unsafe.Pointer(&sa.raw), SizeofSockaddrIUCV, nil
905}
906
khenaidood948f772021-08-11 17:49:24 -0400907type SockaddrNFC struct {
908 DeviceIdx uint32
909 TargetIdx uint32
910 NFCProtocol uint32
911 raw RawSockaddrNFC
912}
913
914func (sa *SockaddrNFC) sockaddr() (unsafe.Pointer, _Socklen, error) {
915 sa.raw.Sa_family = AF_NFC
916 sa.raw.Dev_idx = sa.DeviceIdx
917 sa.raw.Target_idx = sa.TargetIdx
918 sa.raw.Nfc_protocol = sa.NFCProtocol
919 return unsafe.Pointer(&sa.raw), SizeofSockaddrNFC, nil
920}
921
922type SockaddrNFCLLCP struct {
923 DeviceIdx uint32
924 TargetIdx uint32
925 NFCProtocol uint32
926 DestinationSAP uint8
927 SourceSAP uint8
928 ServiceName string
929 raw RawSockaddrNFCLLCP
930}
931
932func (sa *SockaddrNFCLLCP) sockaddr() (unsafe.Pointer, _Socklen, error) {
933 sa.raw.Sa_family = AF_NFC
934 sa.raw.Dev_idx = sa.DeviceIdx
935 sa.raw.Target_idx = sa.TargetIdx
936 sa.raw.Nfc_protocol = sa.NFCProtocol
937 sa.raw.Dsap = sa.DestinationSAP
938 sa.raw.Ssap = sa.SourceSAP
939 if len(sa.ServiceName) > len(sa.raw.Service_name) {
940 return nil, 0, EINVAL
941 }
942 copy(sa.raw.Service_name[:], sa.ServiceName)
943 sa.raw.SetServiceNameLen(len(sa.ServiceName))
944 return unsafe.Pointer(&sa.raw), SizeofSockaddrNFCLLCP, nil
945}
946
947var socketProtocol = func(fd int) (int, error) {
948 return GetsockoptInt(fd, SOL_SOCKET, SO_PROTOCOL)
949}
950
khenaidooac637102019-01-14 15:44:34 -0500951func anyToSockaddr(fd int, rsa *RawSockaddrAny) (Sockaddr, error) {
952 switch rsa.Addr.Family {
953 case AF_NETLINK:
954 pp := (*RawSockaddrNetlink)(unsafe.Pointer(rsa))
955 sa := new(SockaddrNetlink)
956 sa.Family = pp.Family
957 sa.Pad = pp.Pad
958 sa.Pid = pp.Pid
959 sa.Groups = pp.Groups
960 return sa, nil
961
962 case AF_PACKET:
963 pp := (*RawSockaddrLinklayer)(unsafe.Pointer(rsa))
964 sa := new(SockaddrLinklayer)
965 sa.Protocol = pp.Protocol
966 sa.Ifindex = int(pp.Ifindex)
967 sa.Hatype = pp.Hatype
968 sa.Pkttype = pp.Pkttype
969 sa.Halen = pp.Halen
970 for i := 0; i < len(sa.Addr); i++ {
971 sa.Addr[i] = pp.Addr[i]
972 }
973 return sa, nil
974
975 case AF_UNIX:
976 pp := (*RawSockaddrUnix)(unsafe.Pointer(rsa))
977 sa := new(SockaddrUnix)
978 if pp.Path[0] == 0 {
979 // "Abstract" Unix domain socket.
980 // Rewrite leading NUL as @ for textual display.
981 // (This is the standard convention.)
982 // Not friendly to overwrite in place,
983 // but the callers below don't care.
984 pp.Path[0] = '@'
985 }
986
987 // Assume path ends at NUL.
988 // This is not technically the Linux semantics for
989 // abstract Unix domain sockets--they are supposed
990 // to be uninterpreted fixed-size binary blobs--but
991 // everyone uses this convention.
992 n := 0
993 for n < len(pp.Path) && pp.Path[n] != 0 {
994 n++
995 }
Andrea Campanella3614a922021-02-25 12:40:42 +0100996 bytes := (*[len(pp.Path)]byte)(unsafe.Pointer(&pp.Path[0]))[0:n]
khenaidooac637102019-01-14 15:44:34 -0500997 sa.Name = string(bytes)
998 return sa, nil
999
1000 case AF_INET:
khenaidood948f772021-08-11 17:49:24 -04001001 proto, err := socketProtocol(fd)
Andrea Campanella3614a922021-02-25 12:40:42 +01001002 if err != nil {
1003 return nil, err
khenaidooac637102019-01-14 15:44:34 -05001004 }
Andrea Campanella3614a922021-02-25 12:40:42 +01001005
1006 switch proto {
1007 case IPPROTO_L2TP:
1008 pp := (*RawSockaddrL2TPIP)(unsafe.Pointer(rsa))
1009 sa := new(SockaddrL2TPIP)
1010 sa.ConnId = pp.Conn_id
1011 for i := 0; i < len(sa.Addr); i++ {
1012 sa.Addr[i] = pp.Addr[i]
1013 }
1014 return sa, nil
1015 default:
1016 pp := (*RawSockaddrInet4)(unsafe.Pointer(rsa))
1017 sa := new(SockaddrInet4)
1018 p := (*[2]byte)(unsafe.Pointer(&pp.Port))
1019 sa.Port = int(p[0])<<8 + int(p[1])
1020 for i := 0; i < len(sa.Addr); i++ {
1021 sa.Addr[i] = pp.Addr[i]
1022 }
1023 return sa, nil
1024 }
khenaidooac637102019-01-14 15:44:34 -05001025
1026 case AF_INET6:
khenaidood948f772021-08-11 17:49:24 -04001027 proto, err := socketProtocol(fd)
Andrea Campanella3614a922021-02-25 12:40:42 +01001028 if err != nil {
1029 return nil, err
khenaidooac637102019-01-14 15:44:34 -05001030 }
Andrea Campanella3614a922021-02-25 12:40:42 +01001031
1032 switch proto {
1033 case IPPROTO_L2TP:
1034 pp := (*RawSockaddrL2TPIP6)(unsafe.Pointer(rsa))
1035 sa := new(SockaddrL2TPIP6)
1036 sa.ConnId = pp.Conn_id
1037 sa.ZoneId = pp.Scope_id
1038 for i := 0; i < len(sa.Addr); i++ {
1039 sa.Addr[i] = pp.Addr[i]
1040 }
1041 return sa, nil
1042 default:
1043 pp := (*RawSockaddrInet6)(unsafe.Pointer(rsa))
1044 sa := new(SockaddrInet6)
1045 p := (*[2]byte)(unsafe.Pointer(&pp.Port))
1046 sa.Port = int(p[0])<<8 + int(p[1])
1047 sa.ZoneId = pp.Scope_id
1048 for i := 0; i < len(sa.Addr); i++ {
1049 sa.Addr[i] = pp.Addr[i]
1050 }
1051 return sa, nil
1052 }
khenaidooac637102019-01-14 15:44:34 -05001053
1054 case AF_VSOCK:
1055 pp := (*RawSockaddrVM)(unsafe.Pointer(rsa))
1056 sa := &SockaddrVM{
khenaidood948f772021-08-11 17:49:24 -04001057 CID: pp.Cid,
1058 Port: pp.Port,
1059 Flags: pp.Flags,
khenaidooac637102019-01-14 15:44:34 -05001060 }
1061 return sa, nil
1062 case AF_BLUETOOTH:
khenaidood948f772021-08-11 17:49:24 -04001063 proto, err := socketProtocol(fd)
khenaidooac637102019-01-14 15:44:34 -05001064 if err != nil {
1065 return nil, err
1066 }
1067 // only BTPROTO_L2CAP and BTPROTO_RFCOMM can accept connections
1068 switch proto {
1069 case BTPROTO_L2CAP:
1070 pp := (*RawSockaddrL2)(unsafe.Pointer(rsa))
1071 sa := &SockaddrL2{
1072 PSM: pp.Psm,
1073 CID: pp.Cid,
1074 Addr: pp.Bdaddr,
1075 AddrType: pp.Bdaddr_type,
1076 }
1077 return sa, nil
1078 case BTPROTO_RFCOMM:
1079 pp := (*RawSockaddrRFCOMM)(unsafe.Pointer(rsa))
1080 sa := &SockaddrRFCOMM{
1081 Channel: pp.Channel,
1082 Addr: pp.Bdaddr,
1083 }
1084 return sa, nil
1085 }
1086 case AF_XDP:
1087 pp := (*RawSockaddrXDP)(unsafe.Pointer(rsa))
1088 sa := &SockaddrXDP{
1089 Flags: pp.Flags,
1090 Ifindex: pp.Ifindex,
1091 QueueID: pp.Queue_id,
1092 SharedUmemFD: pp.Shared_umem_fd,
1093 }
1094 return sa, nil
1095 case AF_PPPOX:
1096 pp := (*RawSockaddrPPPoX)(unsafe.Pointer(rsa))
1097 if binary.BigEndian.Uint32(pp[2:6]) != px_proto_oe {
1098 return nil, EINVAL
1099 }
1100 sa := &SockaddrPPPoE{
1101 SID: binary.BigEndian.Uint16(pp[6:8]),
Scott Baker8461e152019-10-01 14:44:30 -07001102 Remote: pp[8:14],
khenaidooac637102019-01-14 15:44:34 -05001103 }
1104 for i := 14; i < 14+IFNAMSIZ; i++ {
1105 if pp[i] == 0 {
1106 sa.Dev = string(pp[14:i])
1107 break
1108 }
1109 }
1110 return sa, nil
Scott Baker8461e152019-10-01 14:44:30 -07001111 case AF_TIPC:
1112 pp := (*RawSockaddrTIPC)(unsafe.Pointer(rsa))
1113
1114 sa := &SockaddrTIPC{
1115 Scope: int(pp.Scope),
1116 }
1117
1118 // Determine which union variant is present in pp.Addr by checking
1119 // pp.Addrtype.
1120 switch pp.Addrtype {
1121 case TIPC_SERVICE_RANGE:
1122 sa.Addr = (*TIPCServiceRange)(unsafe.Pointer(&pp.Addr))
1123 case TIPC_SERVICE_ADDR:
1124 sa.Addr = (*TIPCServiceName)(unsafe.Pointer(&pp.Addr))
1125 case TIPC_SOCKET_ADDR:
1126 sa.Addr = (*TIPCSocketAddr)(unsafe.Pointer(&pp.Addr))
1127 default:
1128 return nil, EINVAL
1129 }
1130
1131 return sa, nil
Andrea Campanella3614a922021-02-25 12:40:42 +01001132 case AF_IUCV:
1133 pp := (*RawSockaddrIUCV)(unsafe.Pointer(rsa))
1134
1135 var user [8]byte
1136 var name [8]byte
1137
1138 for i := 0; i < 8; i++ {
1139 user[i] = byte(pp.User_id[i])
1140 name[i] = byte(pp.Name[i])
1141 }
1142
1143 sa := &SockaddrIUCV{
1144 UserID: string(user[:]),
1145 Name: string(name[:]),
1146 }
1147 return sa, nil
1148
1149 case AF_CAN:
khenaidood948f772021-08-11 17:49:24 -04001150 proto, err := socketProtocol(fd)
1151 if err != nil {
1152 return nil, err
Andrea Campanella3614a922021-02-25 12:40:42 +01001153 }
Andrea Campanella3614a922021-02-25 12:40:42 +01001154
khenaidood948f772021-08-11 17:49:24 -04001155 pp := (*RawSockaddrCAN)(unsafe.Pointer(rsa))
1156
1157 switch proto {
1158 case CAN_J1939:
1159 sa := &SockaddrCANJ1939{
1160 Ifindex: int(pp.Ifindex),
1161 }
1162 name := (*[8]byte)(unsafe.Pointer(&sa.Name))
1163 for i := 0; i < 8; i++ {
1164 name[i] = pp.Addr[i]
1165 }
1166 pgn := (*[4]byte)(unsafe.Pointer(&sa.PGN))
1167 for i := 0; i < 4; i++ {
1168 pgn[i] = pp.Addr[i+8]
1169 }
1170 addr := (*[1]byte)(unsafe.Pointer(&sa.Addr))
1171 addr[0] = pp.Addr[12]
1172 return sa, nil
1173 default:
1174 sa := &SockaddrCAN{
1175 Ifindex: int(pp.Ifindex),
1176 }
1177 rx := (*[4]byte)(unsafe.Pointer(&sa.RxID))
1178 for i := 0; i < 4; i++ {
1179 rx[i] = pp.Addr[i]
1180 }
1181 tx := (*[4]byte)(unsafe.Pointer(&sa.TxID))
1182 for i := 0; i < 4; i++ {
1183 tx[i] = pp.Addr[i+4]
1184 }
1185 return sa, nil
1186 }
1187 case AF_NFC:
1188 proto, err := socketProtocol(fd)
1189 if err != nil {
1190 return nil, err
1191 }
1192 switch proto {
1193 case NFC_SOCKPROTO_RAW:
1194 pp := (*RawSockaddrNFC)(unsafe.Pointer(rsa))
1195 sa := &SockaddrNFC{
1196 DeviceIdx: pp.Dev_idx,
1197 TargetIdx: pp.Target_idx,
1198 NFCProtocol: pp.Nfc_protocol,
1199 }
1200 return sa, nil
1201 case NFC_SOCKPROTO_LLCP:
1202 pp := (*RawSockaddrNFCLLCP)(unsafe.Pointer(rsa))
1203 if uint64(pp.Service_name_len) > uint64(len(pp.Service_name)) {
1204 return nil, EINVAL
1205 }
1206 sa := &SockaddrNFCLLCP{
1207 DeviceIdx: pp.Dev_idx,
1208 TargetIdx: pp.Target_idx,
1209 NFCProtocol: pp.Nfc_protocol,
1210 DestinationSAP: pp.Dsap,
1211 SourceSAP: pp.Ssap,
1212 ServiceName: string(pp.Service_name[:pp.Service_name_len]),
1213 }
1214 return sa, nil
1215 default:
1216 return nil, EINVAL
1217 }
khenaidooac637102019-01-14 15:44:34 -05001218 }
1219 return nil, EAFNOSUPPORT
1220}
1221
1222func Accept(fd int) (nfd int, sa Sockaddr, err error) {
1223 var rsa RawSockaddrAny
1224 var len _Socklen = SizeofSockaddrAny
khenaidood948f772021-08-11 17:49:24 -04001225 // Try accept4 first for Android, then try accept for kernel older than 2.6.28
1226 nfd, err = accept4(fd, &rsa, &len, 0)
1227 if err == ENOSYS {
1228 nfd, err = accept(fd, &rsa, &len)
1229 }
khenaidooac637102019-01-14 15:44:34 -05001230 if err != nil {
1231 return
1232 }
1233 sa, err = anyToSockaddr(fd, &rsa)
1234 if err != nil {
1235 Close(nfd)
1236 nfd = 0
1237 }
1238 return
1239}
1240
1241func Accept4(fd int, flags int) (nfd int, sa Sockaddr, err error) {
1242 var rsa RawSockaddrAny
1243 var len _Socklen = SizeofSockaddrAny
1244 nfd, err = accept4(fd, &rsa, &len, flags)
1245 if err != nil {
1246 return
1247 }
1248 if len > SizeofSockaddrAny {
1249 panic("RawSockaddrAny too small")
1250 }
1251 sa, err = anyToSockaddr(fd, &rsa)
1252 if err != nil {
1253 Close(nfd)
1254 nfd = 0
1255 }
1256 return
1257}
1258
1259func Getsockname(fd int) (sa Sockaddr, err error) {
1260 var rsa RawSockaddrAny
1261 var len _Socklen = SizeofSockaddrAny
1262 if err = getsockname(fd, &rsa, &len); err != nil {
1263 return
1264 }
1265 return anyToSockaddr(fd, &rsa)
1266}
1267
1268func GetsockoptIPMreqn(fd, level, opt int) (*IPMreqn, error) {
1269 var value IPMreqn
1270 vallen := _Socklen(SizeofIPMreqn)
1271 err := getsockopt(fd, level, opt, unsafe.Pointer(&value), &vallen)
1272 return &value, err
1273}
1274
1275func GetsockoptUcred(fd, level, opt int) (*Ucred, error) {
1276 var value Ucred
1277 vallen := _Socklen(SizeofUcred)
1278 err := getsockopt(fd, level, opt, unsafe.Pointer(&value), &vallen)
1279 return &value, err
1280}
1281
1282func GetsockoptTCPInfo(fd, level, opt int) (*TCPInfo, error) {
1283 var value TCPInfo
1284 vallen := _Socklen(SizeofTCPInfo)
1285 err := getsockopt(fd, level, opt, unsafe.Pointer(&value), &vallen)
1286 return &value, err
1287}
1288
1289// GetsockoptString returns the string value of the socket option opt for the
1290// socket associated with fd at the given socket level.
1291func GetsockoptString(fd, level, opt int) (string, error) {
1292 buf := make([]byte, 256)
1293 vallen := _Socklen(len(buf))
1294 err := getsockopt(fd, level, opt, unsafe.Pointer(&buf[0]), &vallen)
1295 if err != nil {
1296 if err == ERANGE {
1297 buf = make([]byte, vallen)
1298 err = getsockopt(fd, level, opt, unsafe.Pointer(&buf[0]), &vallen)
1299 }
1300 if err != nil {
1301 return "", err
1302 }
1303 }
1304 return string(buf[:vallen-1]), nil
1305}
1306
William Kurkiandaa6bb22019-03-07 12:26:28 -05001307func GetsockoptTpacketStats(fd, level, opt int) (*TpacketStats, error) {
1308 var value TpacketStats
1309 vallen := _Socklen(SizeofTpacketStats)
1310 err := getsockopt(fd, level, opt, unsafe.Pointer(&value), &vallen)
1311 return &value, err
1312}
1313
1314func GetsockoptTpacketStatsV3(fd, level, opt int) (*TpacketStatsV3, error) {
1315 var value TpacketStatsV3
1316 vallen := _Socklen(SizeofTpacketStatsV3)
1317 err := getsockopt(fd, level, opt, unsafe.Pointer(&value), &vallen)
1318 return &value, err
1319}
1320
khenaidooac637102019-01-14 15:44:34 -05001321func SetsockoptIPMreqn(fd, level, opt int, mreq *IPMreqn) (err error) {
1322 return setsockopt(fd, level, opt, unsafe.Pointer(mreq), unsafe.Sizeof(*mreq))
1323}
1324
William Kurkiandaa6bb22019-03-07 12:26:28 -05001325func SetsockoptPacketMreq(fd, level, opt int, mreq *PacketMreq) error {
1326 return setsockopt(fd, level, opt, unsafe.Pointer(mreq), unsafe.Sizeof(*mreq))
1327}
1328
Stephane Barbarie260a5632019-02-26 16:12:49 -05001329// SetsockoptSockFprog attaches a classic BPF or an extended BPF program to a
1330// socket to filter incoming packets. See 'man 7 socket' for usage information.
1331func SetsockoptSockFprog(fd, level, opt int, fprog *SockFprog) error {
1332 return setsockopt(fd, level, opt, unsafe.Pointer(fprog), unsafe.Sizeof(*fprog))
1333}
1334
1335func SetsockoptCanRawFilter(fd, level, opt int, filter []CanFilter) error {
1336 var p unsafe.Pointer
1337 if len(filter) > 0 {
1338 p = unsafe.Pointer(&filter[0])
1339 }
1340 return setsockopt(fd, level, opt, p, uintptr(len(filter)*SizeofCanFilter))
1341}
1342
William Kurkiandaa6bb22019-03-07 12:26:28 -05001343func SetsockoptTpacketReq(fd, level, opt int, tp *TpacketReq) error {
1344 return setsockopt(fd, level, opt, unsafe.Pointer(tp), unsafe.Sizeof(*tp))
1345}
1346
1347func SetsockoptTpacketReq3(fd, level, opt int, tp *TpacketReq3) error {
1348 return setsockopt(fd, level, opt, unsafe.Pointer(tp), unsafe.Sizeof(*tp))
1349}
1350
khenaidooac637102019-01-14 15:44:34 -05001351// Keyctl Commands (http://man7.org/linux/man-pages/man2/keyctl.2.html)
1352
1353// KeyctlInt calls keyctl commands in which each argument is an int.
1354// These commands are KEYCTL_REVOKE, KEYCTL_CHOWN, KEYCTL_CLEAR, KEYCTL_LINK,
1355// KEYCTL_UNLINK, KEYCTL_NEGATE, KEYCTL_SET_REQKEY_KEYRING, KEYCTL_SET_TIMEOUT,
1356// KEYCTL_ASSUME_AUTHORITY, KEYCTL_SESSION_TO_PARENT, KEYCTL_REJECT,
1357// KEYCTL_INVALIDATE, and KEYCTL_GET_PERSISTENT.
1358//sys KeyctlInt(cmd int, arg2 int, arg3 int, arg4 int, arg5 int) (ret int, err error) = SYS_KEYCTL
1359
1360// KeyctlBuffer calls keyctl commands in which the third and fourth
1361// arguments are a buffer and its length, respectively.
1362// These commands are KEYCTL_UPDATE, KEYCTL_READ, and KEYCTL_INSTANTIATE.
1363//sys KeyctlBuffer(cmd int, arg2 int, buf []byte, arg5 int) (ret int, err error) = SYS_KEYCTL
1364
1365// KeyctlString calls keyctl commands which return a string.
1366// These commands are KEYCTL_DESCRIBE and KEYCTL_GET_SECURITY.
1367func KeyctlString(cmd int, id int) (string, error) {
1368 // We must loop as the string data may change in between the syscalls.
1369 // We could allocate a large buffer here to reduce the chance that the
1370 // syscall needs to be called twice; however, this is unnecessary as
1371 // the performance loss is negligible.
1372 var buffer []byte
1373 for {
1374 // Try to fill the buffer with data
1375 length, err := KeyctlBuffer(cmd, id, buffer, 0)
1376 if err != nil {
1377 return "", err
1378 }
1379
1380 // Check if the data was written
1381 if length <= len(buffer) {
1382 // Exclude the null terminator
1383 return string(buffer[:length-1]), nil
1384 }
1385
1386 // Make a bigger buffer if needed
1387 buffer = make([]byte, length)
1388 }
1389}
1390
1391// Keyctl commands with special signatures.
1392
1393// KeyctlGetKeyringID implements the KEYCTL_GET_KEYRING_ID command.
1394// See the full documentation at:
1395// http://man7.org/linux/man-pages/man3/keyctl_get_keyring_ID.3.html
1396func KeyctlGetKeyringID(id int, create bool) (ringid int, err error) {
1397 createInt := 0
1398 if create {
1399 createInt = 1
1400 }
1401 return KeyctlInt(KEYCTL_GET_KEYRING_ID, id, createInt, 0, 0)
1402}
1403
1404// KeyctlSetperm implements the KEYCTL_SETPERM command. The perm value is the
1405// key handle permission mask as described in the "keyctl setperm" section of
1406// http://man7.org/linux/man-pages/man1/keyctl.1.html.
1407// See the full documentation at:
1408// http://man7.org/linux/man-pages/man3/keyctl_setperm.3.html
1409func KeyctlSetperm(id int, perm uint32) error {
1410 _, err := KeyctlInt(KEYCTL_SETPERM, id, int(perm), 0, 0)
1411 return err
1412}
1413
1414//sys keyctlJoin(cmd int, arg2 string) (ret int, err error) = SYS_KEYCTL
1415
1416// KeyctlJoinSessionKeyring implements the KEYCTL_JOIN_SESSION_KEYRING command.
1417// See the full documentation at:
1418// http://man7.org/linux/man-pages/man3/keyctl_join_session_keyring.3.html
1419func KeyctlJoinSessionKeyring(name string) (ringid int, err error) {
1420 return keyctlJoin(KEYCTL_JOIN_SESSION_KEYRING, name)
1421}
1422
1423//sys keyctlSearch(cmd int, arg2 int, arg3 string, arg4 string, arg5 int) (ret int, err error) = SYS_KEYCTL
1424
1425// KeyctlSearch implements the KEYCTL_SEARCH command.
1426// See the full documentation at:
1427// http://man7.org/linux/man-pages/man3/keyctl_search.3.html
1428func KeyctlSearch(ringid int, keyType, description string, destRingid int) (id int, err error) {
1429 return keyctlSearch(KEYCTL_SEARCH, ringid, keyType, description, destRingid)
1430}
1431
1432//sys keyctlIOV(cmd int, arg2 int, payload []Iovec, arg5 int) (err error) = SYS_KEYCTL
1433
1434// KeyctlInstantiateIOV implements the KEYCTL_INSTANTIATE_IOV command. This
1435// command is similar to KEYCTL_INSTANTIATE, except that the payload is a slice
1436// of Iovec (each of which represents a buffer) instead of a single buffer.
1437// See the full documentation at:
1438// http://man7.org/linux/man-pages/man3/keyctl_instantiate_iov.3.html
1439func KeyctlInstantiateIOV(id int, payload []Iovec, ringid int) error {
1440 return keyctlIOV(KEYCTL_INSTANTIATE_IOV, id, payload, ringid)
1441}
1442
1443//sys keyctlDH(cmd int, arg2 *KeyctlDHParams, buf []byte) (ret int, err error) = SYS_KEYCTL
1444
1445// KeyctlDHCompute implements the KEYCTL_DH_COMPUTE command. This command
1446// computes a Diffie-Hellman shared secret based on the provide params. The
1447// secret is written to the provided buffer and the returned size is the number
1448// of bytes written (returning an error if there is insufficient space in the
1449// buffer). If a nil buffer is passed in, this function returns the minimum
1450// buffer length needed to store the appropriate data. Note that this differs
1451// from KEYCTL_READ's behavior which always returns the requested payload size.
1452// See the full documentation at:
1453// http://man7.org/linux/man-pages/man3/keyctl_dh_compute.3.html
1454func KeyctlDHCompute(params *KeyctlDHParams, buffer []byte) (size int, err error) {
1455 return keyctlDH(KEYCTL_DH_COMPUTE, params, buffer)
1456}
1457
Scott Baker8461e152019-10-01 14:44:30 -07001458// KeyctlRestrictKeyring implements the KEYCTL_RESTRICT_KEYRING command. This
1459// command limits the set of keys that can be linked to the keyring, regardless
1460// of keyring permissions. The command requires the "setattr" permission.
1461//
1462// When called with an empty keyType the command locks the keyring, preventing
1463// any further keys from being linked to the keyring.
1464//
1465// The "asymmetric" keyType defines restrictions requiring key payloads to be
1466// DER encoded X.509 certificates signed by keys in another keyring. Restrictions
1467// for "asymmetric" include "builtin_trusted", "builtin_and_secondary_trusted",
1468// "key_or_keyring:<key>", and "key_or_keyring:<key>:chain".
1469//
1470// As of Linux 4.12, only the "asymmetric" keyType defines type-specific
1471// restrictions.
1472//
1473// See the full documentation at:
1474// http://man7.org/linux/man-pages/man3/keyctl_restrict_keyring.3.html
1475// http://man7.org/linux/man-pages/man2/keyctl.2.html
1476func KeyctlRestrictKeyring(ringid int, keyType string, restriction string) error {
1477 if keyType == "" {
1478 return keyctlRestrictKeyring(KEYCTL_RESTRICT_KEYRING, ringid)
1479 }
1480 return keyctlRestrictKeyringByType(KEYCTL_RESTRICT_KEYRING, ringid, keyType, restriction)
1481}
1482
khenaidood948f772021-08-11 17:49:24 -04001483//sys keyctlRestrictKeyringByType(cmd int, arg2 int, keyType string, restriction string) (err error) = SYS_KEYCTL
1484//sys keyctlRestrictKeyring(cmd int, arg2 int) (err error) = SYS_KEYCTL
Scott Baker8461e152019-10-01 14:44:30 -07001485
khenaidooac637102019-01-14 15:44:34 -05001486func Recvmsg(fd int, p, oob []byte, flags int) (n, oobn int, recvflags int, from Sockaddr, err error) {
1487 var msg Msghdr
1488 var rsa RawSockaddrAny
1489 msg.Name = (*byte)(unsafe.Pointer(&rsa))
1490 msg.Namelen = uint32(SizeofSockaddrAny)
1491 var iov Iovec
1492 if len(p) > 0 {
1493 iov.Base = &p[0]
1494 iov.SetLen(len(p))
1495 }
1496 var dummy byte
1497 if len(oob) > 0 {
1498 if len(p) == 0 {
1499 var sockType int
1500 sockType, err = GetsockoptInt(fd, SOL_SOCKET, SO_TYPE)
1501 if err != nil {
1502 return
1503 }
1504 // receive at least one normal byte
1505 if sockType != SOCK_DGRAM {
1506 iov.Base = &dummy
1507 iov.SetLen(1)
1508 }
1509 }
1510 msg.Control = &oob[0]
1511 msg.SetControllen(len(oob))
1512 }
1513 msg.Iov = &iov
1514 msg.Iovlen = 1
1515 if n, err = recvmsg(fd, &msg, flags); err != nil {
1516 return
1517 }
1518 oobn = int(msg.Controllen)
1519 recvflags = int(msg.Flags)
1520 // source address is only specified if the socket is unconnected
1521 if rsa.Addr.Family != AF_UNSPEC {
1522 from, err = anyToSockaddr(fd, &rsa)
1523 }
1524 return
1525}
1526
1527func Sendmsg(fd int, p, oob []byte, to Sockaddr, flags int) (err error) {
1528 _, err = SendmsgN(fd, p, oob, to, flags)
1529 return
1530}
1531
1532func SendmsgN(fd int, p, oob []byte, to Sockaddr, flags int) (n int, err error) {
1533 var ptr unsafe.Pointer
1534 var salen _Socklen
1535 if to != nil {
1536 var err error
1537 ptr, salen, err = to.sockaddr()
1538 if err != nil {
1539 return 0, err
1540 }
1541 }
1542 var msg Msghdr
1543 msg.Name = (*byte)(ptr)
1544 msg.Namelen = uint32(salen)
1545 var iov Iovec
1546 if len(p) > 0 {
1547 iov.Base = &p[0]
1548 iov.SetLen(len(p))
1549 }
1550 var dummy byte
1551 if len(oob) > 0 {
1552 if len(p) == 0 {
1553 var sockType int
1554 sockType, err = GetsockoptInt(fd, SOL_SOCKET, SO_TYPE)
1555 if err != nil {
1556 return 0, err
1557 }
1558 // send at least one normal byte
1559 if sockType != SOCK_DGRAM {
1560 iov.Base = &dummy
1561 iov.SetLen(1)
1562 }
1563 }
1564 msg.Control = &oob[0]
1565 msg.SetControllen(len(oob))
1566 }
1567 msg.Iov = &iov
1568 msg.Iovlen = 1
1569 if n, err = sendmsg(fd, &msg, flags); err != nil {
1570 return 0, err
1571 }
1572 if len(oob) > 0 && len(p) == 0 {
1573 n = 0
1574 }
1575 return n, nil
1576}
1577
1578// BindToDevice binds the socket associated with fd to device.
1579func BindToDevice(fd int, device string) (err error) {
1580 return SetsockoptString(fd, SOL_SOCKET, SO_BINDTODEVICE, device)
1581}
1582
1583//sys ptrace(request int, pid int, addr uintptr, data uintptr) (err error)
1584
1585func ptracePeek(req int, pid int, addr uintptr, out []byte) (count int, err error) {
1586 // The peek requests are machine-size oriented, so we wrap it
1587 // to retrieve arbitrary-length data.
1588
1589 // The ptrace syscall differs from glibc's ptrace.
1590 // Peeks returns the word in *data, not as the return value.
1591
1592 var buf [SizeofPtr]byte
1593
1594 // Leading edge. PEEKTEXT/PEEKDATA don't require aligned
1595 // access (PEEKUSER warns that it might), but if we don't
1596 // align our reads, we might straddle an unmapped page
1597 // boundary and not get the bytes leading up to the page
1598 // boundary.
1599 n := 0
1600 if addr%SizeofPtr != 0 {
1601 err = ptrace(req, pid, addr-addr%SizeofPtr, uintptr(unsafe.Pointer(&buf[0])))
1602 if err != nil {
1603 return 0, err
1604 }
1605 n += copy(out, buf[addr%SizeofPtr:])
1606 out = out[n:]
1607 }
1608
1609 // Remainder.
1610 for len(out) > 0 {
1611 // We use an internal buffer to guarantee alignment.
1612 // It's not documented if this is necessary, but we're paranoid.
1613 err = ptrace(req, pid, addr+uintptr(n), uintptr(unsafe.Pointer(&buf[0])))
1614 if err != nil {
1615 return n, err
1616 }
1617 copied := copy(out, buf[0:])
1618 n += copied
1619 out = out[copied:]
1620 }
1621
1622 return n, nil
1623}
1624
1625func PtracePeekText(pid int, addr uintptr, out []byte) (count int, err error) {
1626 return ptracePeek(PTRACE_PEEKTEXT, pid, addr, out)
1627}
1628
1629func PtracePeekData(pid int, addr uintptr, out []byte) (count int, err error) {
1630 return ptracePeek(PTRACE_PEEKDATA, pid, addr, out)
1631}
1632
1633func PtracePeekUser(pid int, addr uintptr, out []byte) (count int, err error) {
1634 return ptracePeek(PTRACE_PEEKUSR, pid, addr, out)
1635}
1636
1637func ptracePoke(pokeReq int, peekReq int, pid int, addr uintptr, data []byte) (count int, err error) {
1638 // As for ptracePeek, we need to align our accesses to deal
1639 // with the possibility of straddling an invalid page.
1640
1641 // Leading edge.
1642 n := 0
1643 if addr%SizeofPtr != 0 {
1644 var buf [SizeofPtr]byte
1645 err = ptrace(peekReq, pid, addr-addr%SizeofPtr, uintptr(unsafe.Pointer(&buf[0])))
1646 if err != nil {
1647 return 0, err
1648 }
1649 n += copy(buf[addr%SizeofPtr:], data)
1650 word := *((*uintptr)(unsafe.Pointer(&buf[0])))
1651 err = ptrace(pokeReq, pid, addr-addr%SizeofPtr, word)
1652 if err != nil {
1653 return 0, err
1654 }
1655 data = data[n:]
1656 }
1657
1658 // Interior.
1659 for len(data) > SizeofPtr {
1660 word := *((*uintptr)(unsafe.Pointer(&data[0])))
1661 err = ptrace(pokeReq, pid, addr+uintptr(n), word)
1662 if err != nil {
1663 return n, err
1664 }
1665 n += SizeofPtr
1666 data = data[SizeofPtr:]
1667 }
1668
1669 // Trailing edge.
1670 if len(data) > 0 {
1671 var buf [SizeofPtr]byte
1672 err = ptrace(peekReq, pid, addr+uintptr(n), uintptr(unsafe.Pointer(&buf[0])))
1673 if err != nil {
1674 return n, err
1675 }
1676 copy(buf[0:], data)
1677 word := *((*uintptr)(unsafe.Pointer(&buf[0])))
1678 err = ptrace(pokeReq, pid, addr+uintptr(n), word)
1679 if err != nil {
1680 return n, err
1681 }
1682 n += len(data)
1683 }
1684
1685 return n, nil
1686}
1687
1688func PtracePokeText(pid int, addr uintptr, data []byte) (count int, err error) {
1689 return ptracePoke(PTRACE_POKETEXT, PTRACE_PEEKTEXT, pid, addr, data)
1690}
1691
1692func PtracePokeData(pid int, addr uintptr, data []byte) (count int, err error) {
1693 return ptracePoke(PTRACE_POKEDATA, PTRACE_PEEKDATA, pid, addr, data)
1694}
1695
1696func PtracePokeUser(pid int, addr uintptr, data []byte) (count int, err error) {
1697 return ptracePoke(PTRACE_POKEUSR, PTRACE_PEEKUSR, pid, addr, data)
1698}
1699
1700func PtraceGetRegs(pid int, regsout *PtraceRegs) (err error) {
1701 return ptrace(PTRACE_GETREGS, pid, 0, uintptr(unsafe.Pointer(regsout)))
1702}
1703
1704func PtraceSetRegs(pid int, regs *PtraceRegs) (err error) {
1705 return ptrace(PTRACE_SETREGS, pid, 0, uintptr(unsafe.Pointer(regs)))
1706}
1707
1708func PtraceSetOptions(pid int, options int) (err error) {
1709 return ptrace(PTRACE_SETOPTIONS, pid, 0, uintptr(options))
1710}
1711
1712func PtraceGetEventMsg(pid int) (msg uint, err error) {
1713 var data _C_long
1714 err = ptrace(PTRACE_GETEVENTMSG, pid, 0, uintptr(unsafe.Pointer(&data)))
1715 msg = uint(data)
1716 return
1717}
1718
1719func PtraceCont(pid int, signal int) (err error) {
1720 return ptrace(PTRACE_CONT, pid, 0, uintptr(signal))
1721}
1722
1723func PtraceSyscall(pid int, signal int) (err error) {
1724 return ptrace(PTRACE_SYSCALL, pid, 0, uintptr(signal))
1725}
1726
1727func PtraceSingleStep(pid int) (err error) { return ptrace(PTRACE_SINGLESTEP, pid, 0, 0) }
1728
Andrea Campanella3614a922021-02-25 12:40:42 +01001729func PtraceInterrupt(pid int) (err error) { return ptrace(PTRACE_INTERRUPT, pid, 0, 0) }
1730
khenaidooac637102019-01-14 15:44:34 -05001731func PtraceAttach(pid int) (err error) { return ptrace(PTRACE_ATTACH, pid, 0, 0) }
1732
Andrea Campanella3614a922021-02-25 12:40:42 +01001733func PtraceSeize(pid int) (err error) { return ptrace(PTRACE_SEIZE, pid, 0, 0) }
1734
khenaidooac637102019-01-14 15:44:34 -05001735func PtraceDetach(pid int) (err error) { return ptrace(PTRACE_DETACH, pid, 0, 0) }
1736
1737//sys reboot(magic1 uint, magic2 uint, cmd int, arg string) (err error)
1738
1739func Reboot(cmd int) (err error) {
1740 return reboot(LINUX_REBOOT_MAGIC1, LINUX_REBOOT_MAGIC2, cmd, "")
1741}
1742
Scott Baker8461e152019-10-01 14:44:30 -07001743func direntIno(buf []byte) (uint64, bool) {
1744 return readInt(buf, unsafe.Offsetof(Dirent{}.Ino), unsafe.Sizeof(Dirent{}.Ino))
1745}
1746
1747func direntReclen(buf []byte) (uint64, bool) {
1748 return readInt(buf, unsafe.Offsetof(Dirent{}.Reclen), unsafe.Sizeof(Dirent{}.Reclen))
1749}
1750
1751func direntNamlen(buf []byte) (uint64, bool) {
1752 reclen, ok := direntReclen(buf)
1753 if !ok {
1754 return 0, false
1755 }
1756 return reclen - uint64(unsafe.Offsetof(Dirent{}.Name)), true
khenaidooac637102019-01-14 15:44:34 -05001757}
1758
1759//sys mount(source string, target string, fstype string, flags uintptr, data *byte) (err error)
1760
1761func Mount(source string, target string, fstype string, flags uintptr, data string) (err error) {
1762 // Certain file systems get rather angry and EINVAL if you give
1763 // them an empty string of data, rather than NULL.
1764 if data == "" {
1765 return mount(source, target, fstype, flags, nil)
1766 }
1767 datap, err := BytePtrFromString(data)
1768 if err != nil {
1769 return err
1770 }
1771 return mount(source, target, fstype, flags, datap)
1772}
1773
1774func Sendfile(outfd int, infd int, offset *int64, count int) (written int, err error) {
1775 if raceenabled {
1776 raceReleaseMerge(unsafe.Pointer(&ioSync))
1777 }
1778 return sendfile(outfd, infd, offset, count)
1779}
1780
1781// Sendto
1782// Recvfrom
1783// Socketpair
1784
1785/*
1786 * Direct access
1787 */
1788//sys Acct(path string) (err error)
1789//sys AddKey(keyType string, description string, payload []byte, ringid int) (id int, err error)
1790//sys Adjtimex(buf *Timex) (state int, err error)
Andrea Campanella3614a922021-02-25 12:40:42 +01001791//sysnb Capget(hdr *CapUserHeader, data *CapUserData) (err error)
1792//sysnb Capset(hdr *CapUserHeader, data *CapUserData) (err error)
khenaidooac637102019-01-14 15:44:34 -05001793//sys Chdir(path string) (err error)
1794//sys Chroot(path string) (err error)
1795//sys ClockGetres(clockid int32, res *Timespec) (err error)
1796//sys ClockGettime(clockid int32, time *Timespec) (err error)
1797//sys ClockNanosleep(clockid int32, flags int, request *Timespec, remain *Timespec) (err error)
1798//sys Close(fd int) (err error)
khenaidood948f772021-08-11 17:49:24 -04001799//sys CloseRange(first uint, last uint, flags uint) (err error)
khenaidooac637102019-01-14 15:44:34 -05001800//sys CopyFileRange(rfd int, roff *int64, wfd int, woff *int64, len int, flags int) (n int, err error)
1801//sys DeleteModule(name string, flags int) (err error)
1802//sys Dup(oldfd int) (fd int, err error)
Andrea Campanella3614a922021-02-25 12:40:42 +01001803
1804func Dup2(oldfd, newfd int) error {
1805 // Android O and newer blocks dup2; riscv and arm64 don't implement dup2.
1806 if runtime.GOOS == "android" || runtime.GOARCH == "riscv64" || runtime.GOARCH == "arm64" {
1807 return Dup3(oldfd, newfd, 0)
1808 }
1809 return dup2(oldfd, newfd)
1810}
1811
khenaidooac637102019-01-14 15:44:34 -05001812//sys Dup3(oldfd int, newfd int, flags int) (err error)
1813//sysnb EpollCreate1(flag int) (fd int, err error)
1814//sysnb EpollCtl(epfd int, op int, fd int, event *EpollEvent) (err error)
1815//sys Eventfd(initval uint, flags int) (fd int, err error) = SYS_EVENTFD2
1816//sys Exit(code int) = SYS_EXIT_GROUP
1817//sys Fallocate(fd int, mode uint32, off int64, len int64) (err error)
1818//sys Fchdir(fd int) (err error)
1819//sys Fchmod(fd int, mode uint32) (err error)
1820//sys Fchownat(dirfd int, path string, uid int, gid int, flags int) (err error)
khenaidooac637102019-01-14 15:44:34 -05001821//sys Fdatasync(fd int) (err error)
1822//sys Fgetxattr(fd int, attr string, dest []byte) (sz int, err error)
1823//sys FinitModule(fd int, params string, flags int) (err error)
1824//sys Flistxattr(fd int, dest []byte) (sz int, err error)
1825//sys Flock(fd int, how int) (err error)
1826//sys Fremovexattr(fd int, attr string) (err error)
1827//sys Fsetxattr(fd int, attr string, dest []byte, flags int) (err error)
1828//sys Fsync(fd int) (err error)
1829//sys Getdents(fd int, buf []byte) (n int, err error) = SYS_GETDENTS64
1830//sysnb Getpgid(pid int) (pgid int, err error)
1831
1832func Getpgrp() (pid int) {
1833 pid, _ = Getpgid(0)
1834 return
1835}
1836
1837//sysnb Getpid() (pid int)
1838//sysnb Getppid() (ppid int)
1839//sys Getpriority(which int, who int) (prio int, err error)
1840//sys Getrandom(buf []byte, flags int) (n int, err error)
1841//sysnb Getrusage(who int, rusage *Rusage) (err error)
1842//sysnb Getsid(pid int) (sid int, err error)
1843//sysnb Gettid() (tid int)
1844//sys Getxattr(path string, attr string, dest []byte) (sz int, err error)
1845//sys InitModule(moduleImage []byte, params string) (err error)
1846//sys InotifyAddWatch(fd int, pathname string, mask uint32) (watchdesc int, err error)
1847//sysnb InotifyInit1(flags int) (fd int, err error)
1848//sysnb InotifyRmWatch(fd int, watchdesc uint32) (success int, err error)
1849//sysnb Kill(pid int, sig syscall.Signal) (err error)
1850//sys Klogctl(typ int, buf []byte) (n int, err error) = SYS_SYSLOG
1851//sys Lgetxattr(path string, attr string, dest []byte) (sz int, err error)
1852//sys Listxattr(path string, dest []byte) (sz int, err error)
1853//sys Llistxattr(path string, dest []byte) (sz int, err error)
1854//sys Lremovexattr(path string, attr string) (err error)
1855//sys Lsetxattr(path string, attr string, data []byte, flags int) (err error)
1856//sys MemfdCreate(name string, flags int) (fd int, err error)
1857//sys Mkdirat(dirfd int, path string, mode uint32) (err error)
1858//sys Mknodat(dirfd int, path string, mode uint32, dev int) (err error)
1859//sys Nanosleep(time *Timespec, leftover *Timespec) (err error)
1860//sys PerfEventOpen(attr *PerfEventAttr, pid int, cpu int, groupFd int, flags int) (fd int, err error)
1861//sys PivotRoot(newroot string, putold string) (err error) = SYS_PIVOT_ROOT
khenaidood948f772021-08-11 17:49:24 -04001862//sysnb prlimit(pid int, resource int, newlimit *Rlimit, old *Rlimit) (err error) = SYS_PRLIMIT64
1863//sys Prctl(option int, arg2 uintptr, arg3 uintptr, arg4 uintptr, arg5 uintptr) (err error)
khenaidooac637102019-01-14 15:44:34 -05001864//sys Pselect(nfd int, r *FdSet, w *FdSet, e *FdSet, timeout *Timespec, sigmask *Sigset_t) (n int, err error) = SYS_PSELECT6
1865//sys read(fd int, p []byte) (n int, err error)
1866//sys Removexattr(path string, attr string) (err error)
khenaidooac637102019-01-14 15:44:34 -05001867//sys Renameat2(olddirfd int, oldpath string, newdirfd int, newpath string, flags uint) (err error)
1868//sys RequestKey(keyType string, description string, callback string, destRingid int) (id int, err error)
1869//sys Setdomainname(p []byte) (err error)
1870//sys Sethostname(p []byte) (err error)
1871//sysnb Setpgid(pid int, pgid int) (err error)
1872//sysnb Setsid() (pid int, err error)
1873//sysnb Settimeofday(tv *Timeval) (err error)
1874//sys Setns(fd int, nstype int) (err error)
1875
Andrea Campanella3614a922021-02-25 12:40:42 +01001876// PrctlRetInt performs a prctl operation specified by option and further
1877// optional arguments arg2 through arg5 depending on option. It returns a
1878// non-negative integer that is returned by the prctl syscall.
1879func PrctlRetInt(option int, arg2 uintptr, arg3 uintptr, arg4 uintptr, arg5 uintptr) (int, error) {
1880 ret, _, err := Syscall6(SYS_PRCTL, uintptr(option), uintptr(arg2), uintptr(arg3), uintptr(arg4), uintptr(arg5), 0)
1881 if err != 0 {
1882 return 0, err
1883 }
1884 return int(ret), nil
1885}
1886
khenaidooac637102019-01-14 15:44:34 -05001887// issue 1435.
1888// On linux Setuid and Setgid only affects the current thread, not the process.
1889// This does not match what most callers expect so we must return an error
1890// here rather than letting the caller think that the call succeeded.
1891
1892func Setuid(uid int) (err error) {
1893 return EOPNOTSUPP
1894}
1895
1896func Setgid(uid int) (err error) {
1897 return EOPNOTSUPP
1898}
1899
Andrea Campanella3614a922021-02-25 12:40:42 +01001900// SetfsgidRetGid sets fsgid for current thread and returns previous fsgid set.
1901// setfsgid(2) will return a non-nil error only if its caller lacks CAP_SETUID capability.
1902// If the call fails due to other reasons, current fsgid will be returned.
1903func SetfsgidRetGid(gid int) (int, error) {
1904 return setfsgid(gid)
1905}
1906
1907// SetfsuidRetUid sets fsuid for current thread and returns previous fsuid set.
1908// setfsgid(2) will return a non-nil error only if its caller lacks CAP_SETUID capability
1909// If the call fails due to other reasons, current fsuid will be returned.
1910func SetfsuidRetUid(uid int) (int, error) {
1911 return setfsuid(uid)
1912}
1913
1914func Setfsgid(gid int) error {
1915 _, err := setfsgid(gid)
1916 return err
1917}
1918
1919func Setfsuid(uid int) error {
1920 _, err := setfsuid(uid)
1921 return err
1922}
1923
Scott Baker8461e152019-10-01 14:44:30 -07001924func Signalfd(fd int, sigmask *Sigset_t, flags int) (newfd int, err error) {
1925 return signalfd(fd, sigmask, _C__NSIG/8, flags)
1926}
1927
khenaidooac637102019-01-14 15:44:34 -05001928//sys Setpriority(which int, who int, prio int) (err error)
1929//sys Setxattr(path string, attr string, data []byte, flags int) (err error)
Scott Baker8461e152019-10-01 14:44:30 -07001930//sys signalfd(fd int, sigmask *Sigset_t, maskSize uintptr, flags int) (newfd int, err error) = SYS_SIGNALFD4
khenaidooac637102019-01-14 15:44:34 -05001931//sys Statx(dirfd int, path string, flags int, mask int, stat *Statx_t) (err error)
1932//sys Sync()
1933//sys Syncfs(fd int) (err error)
1934//sysnb Sysinfo(info *Sysinfo_t) (err error)
1935//sys Tee(rfd int, wfd int, len int, flags int) (n int64, err error)
khenaidood948f772021-08-11 17:49:24 -04001936//sysnb TimerfdCreate(clockid int, flags int) (fd int, err error)
1937//sysnb TimerfdGettime(fd int, currValue *ItimerSpec) (err error)
1938//sysnb TimerfdSettime(fd int, flags int, newValue *ItimerSpec, oldValue *ItimerSpec) (err error)
khenaidooac637102019-01-14 15:44:34 -05001939//sysnb Tgkill(tgid int, tid int, sig syscall.Signal) (err error)
1940//sysnb Times(tms *Tms) (ticks uintptr, err error)
1941//sysnb Umask(mask int) (oldmask int)
1942//sysnb Uname(buf *Utsname) (err error)
1943//sys Unmount(target string, flags int) (err error) = SYS_UMOUNT2
1944//sys Unshare(flags int) (err error)
1945//sys write(fd int, p []byte) (n int, err error)
1946//sys exitThread(code int) (err error) = SYS_EXIT
1947//sys readlen(fd int, p *byte, np int) (n int, err error) = SYS_READ
1948//sys writelen(fd int, p *byte, np int) (n int, err error) = SYS_WRITE
Andrea Campanella3614a922021-02-25 12:40:42 +01001949//sys readv(fd int, iovs []Iovec) (n int, err error) = SYS_READV
1950//sys writev(fd int, iovs []Iovec) (n int, err error) = SYS_WRITEV
1951//sys preadv(fd int, iovs []Iovec, offs_l uintptr, offs_h uintptr) (n int, err error) = SYS_PREADV
1952//sys pwritev(fd int, iovs []Iovec, offs_l uintptr, offs_h uintptr) (n int, err error) = SYS_PWRITEV
1953//sys preadv2(fd int, iovs []Iovec, offs_l uintptr, offs_h uintptr, flags int) (n int, err error) = SYS_PREADV2
1954//sys pwritev2(fd int, iovs []Iovec, offs_l uintptr, offs_h uintptr, flags int) (n int, err error) = SYS_PWRITEV2
1955
1956func bytes2iovec(bs [][]byte) []Iovec {
1957 iovecs := make([]Iovec, len(bs))
1958 for i, b := range bs {
1959 iovecs[i].SetLen(len(b))
1960 if len(b) > 0 {
1961 iovecs[i].Base = &b[0]
1962 } else {
1963 iovecs[i].Base = (*byte)(unsafe.Pointer(&_zero))
1964 }
1965 }
1966 return iovecs
1967}
1968
1969// offs2lohi splits offs into its lower and upper unsigned long. On 64-bit
1970// systems, hi will always be 0. On 32-bit systems, offs will be split in half.
1971// preadv/pwritev chose this calling convention so they don't need to add a
1972// padding-register for alignment on ARM.
1973func offs2lohi(offs int64) (lo, hi uintptr) {
1974 return uintptr(offs), uintptr(uint64(offs) >> SizeofLong)
1975}
1976
1977func Readv(fd int, iovs [][]byte) (n int, err error) {
1978 iovecs := bytes2iovec(iovs)
1979 n, err = readv(fd, iovecs)
1980 readvRacedetect(iovecs, n, err)
1981 return n, err
1982}
1983
1984func Preadv(fd int, iovs [][]byte, offset int64) (n int, err error) {
1985 iovecs := bytes2iovec(iovs)
1986 lo, hi := offs2lohi(offset)
1987 n, err = preadv(fd, iovecs, lo, hi)
1988 readvRacedetect(iovecs, n, err)
1989 return n, err
1990}
1991
1992func Preadv2(fd int, iovs [][]byte, offset int64, flags int) (n int, err error) {
1993 iovecs := bytes2iovec(iovs)
1994 lo, hi := offs2lohi(offset)
1995 n, err = preadv2(fd, iovecs, lo, hi, flags)
1996 readvRacedetect(iovecs, n, err)
1997 return n, err
1998}
1999
2000func readvRacedetect(iovecs []Iovec, n int, err error) {
2001 if !raceenabled {
2002 return
2003 }
2004 for i := 0; n > 0 && i < len(iovecs); i++ {
2005 m := int(iovecs[i].Len)
2006 if m > n {
2007 m = n
2008 }
2009 n -= m
2010 if m > 0 {
2011 raceWriteRange(unsafe.Pointer(iovecs[i].Base), m)
2012 }
2013 }
2014 if err == nil {
2015 raceAcquire(unsafe.Pointer(&ioSync))
2016 }
2017}
2018
2019func Writev(fd int, iovs [][]byte) (n int, err error) {
2020 iovecs := bytes2iovec(iovs)
2021 if raceenabled {
2022 raceReleaseMerge(unsafe.Pointer(&ioSync))
2023 }
2024 n, err = writev(fd, iovecs)
2025 writevRacedetect(iovecs, n)
2026 return n, err
2027}
2028
2029func Pwritev(fd int, iovs [][]byte, offset int64) (n int, err error) {
2030 iovecs := bytes2iovec(iovs)
2031 if raceenabled {
2032 raceReleaseMerge(unsafe.Pointer(&ioSync))
2033 }
2034 lo, hi := offs2lohi(offset)
2035 n, err = pwritev(fd, iovecs, lo, hi)
2036 writevRacedetect(iovecs, n)
2037 return n, err
2038}
2039
2040func Pwritev2(fd int, iovs [][]byte, offset int64, flags int) (n int, err error) {
2041 iovecs := bytes2iovec(iovs)
2042 if raceenabled {
2043 raceReleaseMerge(unsafe.Pointer(&ioSync))
2044 }
2045 lo, hi := offs2lohi(offset)
2046 n, err = pwritev2(fd, iovecs, lo, hi, flags)
2047 writevRacedetect(iovecs, n)
2048 return n, err
2049}
2050
2051func writevRacedetect(iovecs []Iovec, n int) {
2052 if !raceenabled {
2053 return
2054 }
2055 for i := 0; n > 0 && i < len(iovecs); i++ {
2056 m := int(iovecs[i].Len)
2057 if m > n {
2058 m = n
2059 }
2060 n -= m
2061 if m > 0 {
2062 raceReadRange(unsafe.Pointer(iovecs[i].Base), m)
2063 }
2064 }
2065}
khenaidooac637102019-01-14 15:44:34 -05002066
2067// mmap varies by architecture; see syscall_linux_*.go.
2068//sys munmap(addr uintptr, length uintptr) (err error)
2069
2070var mapper = &mmapper{
2071 active: make(map[*byte][]byte),
2072 mmap: mmap,
2073 munmap: munmap,
2074}
2075
2076func Mmap(fd int, offset int64, length int, prot int, flags int) (data []byte, err error) {
2077 return mapper.Mmap(fd, offset, length, prot, flags)
2078}
2079
2080func Munmap(b []byte) (err error) {
2081 return mapper.Munmap(b)
2082}
2083
2084//sys Madvise(b []byte, advice int) (err error)
2085//sys Mprotect(b []byte, prot int) (err error)
2086//sys Mlock(b []byte) (err error)
2087//sys Mlockall(flags int) (err error)
2088//sys Msync(b []byte, flags int) (err error)
2089//sys Munlock(b []byte) (err error)
2090//sys Munlockall() (err error)
2091
2092// Vmsplice splices user pages from a slice of Iovecs into a pipe specified by fd,
2093// using the specified flags.
2094func Vmsplice(fd int, iovs []Iovec, flags int) (int, error) {
2095 var p unsafe.Pointer
2096 if len(iovs) > 0 {
2097 p = unsafe.Pointer(&iovs[0])
2098 }
2099
2100 n, _, errno := Syscall6(SYS_VMSPLICE, uintptr(fd), uintptr(p), uintptr(len(iovs)), uintptr(flags), 0, 0)
2101 if errno != 0 {
2102 return 0, syscall.Errno(errno)
2103 }
2104
2105 return int(n), nil
2106}
2107
Andrea Campanella3614a922021-02-25 12:40:42 +01002108func isGroupMember(gid int) bool {
2109 groups, err := Getgroups()
2110 if err != nil {
2111 return false
2112 }
2113
2114 for _, g := range groups {
2115 if g == gid {
2116 return true
2117 }
2118 }
2119 return false
2120}
2121
khenaidooac637102019-01-14 15:44:34 -05002122//sys faccessat(dirfd int, path string, mode uint32) (err error)
Andrea Campanella3614a922021-02-25 12:40:42 +01002123//sys Faccessat2(dirfd int, path string, mode uint32, flags int) (err error)
khenaidooac637102019-01-14 15:44:34 -05002124
2125func Faccessat(dirfd int, path string, mode uint32, flags int) (err error) {
Andrea Campanella3614a922021-02-25 12:40:42 +01002126 if flags == 0 {
2127 return faccessat(dirfd, path, mode)
2128 }
2129
2130 if err := Faccessat2(dirfd, path, mode, flags); err != ENOSYS && err != EPERM {
2131 return err
khenaidooac637102019-01-14 15:44:34 -05002132 }
2133
2134 // The Linux kernel faccessat system call does not take any flags.
2135 // The glibc faccessat implements the flags itself; see
2136 // https://sourceware.org/git/?p=glibc.git;a=blob;f=sysdeps/unix/sysv/linux/faccessat.c;hb=HEAD
2137 // Because people naturally expect syscall.Faccessat to act
2138 // like C faccessat, we do the same.
2139
Andrea Campanella3614a922021-02-25 12:40:42 +01002140 if flags & ^(AT_SYMLINK_NOFOLLOW|AT_EACCESS) != 0 {
2141 return EINVAL
khenaidooac637102019-01-14 15:44:34 -05002142 }
2143
2144 var st Stat_t
2145 if err := Fstatat(dirfd, path, &st, flags&AT_SYMLINK_NOFOLLOW); err != nil {
2146 return err
2147 }
2148
2149 mode &= 7
2150 if mode == 0 {
2151 return nil
2152 }
2153
2154 var uid int
2155 if flags&AT_EACCESS != 0 {
2156 uid = Geteuid()
2157 } else {
2158 uid = Getuid()
2159 }
2160
2161 if uid == 0 {
2162 if mode&1 == 0 {
2163 // Root can read and write any file.
2164 return nil
2165 }
2166 if st.Mode&0111 != 0 {
2167 // Root can execute any file that anybody can execute.
2168 return nil
2169 }
2170 return EACCES
2171 }
2172
2173 var fmode uint32
2174 if uint32(uid) == st.Uid {
2175 fmode = (st.Mode >> 6) & 7
2176 } else {
2177 var gid int
2178 if flags&AT_EACCESS != 0 {
2179 gid = Getegid()
2180 } else {
2181 gid = Getgid()
2182 }
2183
Andrea Campanella3614a922021-02-25 12:40:42 +01002184 if uint32(gid) == st.Gid || isGroupMember(gid) {
khenaidooac637102019-01-14 15:44:34 -05002185 fmode = (st.Mode >> 3) & 7
2186 } else {
2187 fmode = st.Mode & 7
2188 }
2189 }
2190
2191 if fmode&mode == mode {
2192 return nil
2193 }
2194
2195 return EACCES
2196}
2197
khenaidood948f772021-08-11 17:49:24 -04002198//sys nameToHandleAt(dirFD int, pathname string, fh *fileHandle, mountID *_C_int, flags int) (err error) = SYS_NAME_TO_HANDLE_AT
2199//sys openByHandleAt(mountFD int, fh *fileHandle, flags int) (fd int, err error) = SYS_OPEN_BY_HANDLE_AT
Scott Baker8461e152019-10-01 14:44:30 -07002200
2201// fileHandle is the argument to nameToHandleAt and openByHandleAt. We
2202// originally tried to generate it via unix/linux/types.go with "type
2203// fileHandle C.struct_file_handle" but that generated empty structs
2204// for mips64 and mips64le. Instead, hard code it for now (it's the
2205// same everywhere else) until the mips64 generator issue is fixed.
2206type fileHandle struct {
2207 Bytes uint32
2208 Type int32
2209}
2210
2211// FileHandle represents the C struct file_handle used by
2212// name_to_handle_at (see NameToHandleAt) and open_by_handle_at (see
2213// OpenByHandleAt).
2214type FileHandle struct {
2215 *fileHandle
2216}
2217
2218// NewFileHandle constructs a FileHandle.
2219func NewFileHandle(handleType int32, handle []byte) FileHandle {
2220 const hdrSize = unsafe.Sizeof(fileHandle{})
2221 buf := make([]byte, hdrSize+uintptr(len(handle)))
2222 copy(buf[hdrSize:], handle)
2223 fh := (*fileHandle)(unsafe.Pointer(&buf[0]))
2224 fh.Type = handleType
2225 fh.Bytes = uint32(len(handle))
2226 return FileHandle{fh}
2227}
2228
2229func (fh *FileHandle) Size() int { return int(fh.fileHandle.Bytes) }
2230func (fh *FileHandle) Type() int32 { return fh.fileHandle.Type }
2231func (fh *FileHandle) Bytes() []byte {
2232 n := fh.Size()
2233 if n == 0 {
2234 return nil
2235 }
2236 return (*[1 << 30]byte)(unsafe.Pointer(uintptr(unsafe.Pointer(&fh.fileHandle.Type)) + 4))[:n:n]
2237}
2238
2239// NameToHandleAt wraps the name_to_handle_at system call; it obtains
2240// a handle for a path name.
2241func NameToHandleAt(dirfd int, path string, flags int) (handle FileHandle, mountID int, err error) {
2242 var mid _C_int
2243 // Try first with a small buffer, assuming the handle will
2244 // only be 32 bytes.
2245 size := uint32(32 + unsafe.Sizeof(fileHandle{}))
2246 didResize := false
2247 for {
2248 buf := make([]byte, size)
2249 fh := (*fileHandle)(unsafe.Pointer(&buf[0]))
2250 fh.Bytes = size - uint32(unsafe.Sizeof(fileHandle{}))
2251 err = nameToHandleAt(dirfd, path, fh, &mid, flags)
2252 if err == EOVERFLOW {
2253 if didResize {
2254 // We shouldn't need to resize more than once
2255 return
2256 }
2257 didResize = true
2258 size = fh.Bytes + uint32(unsafe.Sizeof(fileHandle{}))
2259 continue
2260 }
2261 if err != nil {
2262 return
2263 }
2264 return FileHandle{fh}, int(mid), nil
2265 }
2266}
2267
2268// OpenByHandleAt wraps the open_by_handle_at system call; it opens a
2269// file via a handle as previously returned by NameToHandleAt.
2270func OpenByHandleAt(mountFD int, handle FileHandle, flags int) (fd int, err error) {
2271 return openByHandleAt(mountFD, handle.fileHandle, flags)
2272}
2273
Andrea Campanella3614a922021-02-25 12:40:42 +01002274// Klogset wraps the sys_syslog system call; it sets console_loglevel to
2275// the value specified by arg and passes a dummy pointer to bufp.
2276func Klogset(typ int, arg int) (err error) {
2277 var p unsafe.Pointer
2278 _, _, errno := Syscall(SYS_SYSLOG, uintptr(typ), uintptr(p), uintptr(arg))
2279 if errno != 0 {
2280 return errnoErr(errno)
2281 }
2282 return nil
2283}
2284
2285// RemoteIovec is Iovec with the pointer replaced with an integer.
2286// It is used for ProcessVMReadv and ProcessVMWritev, where the pointer
2287// refers to a location in a different process' address space, which
2288// would confuse the Go garbage collector.
2289type RemoteIovec struct {
2290 Base uintptr
2291 Len int
2292}
2293
2294//sys ProcessVMReadv(pid int, localIov []Iovec, remoteIov []RemoteIovec, flags uint) (n int, err error) = SYS_PROCESS_VM_READV
2295//sys ProcessVMWritev(pid int, localIov []Iovec, remoteIov []RemoteIovec, flags uint) (n int, err error) = SYS_PROCESS_VM_WRITEV
2296
khenaidooac637102019-01-14 15:44:34 -05002297/*
2298 * Unimplemented
2299 */
2300// AfsSyscall
2301// Alarm
2302// ArchPrctl
2303// Brk
khenaidooac637102019-01-14 15:44:34 -05002304// ClockNanosleep
2305// ClockSettime
2306// Clone
2307// EpollCtlOld
2308// EpollPwait
2309// EpollWaitOld
2310// Execve
2311// Fork
2312// Futex
2313// GetKernelSyms
2314// GetMempolicy
2315// GetRobustList
2316// GetThreadArea
2317// Getitimer
2318// Getpmsg
2319// IoCancel
2320// IoDestroy
2321// IoGetevents
2322// IoSetup
2323// IoSubmit
2324// IoprioGet
2325// IoprioSet
2326// KexecLoad
2327// LookupDcookie
2328// Mbind
2329// MigratePages
2330// Mincore
2331// ModifyLdt
2332// Mount
2333// MovePages
2334// MqGetsetattr
2335// MqNotify
2336// MqOpen
2337// MqTimedreceive
2338// MqTimedsend
2339// MqUnlink
2340// Mremap
2341// Msgctl
2342// Msgget
2343// Msgrcv
2344// Msgsnd
2345// Nfsservctl
2346// Personality
2347// Pselect6
2348// Ptrace
2349// Putpmsg
2350// Quotactl
2351// Readahead
2352// Readv
2353// RemapFilePages
2354// RestartSyscall
2355// RtSigaction
2356// RtSigpending
2357// RtSigprocmask
2358// RtSigqueueinfo
2359// RtSigreturn
2360// RtSigsuspend
2361// RtSigtimedwait
2362// SchedGetPriorityMax
2363// SchedGetPriorityMin
2364// SchedGetparam
2365// SchedGetscheduler
2366// SchedRrGetInterval
2367// SchedSetparam
2368// SchedYield
2369// Security
2370// Semctl
2371// Semget
2372// Semop
2373// Semtimedop
2374// SetMempolicy
2375// SetRobustList
2376// SetThreadArea
2377// SetTidAddress
2378// Shmat
2379// Shmctl
2380// Shmdt
2381// Shmget
2382// Sigaltstack
khenaidooac637102019-01-14 15:44:34 -05002383// Swapoff
2384// Swapon
2385// Sysfs
2386// TimerCreate
2387// TimerDelete
2388// TimerGetoverrun
2389// TimerGettime
2390// TimerSettime
khenaidooac637102019-01-14 15:44:34 -05002391// Tkill (obsolete)
2392// Tuxcall
2393// Umount2
2394// Uselib
2395// Utimensat
2396// Vfork
2397// Vhangup
2398// Vserver
2399// Waitid
2400// _Sysctl